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Turning Normalizing Flows into Monge Maps with Geodesic Gaussian
Preserving Flows

Guillaume Morel1 Lucas Drumetz1 Simon Benaichouche1 Nicolas Courty2 François Rousseau1

Abstract

Normalizing Flows (NF) are powerful likelihood-
based generative models that are able to trade
off between expressivity and tractability to model
complex densities. A now well established re-
search avenue leverages optimal transport (OT)
and looks for Monge maps, i.e. models with min-
imal effort between the source and target distri-
butions. This paper introduces a method based
on Brenier’s polar factorization theorem to trans-
form any trained NF into a more OT-efficient ver-
sion without changing the final density. We do so
by learning a rearrangement of the source (Gaus-
sian) distribution that minimizes the OT cost be-
tween the source and the final density. We fur-
ther constrain the path leading to the estimated
Monge map to lie on a geodesic in the space of
volume-preserving diffeomorphisms thanks to Eu-
ler’s equations. The proposed method leads to
smooth flows with reduced OT costs for several
existing models without affecting the model per-
formance.

1 Introduction

Modeling high dimensional data is a central question in
data science as they are ubiquitous in applications. Various
tasks such as probabilistic inference, density estimation or
sampling of new data require accurate probabilistic models
that need to be defined efficiently. There exists a large va-
riety of generative models in the literature. Among other
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approaches, variational autoencoders (VAES) (Kingma and
Welling, 2014; Rezende et al., 2014) and generative ad-
versarial networks (GAN) (Goodfellow et al., 2014) are
frequent choices, each with their strengths and weaknesses.

Normalizing flows. A third popular class of generative
models is Normalizing flows (NF). NF models transform a
known probability distribution (Gaussian in most cases) into
a complex one allowing for efficient sampling and density
estimation. To do so they use a smooth diffeomorphism
f : Rd → Rd which maps a target probability distribution
µ to the known source distribution ν = f#µ (Dinh et al.,
2014; Rezende and Mohamed, 2015). In practice the flow
must satisfy the change of variables formula:

log pµ(x) = log pν(f(x)) + log |det∇f(x)|. (1)

There are many possible parameterizations of f , usually rely-
ing on automatic differentiation to train their parameters via
first order optimization algorithms. For density estimation
applications, training is done by maximizing the likelihood
of the observed data. The data are generally high dimen-
sional and accessing pµ(x) for a given x requires computing
determinant of the Jacobian matrix of f . This operation has
a complexity of O(d3) in general and thus a requirement for
the flows architecture is to have a tractable determinant of
the Jacobian while remaining expressive enough (Dinh et al.,
2014; Kingma and Dhariwal, 2018; Rezende and Mohamed,
2015; Papamakarios et al., 2021).

Optimal transport. A diffeomorphism transforming any
well-behaved distribution into another always exists in the-
ory (Papamakarios et al., 2021). However, there can be
many ways to transform one probability measure µ into
another probability measure ν, and therefore the function
f is generally not unique. This has led to many proposed
architectures in the literature (Kingma and Dhariwal, 2018;
Grathwohl et al., 2018; Huang et al., 2018; De Cao et al.,
2020; Papamakarios et al., 2017). The question of choosing
the ”best” transformation among all existing ones is there-
fore crucial, independently from how accurately µ models
the target distribution. One way to make the architecture
unique (under appropriate conditions on the two distribu-
tions) is to use optimal transport (Hamfeldt, 2019; Peyré
et al., 2017; Santambrogio, 2015; Villani, 2008), that is to



Figure 1: A GP transformation applied on particles sampled from
a two dimensional normal distribution. The mean and standard
deviation stay the same; only the positions of the particles change.

choose the one giving the Wasserstein distance between µ
and ν, with a squared L2 ground cost:

W 2
2 (µ, ν) = min

f

∫
Rd

|f(x)− x|2dµ(x), ν = f#µ. (2)

An optimal model in the sense of (2) minimizes the total
mass displacement which can be a desirable property even
if it is often a difficult task. In particular Brenier’s theorem
(Brenier, 1991) states that the optimal function f is the
gradient of a scalar convex function, which is widely used
when solving (2).

One key property of OT mappings is that they should better
preserve the structure of the distribution compared to non
OT transformations. This makes them particularly appealing
for machine learning applications, and may also help with
generalization performance (Karkar et al., 2020).

Optimal transport and NF models. Including OT in NF
models has recently received much attention with various
approaches to obtain a map g which satisfies the property
(2). Among all these methods, many use either directly
Brenier’s theorem (Brenier, 1991) or the dynamic OT for-
mulation with the Benamou-Brenier approach (Benamou
and Brenier, 2000). One important remark is that most of the
approaches considered need dedicated architectures in order
to satisfy the OT property. For example the transformation
f is often written as neural network modeling the gradient
of a (possibly convex) scalar function (Finlay et al., 2020a;
Huang et al., 2020; Onken et al., 2020; Zhang et al., 2018).
This sometimes requires some particular training process
(Finlay et al., 2020a; Huang et al., 2020; Onken et al., 2020)
and/or the addition of some penalization terms in the loss
function (Onken et al., 2020; Finlay et al., 2020b; Yang
and Karniadakis, 2020). When considering the Benamou-
Brenier formulation, the normalizing flow is interpreted as
the discretization of a continuous ordinary differential equa-
tion (Chen et al., 2018b) and the optimal transport problem
is then solved dynamically (Finlay et al., 2020b; Onken
et al., 2020; Zhang et al., 2018).

1.1 Main contributions

Polar factorization. An overlooked implication of Bre-
nier’s theorem is the so-called polar factorization theorem,

that states that the optimal transport map ∇ψ solving (2)
can be factorized into the composition of two functions
∇ψ = s ◦ f , the function f being some arbitrary smooth
map from µ to ν and s an associated measure preserving
function of ν (Brenier, 1991). The idea we exploit is the pos-
sibility, from a given flow f (and its corresponding inverse
g = f−1), to rearrange the distribution ν using s to obtain a
new map reducing the OT cost without changing the distri-
bution given by the push-forward µ := g#ν = (g◦s−1)#ν.
The OT-improved map can then be obtained with the com-
position g◦s−1. Interestingly this property is not as popular
as the previous one and to our knowledge is not used when
dealing with OT and NF models. Yet normalizing flows can
take advantage of this formulation mostly because the dis-
tribution ν is known and simple (here and in the following
ν is a standard normal) which make it possible to construct
architectures preserving ν.

