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Turning Normalizing Flows into Monge Maps with
Geodesic Gaussian Preserving Flows

Guillaume Morel∗ Lucas Drumetz∗ Nicolas Courty† François Rousseau∗

Simon Benaichouche∗

Abstract

Normalizing Flows (NF) are powerful likelihood-based generative models that are
able to trade off between expressivity and tractability to model complex densities.
A now well established research avenue leverages optimal transport (OT) and looks
for Monge maps, i.e. models with minimal effort between the source and target
distributions. This paper introduces a method based on Brenier’s polar factorization
theorem to transform any trained NF into a more OT-efficient version without
changing the final density. We do so by learning a rearrangement of the source
(Gaussian) distribution that minimizes the OT cost between the source and the final
density. We further constrain the path leading to the estimated Monge map to lie
on a geodesic in the space of volume-preserving diffeomorphisms thanks to Euler’s
equations. The proposed method leads to smooth flows with reduced OT cost for
several existing models without affecting the model performance.

1 Introduction

Modeling high dimensional data is a central question in data science as they are ubiquitous in
applications. Various tasks such as probabilistic inference, density estimation or sampling of new
data require accurate probabilistic models that need to be defined efficiently. There exists a large
variety of generative models in the literature. Among other approaches, variational autoencoders
(VAES) [1; 2] and generative adversarial networks (GAN) [3] are frequent choices, each with their
strengths and weaknesses.

Normalizing flows. A third popular class of generative models is Normalizing flows (NF). NF models
transform a known probability distribution (Gaussian in most cases) into a complex one allowing for
efficient sampling and density estimation. To do so they use a smooth diffeomorphism f : Rd → Rd
which maps a target probability distribution µ to the known source distribution ν = f#µ [4; 5]. In
practice the flow must satisfy the change of variables formula:

log pµ(x) = log pν(f(x)) + log |det∇f(x)|. (1)

There are many possible parameterizations of f , usually relying on automatic differentiation to train
their parameters via first order optimization algorithms. For density estimation applications, training
is done by maximizing the likelihood of the observed data. The data are generally high dimensional
and accessing pµ(x) for a given x requires computing determinant of the Jacobian matrix of f . This
operation has a complexity of O(d3) in general and thus a requirement for the flows architecture is to
have a tractable determinant of the Jacobian while remaining expressive enough [4; 6; 5; 7].

Optimal transport. A diffeomorphism transforming any well-behaved distribution into another
always exists in theory [7]. However, there can be many ways to transform one probability measure µ
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into another probability measure ν, and therefore the function f is generally not unique. This has led
to many proposed architectures in the literature [6; 8; 9; 10; 11]. The question of choosing the ”best”
transformation among all existing ones is therefore crucial, independently from how accurately µ
models the target distribution. One way to make the architecture unique (under appropriate conditions
on the two distributions) is to use optimal transport [12; 13; 14; 15], that is to choose the one giving
the Wasserstein distance between µ and ν, with a squared L2 ground cost:

W 2
2 (µ, ν) = min

f

∫
Rd

|f(x)− x|2dµ(x), ν = f#µ. (2)

An optimal model in the sense of (2) minimizes the total mass displacement which can be a desirable
property even if it is often a difficult task. In particular Brenier’s theorem [16] states that the optimal
function f is the gradient of a scalar convex function, which is widely used when solving (2).

One key property of OT mappings is that they should better preserve the structure of the distribution
compared to non OT transformations. This makes them particularly appealing for machine learning
applications, and may also help with generalization performance [17].

Optimal transport and NF models. Including OT in NF models has recently received much
attention with various approaches to obtain a map g which satisfies the property (2). Among all these
methods, many use either directly Brenier’s theorem [16] or the dynamic OT formulation with the
Benamou-Brenier approach [18]. One important remark is that most of the approaches considered
need dedicated architectures in order to satisfy the OT property. For example the transformation
f is often written as neural network modeling the gradient of a (possibly convex) scalar function
[19; 20; 21; 22]. This sometimes requires some particular training process [19; 20; 21] and/or the
addition of some penalization terms in the loss function [21; 23; 24]. When considering the Benamou-
Brenier formulation, the normalizing flow is interpreted as the discretization of a continuous ordinary
differential equation [25] and the optimal transport problem is then solved dynamically [23; 21; 22].

1.1 Main contributions

Figure 1: A GP transformation applied on particles
sampled from a two dimensional normal distribution.
The mean and standard deviation stay the same; only the
positions of the particles change.