Gaussian preserving flows. Our work differs from the
state of the art as we do not propose a new normalizing
flow model. Instead we propose to use Brenier’s theorem to
compute the Monge map for any pre-existing architecture.
Indeed there exists a wide variety of architecture available in
the literature (Kingma and Dhariwal, 2018; Grathwohl et al.,
2018; Huang et al., 2018; De Cao et al., 2020; Papamakarios
et al., 2017) each with their pros and cons which sometimes
depend specifically on the test case considered. Our idea is
to use Brenier’s polar factorization theorem to rearrange the
points in the known distribution to obtain the optimal map
associated with a given flow. We consider the most common
case where the known distribution is a standard normal and
call such rearranging maps Gaussian Preserving (GP) flows,
see Figure 1. An important point is that by construction
our GP map will only change the OT cost of the model.
The target density and therefore the training loss given by
the model will stay the same. This allows us to take any
pre-trained model and compute the associated Monge map,
thus improving the model in terms of OT displacement from
the source to the target distribution, without changing the
modeled density see Figure 2.

Construction of divergence free functions in high dimen-
sions. We show that divergence free functions can be used to
model GP flows. We therefore derive an effective construc-
tion of divergence free functions in high dimensions and
apply it in the latent space of some popular VAE models.

Euler’s equations. Since several GP flow models can solve
the same OT problem, we also look for a way to find the
”best” GP flow. This is somehow similar to the approaches
from (Finlay et al., 2020b; Onken et al., 2020) where the
trajectories of a continuous normalizing flow are penalized
to be straight lines. This is not strictly needed to find the
Monge map but can be interpreted as some geodesic over
all the flows which solve the associated OT problem. In
this work, we show that the geodesics associated with the
OT problem are actually given by solutions to the Euler



Figure 2: Eight gaussians test case with colored distributions. A GP flow is trained on a pre-trained BNAF model (De Cao et al., 2020) to
reduce the OT cost.

equations, following a celebrated result by Arnold (Arnold,
1966). The penalization of Euler’s equations in high di-
mensions and its practical implementation is therefore also
considered, which is to the best of our knowledge an original
contribution.

Disentanglement preservation with optimal transport.
Finally we show one potential interest of GP flows by
studying the preservation of the data structure experimen-
tally. More specifically we focus on the preservation of
disentanglement on the dSprites (Matthey et al., 2017) and
MNIST (Lecun et al., 1998) datasets in some variational
auto-encoder (VAE) latent space. On this particular exam-
ple we show that OT allows to improve the preservation of
the structure of the latent data points which is otherwise
destroyed when applying the NF model.

2 Polar factorization theorem

The main idea is to use the Brenier’s polar factorization
theorem to construct the Monge map with a rearrangement
of the known probability distribution ν. To preserve the con-
ventions from Brenier’s paper (Brenier, 1991), we study the
OT problem defined from the known probability distribution
ν to µ and therefore consider the function g := f−1.

Theorem 1 (Brenier’s polar factorization (Brenier, 1991)).
Let (X , ν) be a probability space, X ⊂ Rd open bounded.
Then for each non-degenerate g ∈ Lp(X , ν,Rd), there
exists a unique convex function ψ : X → R and a measure
preserving function s : X → X such that

g(x) = ∇ψ(s(x)),

and s(x) minimizes the cost
∫
X |g(x)− s(x)|2dν(x).

Our goal is to leverage the polar factorization theorem in
order to solve the OT problem between ν and µ := g#ν
where g is given and ν = N (0, Id), by looking for the
rearrangement s via an optimization problem. To do so we
need to construct a class of measure preserving maps.

Remark 1. Since in practice we consider ν to be a standard
normal, the domain X is not bounded and therefore does
not strictly satisfy the hypothesis of Theorem 1. We do not

investigate this point further and simply quote a remark
from Brenier’s work (Brenier, 1991): ”we believe that the
result is still true when X is unbounded, provided that p > 1
and

∫
X ∥x∥qβ(x)dx < +∞, where 1/q + 1/p = 1”. The

function β(x) = e∥x∥
2/2 is the probability density of ν, and

the inequality is therefore satisfied.

3 Gaussian preserving flows

In order to apply Brenier’s polar factorization theorem, it is
therefore needed to construct a class of measure preserving
maps. Since we consider the case where ν is a standard
normal, we call such maps Gaussian preserving (GP). All
proofs of the propositions and lemmas are given in Appendix
B.

Consider two probability measures α and β with density hα
and hβ respectively. A map s is measure preserving between
α and β if it satisfies the change of variable equality (same
as (1) without the log) hα(x) = hβ(s(x))|det(∇s(x))|. In
our case, we want s to be Gaussian preserving therefore
hα = hβ = e−∥x∥2/2 and one gets

|det∇s(x)| = e(∥s(x)∥
2−∥x∥2)/2. (3)

It turns out that Lebesgue preserving functions (i.e. satisfy-
ing |det∇ϕ| = 1) can be used to construct maps satisfying
(3). In the following we will denote erf : Rd → Rd the
distribution function of a one dimensional Gaussian (that is
erf(x) = 2√

π

∫ x

0
et

2

dt) applied component wise.

Proposition 1. Let s be a smooth Gaussian preserving func-
tion (i.e. satisfying (3)). Then there exists ϕ : (−1, 1)d →
(−1, 1)d such that |det∇ϕ| = 1 and

s(x) =
√
2 erf−1 ◦ϕ ◦ erf( x√

2
), x ∈ Rd.

From now on we will focus on the construction of volume
and orientation preserving maps (i.e. satisfying det∇ϕ =
1) since functions satisfying det∇ϕ = −1 can be con-
structed from them see Appendix B.1.2. Moreover, one has
the following result regarding the regularity of GP flows.



Lemma 1. Assume the Monge map and the NF architecture
are C1 diffeomorphisms. Then the corresponding GP flow
s is C1, the associated function ϕ is also C1 and either
satisfies det∇ϕ(x) = 1 everywhere or det∇ϕ(x) = −1
everywhere.

3.1 Volume-orientation preserving maps

First we introduce the space SDiff(Ω) we will working with
from now on. Let Diff(Ω) be the set of all diffeomorphisms
in Ω then SDiff(Ω) :=

{
ψ ∈ Diff(Ω), det(∇ψ)(x) =

1, ∀x ∈ Ω
}
, where Ω = (−1, 1)d. That is we need a trans-

formation which satisfies two properties: 1) the function
must be volume and orientation preserving, 2) the solution
must stay in the domain (−1, 1)d. Consider the following
ODE:{

d
dtX(t,x) = v(t,X(t,x)), x ∈ Ω, 0 ≤ t ≤ T,

X(0,x) = x.