Polar factorization. An overlooked implica-
tion of Brenier’s theorem is the so-called polar
factorization theorem, that states that the opti-
mal transport map ∇ψ solving (2) can be fac-
torized into the composition of two functions
∇ψ = s ◦ f , the function f being some arbitrary
smooth map from µ to ν and s an associated
measure preserving function of ν [16]. The idea
we exploit is the possibility, from a given flow
f (and its corresponding inverse g = f−1), to
rearrange the distribution ν using s to obtain a
new map reducing the OT cost without chang-
ing the distribution given by the push-forward
µ := g#ν = (g ◦ s−1)#ν. The OT-improved map can then be obtained with the composition g ◦ s−1.
Interestingly this property is not as popular as the previous one and to our knowledge is not used
when dealing with OT and NF models. Yet normalizing flows can take advantage of this formulation
mostly because the distribution ν is known and simple (here and in the following ν is a standard
normal) which make it possible to construct architectures preserving ν.

Figure 2: Eight gaussians test case with colored distributions. A GP flow is trained on a pre-trained BNAF
model [10] to reduce the OT cost.
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Our work differs from the state of the art as we do not propose a new normalizing flow model. Instead
we propose to use Brenier’s theorem to compute the Monge map for any pre-existing architecture.
Indeed there exists a wide variety of architecture available in the literature [6; 8; 9; 10; 11] each with
their pros and cons which sometimes depend specifically on the test case considered. Our idea is to
use Brenier’s polar factorization theorem to rearrange the points in the known distribution to obtain
the optimal map associated with a given flow. We consider the most common case where the known
distribution is a standard normal and call such rearranging maps Gaussian Preserving (GP) flows, see
Figure 1. An important point is that by construction our GP map will only change the OT cost of the
model. The target density and therefore the training loss given by the model will stay the same. This
allows us to take any pre-trained model and compute the associated Monge map, thus improving the
model in terms of OT displacement from the source to the target distribution, without changing the
modeled density see Figure 2.

Euler’s equations. Since several GP flow models can solve the same OT problem, we also look for a
way to find the ”best” GP flow. This is somehow similar to the approaches from [23; 21] where the
trajectories of a continuous normalizing flow are penalized to be straight lines. This is not strictly
needed to find the Monge map but can be interpreted as some geodesic over all the flows which solve
the associated OT problem. Such an approach has already shown some promising results. In this
work, we show that the geodesics associated with the OT problem are actually given by solutions
to the Euler equations, following a celebrated result by Arnold [26]. The penalization of Euler’s
equations in high dimensions and its practical implementation is therefore also considered, which is
to the best of our knowledge an original contribution.

Disentanglement preservation with optimal transport. Finally we show one potential interest
of GP flows by studying the preservation of the data structure experimentally. More specifically
we focus on the preservation of disentanglement on the dSprites dataset [27] in some variational
auto-encoder (VAE) latent space. On this particular example we show that OT allows to preserve the
structure of the latent data points which is otherwise destroyed when applying the NF model.

2 Polar factorization theorem

The main idea is to use the Brenier’s polar factorization theorem to construct the Monge map with a
rearrangement of the known probability distribution ν. To preserve the conventions from Brenier’s
paper [16], we study the OT problem defined from the known probability distribution ν to µ and
therefore consider the function g := f−1.
Theorem 1 (Brenier’s polar factorization [16]). Let (X , ν) be a probability space, X ⊂ Rd open
bounded. Then for each non-degenerate g ∈ Lp(X , ν,Rd), there exists a unique convex function
ψ : X → R and a measure preserving function s : X → X such that

g(x) = ∇ψ(s(x)),

and s(x) minimizes the cost
∫
X |g(x)− s(x)|2dν(x).

Our goal is to leverage the polar factorization theorem in order to solve the OT problem between
ν and µ := g#ν where g is given and ν = N (0, Id), by looking for the rearrangement s via an
optimization problem. To do so we need to construct a class of measure preserving maps.
Remark 1. Since in practice we consider ν to be a standard normal, the domain X is not bounded
and therefore does not strictly satisfy the hypothesis of Theorem 1. We do not investigate this point
further and simply quote a remark from Brenier’s work [16]: ”we believe that the result is still true
when X is unbounded, provided that p > 1 and

∫
X ‖x‖

qβ(x)dx < +∞, where 1/q + 1/p = 1”.
The function β(x) = e‖x‖

2/2 is the probability density of ν, and the inequality is therefore satisfied.