(4)
We impose two conditions on the velocity v:

∇ · v = 0, in Ω, (5)
v · n = 0, on ∂Ω, (6)

where n is the outward normal at the boundary of Ω. We de-
fine ϕ to be the solution at the final time ϕ(x) := X(T,x).
Property (5) implies that det∇ϕ = 1, and property (6) en-
sures that ϕ does not escape Ω. Any function in SDiff(Ω)
can be written as a solution to (4) for d ≥ 3 (Shnirelman,
1993), for d = 2 some pathological cases can be constructed
(Shnirelman, 1994).

Divergence free vector fields. First we focus on the vector
fields satisfying (5) for arbitrary large dimensions. Property
(6) can then be incorporated with very little additional work.

Proposition 2. Consider an arbitrary vector field v : Rd →
Rd. Then ∇ · v = 0 if and only if there exists smooth scalar
functions ψi

j : Rd → R, with ψi
j = −ψj

i such that

vi(x) =

d∑
j=1

∂xjψ
i
j(x), i = 1, ..., d, (7)

where v = (v1, ..., vd).

To impose the boundary conditions (6) one can simply mul-
tiply each ψi

j by (x2i − 1)(x2j − 1).

Lemma 2. Let Ω = [−1, 1]d and consider the functions
ψi
j(x) = (x2i − 1)(x2j − 1)ψ̃i

j(x) where ψ̃i
j(x) : Rd → R

are arbitrary scalar functions satisfying ψ̃i
j = −ψ̃j

i . Then
the function v defined in Proposition 2 satisfies ∇ · v = 0
and v · n = 0 on ∂Ω.

The incompressible property (5) and the boundary condi-
tions (6) can be exactly implemented in the network in any

dimension. Note however that in order to get all the in-
compressible vector fields (7), we need to construct at least
d(d− 1)/2 arbitrary scalar functions. See Appendix A for
the practical construction of these divergence free functions
in high dimensions.

4 Euler’s geodesics

GP flows give a way to compute the Monge map for any
trained NF architecture. Many transformations can achieve
this goal and the question of finding the best flow among all
volume preserving transformations need to be considered.

4.1 Arnold’s theorem

In 1966, Arnold (Arnold, 1966) showed that the flow de-
scribed by Euler’s equations coincides with the geodesic
flow on the manifold of volume preserving diffeomorphisms.
This theoretical result therefore gives the reason why reg-
ularizing our flows with Euler’s equations is a desirable
property. Mainly that Euler’s equations take the path with
the lowest energy to reach the final configuration. Consider
the Euler equations:

∂tv + (v · ∇)v = −∇p, t ∈ [0, T ], x ∈ Ω,

∇ · v = 0, t ∈ [0, T ], x ∈ Ω,

v · n = 0, t ∈ [0, T ], x ∈ ∂Ω,

v(0, ·) = v0,

(8)

where v := v(t,x) is the velocity field, p := p(t,x) the
pressure and n := n(x) the outward normal at the boundary
of Ω. We introduce E the energy of a smooth function
X(t, ·):

E(X) =

∫ T

0

∫
Ω

1

2
|∂tX(t,x)|2dxdt, (9)

Now assume ϕ ∈ SDiff(Ω). Arnold’s problem’s consists
in finding the path X(t, ·)t∈[0,T ] in SDiff(Ω) joining the
identity to ϕ which minimizes E :

min
X(t,·)∈SDiff(Ω)

E(X), X(0, ·) = Id, X(T, ·) = ϕ(·).

(10)
In other words (10) is the geodesic in SDiff(Ω) between Id
and ϕ.

Theorem 2 (Arnold (1966)). Assuming the existence of a
solution to Arnold’s problem, X is solution to (10) if and
only if v(t,x) := ∂tX(t,x) satisfies Euler’s equations (8).

4.2 Penalization of Euler’s equations in high
dimensions

Numerical schemes developed to efficiently solve the Euler
equations (Canuto et al., 2007; Quarteroni, 2009) (mainly
for fluid mechanics problems, i.e. for dimensions up to 3)



scale badly when the dimension increases. In this work, the
solution to Euler’s equations is interpreted as the geodesic to
reach the solution of the OT problem and the dimension can
be arbitrary large. Therefore we approach the equation (8)
through a penalization procedure which can be carried out
in any dimension. As explained in the previous section we
notice that the second and third equations in (8) are satisfied
by construction in the network.

Our remaining goal is to constrain the network to be a
smooth solution to ∂tv + (v · ∇)v = −∇p. The left
hand side can therefore be written as the gradient of a
scalar function and we note that if a vector wt,x ∈ Rd

satisfies wt,x = ∇p(t,x), then its Jacobian is symmet-
ric ∇wt,x = (∇wt,x)

T . In order to solve the first equa-
tion in (8), we propose to penalize the non-symmetric
part of the Jacobian for the total derivative of v. Since
a Jacobian-vector product can be efficiently evaluated in
high dimensions (unlike the calculation of the full Jaco-
bian which is computationally expensive), we do not cal-
culate directly the Jacobian and use instead the following
property of symmetric matrices: if M is symmetric then
yTMz − zTMy = 0, ∀y, z ∈ Rd. The idea is to sample
random vectors y, z during the training and to penalize this
term for the total derivative, that is to minimize:

R(x) := Ey,z

[∫ T

0

(
yT (∇wt,x)z− zT (∇wt,x)y)

)2
dt

]
,

(11)
with y, z ∼ N (0, Id) and wt,x = ∂tv + (v · ∇)v. In
practice, we do not compute the full time integral in (11) as
it would be computationally too expensive but calculate the
penalization only at our time steps discretization.

Approximation of the total derivative. To reduce the
computational burden, we do not calculate exactly the total
derivative wt,x but use an approximation of its Lagrangian
formulation instead. More precisely, consider the variable
X(t,x) from (4) that is the position of a particle at time t
with initial position x. We recall the equality (see Appendix
B.3.1) D

Dtv(t,X(t,x)) = ∂tv(t,X(t,x))+(v(t,X(t,x))·
∇)v(t,X(t,x)) and therefore choose to approximate the
right hand side by using a first order Taylor expansion of
Dv/Dt:

D

Dt
v(t,X(t,x)) ≈ v(tn+1,X(tn+1,x))− v(tn,X(tn,x))

∆t
,

(12)
∆t := tn+1 − tn. In practice, ∆t is set to 2

√
ε where ε is

the machine precision. This approximation can be easily
computed since it requires only the evaluation of the velocity
at two positions of a particle.

5 Procedure

In order to solve the optimal transport problem, we consider
the inverse of the transformation given in Theorem 1 (that

is f := g−1) because the NF architectures are defined in
practice from the unknown probability distribution µ to a
Gaussian distribution ν and are not always easily invertible.

The GP flow is parametrized as a standard residual net-
work (ResNet) with a Runge-Kutta 4 time discretization
(Atkinson, 1989) (other discretizations are possible) and is
estimated by minimizing ∥x− s ◦ f(x)∥2 over the parame-
ters of the velocity field. In practice when regularizing with
Euler’s equations, we replace the term ∇w in (11) by (12)
and calculate the Jacobian-vector product with the function
torch.autograd from pytorch. A parameter λ > 0 is also
added in front of the penalization term:

min
θ
Eµ(x)

[
∥x− sθ ◦ f(x)∥2 + λRθ ◦ erf ◦ f(x)√

2

]
,

(13)
where the vector θ denotes the parameters of the velocity
field v, f is the NF architecture, s the GP flow and R cor-
responds to the term penalized with Euler’s equations. The
subscript θ has been added to emphasize the dependence of
s and R to the parameters. To minimize (13), a sampling
strategy from the probability distribution µ is required. Two
possibilities can be considered:

• If we do not want to invert the NF model (for exam-
ple if it is computationally expensive) we can simply
minimize the first term in (13) over the training data.
The probability distribution µ in (13) is then the un-
known distribution from which the data are taken. This
assumes however that the training data are correctly
mapped to the standard distribution ν with f .

• If the NF model is cheap to invert, we consider the
points f−1(xG) where xG are samples from the stan-
dard normal distribution ν. In this case, the probability
distribution µ in (13) is the transformation of ν by the
inverse of the NF model µ = f−1

# ν.

If the NF model transforms perfectly the training data over
the standard normal ν, these two approaches are equivalent.
If this is not the case, we notice that the second approach
requires a cheap inverse of the NF model, but has the advan-
tage of not using any training data to train the GP flow and
may therefore better generalize.

6 Results

We apply GP flows on two popular NF models: BNAF,
a discrete NF (De Cao et al., 2020) for two-dimensional
test cases and FFJORD, a continuous NF (Grathwohl et al.,
2018) for higher dimensional cases. Both of these models
are solid references among NF and do not incorporate any
OT knowledge in their architecture or training procedure.
The codes are taken from the official repositories. The

github.com/rtqichen/ffjord, github.com/nicola-decao/BNAF,
github.com/CW-Huang/CP-Flow



FFJORD model has an inverse function directly available
in the code, which is not the case for the BNAF model.
For this reason we consider only the FFJORD model when
interpolating in the latent space of the dSprites and MNIST
datasets because interpolations require the NF architecture
to have an inverse function available.

6.1 Density estimation on toy 2D data

We perform density estimation on several 2d standard toy
distributions (Grathwohl et al., 2018; Wehenkel and Louppe,
2019). First we consider the eight gaussians test case and
study the transformation of a uniform mesh by the NF model.
We run the BNAF model and the GP transformation is then
computed on the pre-trained BNAF model. To compare
our results we consider the CP-Flow architecture (Huang
et al., 2020). The CP-flow network is constrained to be the
gradient of a scalar convex function and converges by con-
struction towards the optimal map (provided the optimiza-
tion problem reaches a global minimum), making it a good
candidate for comparison.As shown in Figure 3, the mesh
transformation when adding the GP flow is getting closer
to the CP-Flow one, and the OT cost is roughly the same.
Another illustration of the transformation of the source dis-
tribution is given at the bottom of Figure 3. We clearly see
the added value of GP flow, as the points’ configuration gets
much closer to an isotropic distribution indicating that we
get closer to the Monge map. Note that adding the GP flow
does not affect the estimated density nor the test loss.

Euler’s penalization. To highlight the value of using the
Euler’s penalization we turn our attention to the two moons
dataset. First, to evaluate the quality of the solution with
the proposed approach, we compare our solution with a
more standard method where the initial condition is opti-
mized through a numerical scheme (implemented in Py-
torch, so as to be differentiable) which directly solves the
Euler equations, in the line of ”differentiable physics” ap-
proaches (de Avila Belbute-Peres et al., 2018). The baseline
numerical scheme is a spectral method, a very efficient and
popular numerical method (Canuto et al., 2007). We do not
go into details on how to implement such methods since
they are restricted in practice to low dimensions and we
refer to (Canuto et al., 2007; Quarteroni, 2009) for a com-
plete presentation. On Figure 4, we compare three different
cases: GP alone, GP with Euler penalization and GP with
Euler constrain through a spectral method. As indicated
by the OT costs the final positions of particles are very
similar for each model. Turning our attention to the trajec-
tories, the initial incompressible velocities and the energy
Ē = 1

N

∑N
i=1

∫ T

0
1
2∥v(t,xi)∥2dt are very close both for

the penalization-based procedure and the spectral method
which shows that we can correctly solve the Euler equations
in 2D with our penalization approach (the additional benefit
being the generalization to high dimensions). Without the
addition of the Euler constraint however, the initial velocity

field looks very different resulting in a higher energy, and
thus a transformation that does not correspond to a geodesic
in SDiff(Ω).

6.2 An example of application: improving
disentanglement preservation with optimal
transport

Disentangled representations allow to encode the data in
a latent space where change in one direction result in the
change over one generative factor in the data. Recently the
construction of variational auto-encoders (VAE) (Kingma
and Welling, 2014) with disentangled latent space has re-
ceived much attention (Higgins et al., 2016; Burgess et al.,
2018; Chen et al., 2018a; Kim and Mnih, 2018). Applying
a NF architecture to such latent space may be needed for
various tasks such as density estimation, generative process
or general interpolation. The latter requires however to pre-
serve as much of the data structure as possible when trans-
forming the probability distribution. We therefore propose
to experimentally study disentanglement preservation of NF
with and without OT. To do this we apply a NF architecture
(FFJORD in our case) to the VAE’s latent distribution and
consider the addition of a GP flow. For the disentangled
interpolation in the NF target (gaussian) space we consider
the same directions which are present in the VAE latent
space and are aligned with the axes. This may be a little
naive since these directions could be slightly modified de-
pending on the source and target distributions, but it seems
a good enough approximation here. Our experiments are
run with the β-TCVAE architecture (Chen et al., 2018a) and
the latent space dimension is 10.

dSprites dataset. The dSprites dataset (Matthey et al.,
2017) is made of 64× 64 images of 2D shapes procedurally
generated from 5 ground truth independent latent factors.
These factors are shape, scale, rotation, x and y positions
of a sprite. Since the factors are known, we can compute a
quantitative evaluation of disentanglement and we choose
here to consider the metric from (Eastwood and Williams,
2018) on the continuous factors (i.e. all the factors except
the shape) for the three criteria: disentanglement, complete-
ness and informativeness. Table 1 shows that FFJORD
destroys the latent structure and gives the worst disentangle-
ment, completeness and informativeness scores. Adding GP
flows allow to recover the same disentanglement score as the
initial latent space and get values closer both for complete-
ness and informativeness. Note that the disentanglement
score is slightly better with FFJORD+GP than the initial
one but this is probably only due to some approximation
in the metric used here. On Table 2 the OT costs are com-
pared, and as expected GP flows allow to reduce the OT cost
without changing the loss. Interestingly GP flows with no
additional regularization do not converge completely to the
Monge map because particles get out of the domain at some
point, making it impossible to continue the training process



Figure 3: Eight gaussians test case. Top: density estimation. Middle: deformation of a uniform mesh by the NF model. Bottom: Colored
source distribution. From left to right: CP-Flow (OT=2.62, loss=2.86), BNAF (OT=2.88, loss=2.85), BNAF+GP (OT=2.60, loss=2.85).

Figure 4: Two moons test case with the BNAF model (initial OT=1.35). Top: target density after the application of the GP flow. Bottom:
representation of the initial incompressible velocity field v0 of the GP flow. From left to right: GP only (Ē = 0.28, OT=1.05), GP with
Euler through the penalization procedure (11) (Ē = 0.09, OT=1.04), GP with a spectral method solving directly the Euler equations
(Ē = 0.08, OT=1.06). For the last two mentioned the initial velocity fields are the same and the energy Ē is lowered showing that the
penalization procedure efficiently solve Euler’s equations.



Model Disent. Compl. Inform.

Init. latent space 0.58 0.81 0.55
FFJORD 0.39 0.26 0.62

FFJORD+GP 0.59 0.68 0.61
FFJORD+GP+EULER 0.59 0.67 0.59

Table 1: Quantitative evaluation from (Eastwood and Williams,
2018) of disentanglement (higher is better), completeness (higher
is better) and informativeness (lower is better) on the dSprites
dataset. Adding GP flows make the scores closer to the initial
ones.

Model dSprites MNIST

OT cost
FFJORD 10.45 6.81

FFJORD+GP 5.60 3.17
FFJORD+GP+EULER 5.26 3.20

Loss
FFJORD -17.52 -0.45

FFJORD+GP -17.52 -0.45
FFJORD+GP+EULER -17.52 -0.45

Table 2: Losses and mean OT costs. GP flows reduce the OT cost
without changing the loss. Adding Euler regularization allows to
further reduced the OT cost on the dSprites dataset.

(the training is stopped at ≈ 200 epochs). We conjecture
that this may be due to non-smooth trajectories of our GP
flows and a regularization is therefore needed. As shown
on Table 2 adding Euler regularization fixed this issue and
allows to further reduce the OT cost.

To illustrate the preservation of disentanglement, some inter-
polations are also presented in Figures 5 and 6 in Appendix
D. The dimensions are sorted with respect to their KL diver-
gence in the initial latent space and therefore only the first
dimensions carry information: each of the first 5 lines corre-
spond to a generative factor while the last dimensions leave
the image unchanged. This structure is lost when mapping
the latent space to a Gaussian distribution with the FFJORD
architecture. The addition of a GP flow fixed this issue and
the interpolation better match the initial latent one.

MNIST dataset. We also consider the MNIST dataset (Le-
cun et al., 1998). As opposed to the dSprites test case, GP
flows do not seem to have trouble to converge here with-
out Euler penalization and therefore we obtain comparable
OT costs with and without Euler regularization see Table 2.
Since the generative factors are not known in this case we
cannot make a quantitative evaluation of disentanglement
as we did for the dSprites dataset. We focus instead on the
interpolations presented in Figures 7 and 8 in Appendix
D. GP flows better preserve the data structure of the ini-
tial latent space compare when applying only the FFJORD

model. This can be seen in particular on the last two rows
of each block which are not changing in the initial latent
space. This structure is lost with the FFJORD model and
recovered when training a GP flow.

7 Discussion

This article describes a method to reduce the OT cost of
any pre-trained NF model without changing the estimated
target density. The proposed method scales reasonably well
and does not require to constrain the architecture of the
original model. The procedure relies on building Gaussian
preserving flows to rearrange the source distribution to sat-
isfy the OT property. The proposed approach is based on
incompressible vector fields which allow to use a nice in-
terpretation of Euler’s equations as a geodesic in the group
of volume-preserving diffeomorphisms between the iden-
tity and the transformation minimizing the OT cost. This
original contribution allows to add a regularity condition to
the estimated map in addition to simply enforcing the OT
property.

Perspectives. The numerical experiments presented here
pave the way to new research perspectives. First compared
to other OT approaches in the NF literature, GP flows is
to the best of our knowledge the first one which does not
constrain the NF architecture to obtain the Monge map.
This could be a great advantage when the NF architecture
is already constrained for other reasons (for example to
satisfy some symmetries or data-related properties). We
believe that in this case GP flows may stand out as it could
be difficult to further constrain the network to satisfy the
OT property with other standard approaches. The proposed
approach could also be a starting point to investigate other
type of (potentially non OT) costs, and more specifically
non-quadratic OT costs, such as the L1 norm which is much
less considered in the literature due to the lack of theoretical
foundations (the OT map is not the gradient of a convex
function anymore). In a GP-based framework, such ex-
tension could be easily implemented since we do not rely
explicitly on this property.

Limitations. The main limitation of the proposed method
is probably related to the number of independent functions
require to construct incompressible vector fields in high
dimensions. Indeed, as explained in Proposition 2 one needs
to construct at least d(d − 1)/2 scalar functions to get all
the divergence free vector fields in dimension d. In practice
our approach requires d− 1 vector valued functions in Rd

allowing to apply GP flows in the latent space of some
popular VAE’s model. Still, a way to optimize GP flows
over subfamilies of incompressible vector fields (while still
converging to the Monge map) would be a nice extension
to this work. Finally, let us mention that while Euler’s
regularization adds nice properties to the flows considered,

The code will be made available after the review process.



it also increases the computational time required to train the
model.
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A Practical construction of incompressible
vector fields in high dimensions

The goal here is to have a GPU-friendly construction of the
incompressible vector fields given in Proposition 2. In the
following we consider stationary divergence free functions
but the time variable can be added with no additional work
simply by considering functions in Rd+1 instead of Rd (the
gradients are still taken only on the space variables though).
All the proofs are given in Appendix B.

Notations. Regarding the notations we will use the operator
diag for two distinct cases: 1) When w is a vector diag(w)
denotes the diagonal matrix obtained from the vector w. 2)
When W is a matrix diag(W ) denotes the vector obtained
from the diagonal of W . The operation · denotes the scalar
product between two vectors. Finally we have adopted
the convention that when a scalar multiplies a vector it
multiplies each of its component.

Practical construction. Let un : Rd → Rd−n. We con-
struct a divergence free function with the functions ψi

j de-
fined as

(ψi
j)

n =

{
uni−n − unj−n, if i, j ≥ n+ 1,

0, otherwise.
(14)

To construct this divergence free function we define the
matrix (∇u(x))n ∈ Rd×d and the vector 1n ∈ Rd as

(∇u(x))nij =

{
∂i−nu

n
j−n, if i, j ≥ n+ 1

0, otherwise.
, (15)

1n
i =

{
1, if i ≥ n+ 1

0, otherwise.
.

Lemma 3. Let n ∈ N, n ≤ d− 2 and consider the function
un : Rd → Rd−n. Then the vector field vn : Rd → Rd

defined as

vn(x) = (∇u)n 1n − [diag(∇u)n · 1n]1n, (16)

is divergence free.

To construct the functions (16) we need 1) to compute the
product between the Jacobian of a vector valued function
and a constant vector 2) sum the diagonal elements of the
Jacobian matrix. Both of these operations can be done
efficiently on GPU. Note that in order to satisfy the boundary
conditions vn · n = 0 one can modify the equation (16) as
in Lemma 2 to obtain

vn(x) = (x2 − 1)⊙[
2Mnx+ (∇u)n(x)(x2 − 1)− ((x2 − 1) · diag(∇u(x))n)1n

]
,

(17)
where Mn

ij = uni − unj , if i, j ≥ n + 1 and Mn
ij = 0

otherwise.

It is possible to recover all the incompressible functions
from Proposition 2 by adding the blocks v0+v1+...+vd−2.



Proposition 3. Let v be a divergence free function in Rd.
Then there exists d− 1 functions v0, ...,vd−2 constructed
as in Lemma 3 such that

v(x) =

d−2∑
n=0

vn(x).

The attentive reader would have noticed that with the vector
functions un, n = 0, ..., d−2 we have a total of (d+2)(d−
1)/2 independent scalar functions while Proposition 2 only
requires the construction of d(d − 1)/2 scalar functions
leaving d − 1 additional functions which are not strictly
needed to obtain the divergence free vectors. This is due
to the vectorized constructions (16)-(17) which allow a fast
evaluation of the divergence free functions on GPU. Having
d− 1 additional scalar functions in return is not a big issue
since the general order remains O(d2).

Also note that the practical implementation of the equations
(14)-(15) requires to find a pythonic way to efficiently pad
a group of matrices with different dimensions. We have not
yet find such way and therefore have simply chosen in our
applications to construct d−1 vector valued functions un ∈
Rd, n = 0, ..., d − 2 and fill the appropriate dimensions
in (14)-(15) with 0. Again even if not optimal this is not a
big issue as it multiplies the number of independent scalar
functions by a factor 2, but the general order remains O(d2).

In practice, we have written the functions un as the output
of a big function u : Rd → R(d−1)×d allowing to evaluate
all the functions un in a single pass. The vector u is written
as the composition of linear functions with some simple non
linearity

u(x) =Mnxn + bn,

xi = σ(Mi−1xi−1 + bi−1), i = 1, ..., n− 1,

x0 = x,

(18)

where Mi are rectangular matrices, bi a vector field and
typically we have taken σ = tanh. One big advantage of
the formulation (18) is that the Jacobian of u (and therefore
of all the functions un) can be computed analytically

∇u(x) =Mn∇xn,

∇xi = diag(σ′(Mi−1∇xi−1 + bi−1))Mi−1,
(19)

for i = 1, ..., n− 1. The formulation (19) therefore allows a
fast evaluation of the term (16) in particular when summing
the diagonal elements of the Jacobian. In our experiments
we have noticed that the analytical formulation of the Jaco-
bian (19) was faster than using torch.autograd.

B Technical material

B.1 Gaussian preserving flows

B.1.1 Proof of Proposition 1

We recall that here erf : Rd → Rd is the distribution
function of a one dimensional Gaussian applied component
wise.
Proposition. Let s a smooth Gaussian preserving function
satisfying (3). Then there exists ϕ : (−1, 1)d → (−1, 1)d

such that |det∇ϕ| = 1 and

s(x) =
√
2 erf−1 ◦ϕ ◦ erf( x√

2
), x ∈ Rd. (20)

Proof. We recall some basic properties about the distribu-
tion function of a one dimensional Gaussian and its inverse.
One has for x ∈ R

erf(x) =
2√
π

∫ x

0

et
2

dt,
d

dx
erf(x) =

2√
π
e−x2

,

d

dx
erf−1(x) =

√
π

2
e(erf

−1(x))2 .

(21)

Consider the function ϕ : (−1, 1)d → (−1, 1)d defined as

ϕ(x) = erf ◦ s√
2
◦
√
2 erf−1(x). (22)

The goal here is to show that |det∇ϕ| = 1 then equation
(20) will follows from (22). By definition

|det∇ϕ(x)| := |det∇
(
erf ◦ s√

2
◦
√
2 erf−1(x)

)
|.

Applying the equalities (21) component wise and denoting
x = (x1, ..., xd) one gets

|det∇ϕ(x)| = |
∏
i

2√
Π
e
−( s√

2
◦
√
2 erf−1(x))2i

×det∇s(
√
2 erf−1(x))√
2

×
∏
i

√
2

√
Π

2
e(erf

−1(x))2i |,

since the determinant of the composition is the product of
the determinants. That is

|det∇ϕ(x)| = |
∏
i

e
−( s√

2
◦
√
2 erf−1(x))2i × det∇s(

√
2 erf−1(x))

×
∏
i

e(erf
−1(x))2i |,

which can be written

|det∇ϕ(x)| = e(−∥s(
√
2 erf−1(x))∥2+∥

√
2 erf−1(x)∥2)/2

×|det∇s(
√
2 erf−1(x))|.

Finally using |det∇s(x)| = e(∥s(x)∥
2−∥x∥2)/2 one obtains

|det∇ϕ(x)| = 1.



B.1.2 Orientation reversing functions

In the following Lemma we prove that very orientation re-
versing function satisfying det∇ψ = −1 can be written as
the composition of a volume and orientation preserving func-
tion and the function h(x1, ..., xd) = (−x1, x2, x3, ..., xd).

Lemma. Assume ψ : Rd → Rd is a function
satisfying det∇ψ = −1 and let h(x1, ..., xd) =
(−x1, x2, x3, ..., xd). Then there exists a volume and orien-
tation preserving function ϕ such that ψ = ϕ ◦ h.

Proof. We define ϕ as ϕ = ψ ◦ h. This function is in-
deed volume and orientation preserving since it satisfies
det∇ϕ = det∇ψ det∇h = 1. By noticing h ◦ h = Id
one gets ψ = ϕ ◦ h.

B.1.3 Proof of Lemma 1

Lemma. Assume the Monge map m and the NF architec-
ture g are C1 diffeomorphisms. Then the corresponding GP
flow s is C1, the associated function ϕ is also C1 and either
satisfies det∇ϕ(x) = 1 everywhere or det∇ϕ(x) = −1
everywhere.

Proof. The definition of s := m ◦ g−1 ensures that s is
indeed C1. Moreover since g is invertible either det∇g >
0 everywhere or det∇g < 0 everywhere (if det∇g(x) = 0
this would means that g is not invertible at this point) and
the same argument applies to g−1 and to the Monge map
m. Therefore the equality s = m ◦ g−1 implies that either
det∇s > 0 everywhere or det∇s < 0 everywhere. The
equality ϕ = erf ◦ s√

2
◦
√
2 erf−1 shows that ϕ is also C1

and that the sign of det∇ϕ does not change.

B.2 Divergence free functions

B.2.1 Proof of Proposition 2

Proposition. Consider an arbitrary vector field v : Rd →
Rd. Then ∇ · v = 0 if and only if there exists smooth scalar
functions ψi

j : Rd → R, with ψi
j = −ψj

i such that

vi(x) =

d∑
j=1

∂xj
ψi
j(x), i = 1, ...d, (23)

where v = (v1, ..., vd).

Proof. 1) First we prove that ∇ · v = 0. The divergence of
v can be written

∇ · v =
∑
i

∂xi

∑
j

∂xj
ψi
j .

Using ψi
j = −ψj

i one has

∇ · v =
∑
i

∑
j

j<i

∂xi∂xjψ
i
j −

∑
j
j>i

∂xi∂xjψ
j
i

 , (24)

For the term
∑

i

∑
j

j<i
∂xi

∂xj
ψi
j on the left hand side one

can sum over the index j first instead of the index i that is∑
i

∑
j

j<i

∂xi
∂xj

ψi
j =

∑
j

∑
i

i>j

∂xi
∂xj

ψi
j .

Injecting this equality in (24) one gets

∇ · v =
∑
j

∑
i

i>j

∂xi
∂xj

ψi
j −

∑
i

∑
j
j>i

∂xi
∂xj

ψj
i = 0.

2) Now we prove that every vector field satisfying ∇·v = 0
can be written under the form (23). The proof from Stephen
Montgomery-Smith is available online for completeness we
rewrite it here. The proof is made by induction with the
following assumption.

Assumption 1. Let k ∈ N, k ≤ d. Given a smooth vector
field v such that divk v :=

∑k
i=1 vi = 0, there exists scalar

functions ψi
j : Rd → R, 1 ≤ i, j ≤ k with ψi

j = −ψj
i such

that vi =
∑

j ∂jψ
i
j .

The Assumption 1 is trivial for k = 0. Suppose it is true for
k − 1 we prove it for k: assume divk v = 0 and let

f1(x1, ..., xn) =

∫ x1

0

∂kvk(ξ, x2, ..., xn)dξ. (25)

Since ∂1f1 = ∂xvk one has

∂1(v1 + f1) + ∂2v2 + ...+ ∂k−1vk−1 = 0.

Thanks to Assumption 1 there exists functions ψi
j with ψi

j =

−ψj
i such that

v1 + f1 =

k−1∑
j=1

∂jψ
1
j , vi =

k−1∑
j=1

∂jψ
i
j , for 2 ≤ i ≤ k− 1.

(26)
Now we define

f2(x1, ..., xd) =

∫ x1

0

vk(ξ, x2, ..., xk−1, 0, xk+1..., xd)dξ

−
∫ xk

0

f1(x1, ..., xk−1, ξ, ..., xd)dξ,

(27)
then

∂kf2 = −f1, (28)

https://math.stackexchange.com/questions/578898



and using (25) in (27) one gets

∂1f2 = vk(x1, ..., xk−1, 0, ..., xd)

−
∫ xk

0

∂kvk(x1, ..., xk−1, ξ, ..., xd)dξ = −vk.
(29)

Now we extend the functions ψi
j , 1 ≤ i, j ≤ k − 1 by

defining ψ1
k = −ψk

1 = f2 and ψi
k = −ψk

i = 0 for 2 ≤ i ≤
k. Then extending the equations (26) with k one has

k∑
j=1

∂jψ
1
j = v1 + f1 + ∂kf2 = v1,

k∑
j=1

∂jψ
i
j = vi,

for 2 ≤ i ≤ k − 1 and where we used the equality (28)
in the first equation. Moreover with the definition of the
function ψk

j one has

k∑
j=1

∂jψ
k
j = −∂1f2 = vk,

thanks to (29). This prove Assumption 1 for k.

B.2.2 Proof of Lemma 2

Lemma. Let Ω = [−1, 1]d and consider the functions

ψi
j(x) = (x2i − 1)(x2j − 1)ψ̃i

j(x),

where ψ̃i
j(x) : Rd → R are arbitrary scalar functions satis-

fying ψ̃i
j = −ψ̃j

i . Then the function v defined in Proposition
2 satisfies ∇ · v = 0 and v · n = 0 on ∂Ω.

Proof. Indeed since ψi
i = 0 there is no ∂xi

term which
appear in the sum of (7) for the component vi. The term
x2i − 1 can therefore be factored that is vi = 0 if xi = ±1.
Hence v · n = 0 on ∂Ω.

B.2.3 Proof of Lemma 3

Lemma. Let n ∈ N∗, n ≤ d− 1 and consider the function
un : Rd → Rd−n. Then the vector field vn : Rd → Rd

defined as

vn(x) = (∇u)n 1n − diag(∇u)n 1n, (30)

is divergence free.

Proof. As explain in Appendix A the formulation (30) is
equivalent to consider vn under the form (7) with ψi

j defined
as in (14). From Proposition 2 the function vn is divergence
free.

B.2.4 Proof of Proposition 3

Proposition. Let v be a divergence free function in Rd.
Then there exists d− 1 functions v0, ...,vd−2 constructed
as in Lemma 3 such that

v(x) =

d−2∑
n=0

vn(x). (31)

Proof. Let v(x) be a divergence free function and denote
(ψi

j) its coefficients from (7). We construct the associate vec-
tors un of the functions vn procedurally: for k = 1, ..., d−1,
we iteratively chose uk−1

1 arbitrarily and define the other
components of the vector uk−1 as

uk−1
j−k+1 = uk−1

1 −
k−2∑
n=0

(unk−n − unj−n) +ψk
j , j ≥ k+ 1,

(32)
note that the sum is well-defined because the components
uk are constructed iteratively from k = 1 to k = d− 1 and
we have adopted the convention

∑−1
n=0 = 0. We claim that

with this construction we recover the equality (31). Indeed
from (32) one has

ψk
j = uk−1

j−k+1 − uk−1
1 +

k−2∑
n=0

(unk−n − unj−n), j ≥ k+ 1.

Using (14) one gets

ψk
j = (ψk

j )
k−1 +

k−2∑
n=0

(ψk
j )

n, j ≥ k + 1.

Again using (14) one has (ψk
j )

n = 0 for n ≥ k and there-
fore

ψk
j =

d−2∑
n=0

(ψk
j )

n, j ≥ k + 1.

Since the coefficients ψk
j and (ψk

j )
n are all antisymmetric

this equality is also satisfied for j < k+1. We conclude with
the decomposition (7) of the divergence free functions.

B.3 Additional material

B.3.1 Total derivative expansion

In this subsection we recall the expansion of the Lagrangian
derivative D

Dtv(t,X(t,x)) = d
dtv(t,X(t,x)) + (v(t,x) ·

∇)v(t,X(t,x)). Assume X(t,x) follows the ODE (4){
d
dtX(t,x) = v(t,X(t,x)), x ∈ Ω, 0 ≤ t ≤ T,

X(0,x) = x,

We recall that the notation d/dtmust be understood as deriv-
ing the first variable of v(t,X(t,x)) whileD/Dt represents
the derivative in time of the function f(t) := v(t,X(t,x)).



By deriving the first and second variable with respect to t
one has

D

Dt
v(t,X(t,x)) =

d

dt
v(t,X(t,x))+(

d

dt
X(t,x)·∇)v(t,X(t,x)).

Using d
dtX(t,x) = v(t,X(t,x)) one finally obtains

D

Dt
v(t,X(t,x)) =

d

dt
v(t,X(t,x))+(v(t,x·∇)v(t,X(t,x)).

C Experiment details

We run the experiments on two separate GPUs: a NVIDIA
Quadro RTX 8000 and a NVIDIA TITAN X. Our loss is
given by the negative log-likelihood (1). The FFJORD
model has an inverse function directly available in the code,
which is not the case for the BNAF model. Therefore, as
explained in the Section 5, the GP flow is trained using f−1

applied on a standard multi-dimensional normal distribution
for FFJORD, whereas only the training data are used for
BNAF.

Toy datasets. We give the parameters used for the 2D toy
experiments in Table 3. We consider a training set of 80K
samples and a testing set of 20K samples, 20 time steps
with a Runge-Kutta 4 discretization and a GP flow with
intermediate layers of size 15. For the Euler penalization we
take the exact same parameters with λ = 5× 10−4 which
is divided 5 times periodically by a factor 2.

dSprites and MNIST datasets. The VAE architecture used
in the experiments is taken from the github repository of
Yann Dubois. The parameters used for the GP flows are
given in Table 4. For all test cases we consider a GP flow
with 15 time steps, three intermediate layers of 50 param-
eters for the dSprites dataset and four intermediate layers
of 50 parameters for MNIST. For the Euler penalization we
take an initial parameter λ = 5×10−5 which is then divided
5 times periodically by a factor 2 during the training.

D Interpolation examples

The 2D test cases can be found for example here
https://github.com/rtqichen/ffjord/blob/master/lib/toy data.py

https://github.com/YannDubs/disentangling-vae



Model nb params (pre-trained model) + GP epochs nb layers batch size lr

eight gaussians
BNAF+GP (15.4K) + 332 2000 20 1000 10−2

two moons
BNAF+GP (15.4K) + 332 1000 15 1000 5× 10−3

Table 3: Parameters used for the training of GP flows on the 2D toy examples.

Model # params (pre-trained model) + GP epochs batch size lr

dSprites dataset
FFJORD+GP (17.8K) + 10.3K ≈ 200* 1024 5× 10−4

FFJORD+GP+EULER (17.8K) + 10.3K 2000 1024 5× 10−4

MNIST dataset
FFJORD+GP (36.9K) + 12.8K 1000 1024 5× 10−4

FFJORD+GP+EULER (36.9K) + 12.8K 1000 1024 5× 10−4

Table 4: Parameters used for the training of GP flows on the dSprites data set.
* The training is stopped early due to out-of-domain particles.



Figure 5: Examples of interpolation for the dSprites dataset where each block correspond to the interpolation of a different data point
along the 10 dimensions axis represented by the rows. The dimensions are sorted with respect to their KL divergence in the VAE latent
space, so the higher rows carry more information while the last rows should leave the image unchanged.



Figure 6: Examples of interpolation for the dSprites dataset where each block correspond to the interpolation of a different data point
along the 10 dimensions axis represented by the rows. The dimensions are sorted with respect to their KL divergence in the VAE latent
space, so the higher rows carry more information while the last rows should leave the image unchanged.



Figure 7: Examples of interpolation for the mnist dataset where each block correspond to the interpolation of a different data point along
the 10 dimensions axis represented by the rows. The dimensions are sorted with respect to their KL divergence in the VAE latent space, so
the higher rows carry more information while the last rows should leave the image unchanged.



Figure 8: Examples of interpolation for the mnist dataset where each block correspond to the interpolation of a different data point along
the 10 dimensions axis represented by the rows. The dimensions are sorted with respect to their KL divergence in the VAE latent space, so
the higher rows carry more information while the last rows should leave the image unchanged.