3 Gaussian preserving flows

In order to apply Brenier’s polar factorization theorem, it is therefore needed to construct a class of
measure preserving maps. Since we consider the case where ν is a standard normal, we call such
maps Gaussian preserving (GP). All proofs of the propositions and lemmas are given in Appendix B.

Consider two probability measures µ and ν with density hµ and hν respectively. A map s is measure
preserving between µ and ν if it satisfies the change of variable equality (same as (1) without the
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log) hν(x) = hµ(s(x))|det(∇s(x))|. In our case, we want s to be Gaussian preserving therefore
hµ = hν = e−‖x‖

2/2 and one gets

|det∇s(x)| = e(‖s(x)‖2−‖x‖2)/2. (3)

It turns out that Lebesgue preserving functions (i.e. satisfying |det∇φ| = 1) can be used to construct
maps satisfying (3). In the following we will denote erf : Rd → Rd the distribution function of a
one dimensional Gaussian (that is erf(x) = 2√

π

∫ x
0
et

2

dt) applied component wise.

Proposition 1. Let s be a smooth Gaussian preserving function (i.e. satisfying (3)). Then there exists
φ : (−1, 1)d → (−1, 1)d such that |det∇φ| = 1 and

s(x) =
√

2 erf−1 ◦φ ◦ erf( x√
2

), x ∈ Rd.

From now on we will focus on the construction of volume and orientation preserving maps (i.e.
satisfying det∇φ = 1) since functions satisfying det∇φ = −1 can be constructed from them. In
Appendix B.2 we also show that under simple hypothesis on the Monge map and the NF architecture,
the GP flow s is C1 and either det∇φ = 1 everywhere or det∇φ = −1 everywhere.

3.1 Volume-orientation preserving maps

First we introduce the space SDiff(Ω) we will working with from now on. Let Diff(Ω) be the set of
all diffeomorphisms in Ω then

SDiff(Ω) :=
{
ψ ∈ Diff(Ω), det(∇ψ)(x) = 1, ∀x ∈ Ω

}
,

where Ω = (−1, 1)d. That is we need a transformation which satisfies two properties: 1) the function
must be volume and orientation preserving, 2) the solution must stay in the domain (−1, 1)d. Consider
the following ODE: {

d
dtX(t,x) = v(t,X(t,x)), x ∈ Ω, 0 ≤ t ≤ T,
X(0,x) = x.

(4)

We impose two conditions on the velocity v:

∇ · v = 0, in Ω, (5)
v · n = 0, on ∂Ω, (6)

where n is the outward normal at the boundary of Ω. We define φ to be the solution at the final time
φ(x) := X(T,x). Property (5) implies that det∇φ = 1, and property (6) ensures that φ does not
escape Ω. Any function in SDiff(Ω) can be written as a solution to (4) for d ≥ 3 [28], for d = 2
some pathological cases can be constructed [29].

Divergence free vector fields. First we focus on the vector fields satisfying (5) for arbitrary large
dimensions. Property (6) can then be incorporated with very little additional work.
Proposition 2. Consider an arbitrary vector field v : Rd → Rd. Then∇ · v = 0 if and only if there
exists smooth scalar functions ψij : Rd → R, with ψij = −ψji such that

vi(x) =

d∑
j=1

∂xj
ψij(x), i = 1, ..., d, (7)

where v = (v1, ..., vd).

To impose the boundary conditions (6) one can simply multiply each ψij by (x2
i − 1)(x2

j − 1).

Lemma 1. Let Ω = [−1, 1]d and consider the functions ψij(x) = (x2
i − 1)(x2

j − 1)ψ̃ij(x) where

ψ̃ij(x) : Rd → R are arbitrary scalar functions satisfying ψ̃ij = −ψ̃ji . Then the function v defined in
Proposition 2 satisfies∇ · v = 0 and v · n = 0 on ∂Ω.

The incompressible property (5) and the boundary conditions (6) can be exactly implemented in the
network in any dimension. Note however that in order to get all the incompressible vector fields
(7), we need to construct d(d − 1)/2 arbitrary scalar functions. See Appendix A for the practical
contruction of these divergence free functions.
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4 Euler’s geodesics

GP flows give a way to compute the Monge map for any trained NF architecture. Many transforma-
tions can achieve this goal and the question of finding the best flow among all volume preserving
transformations need to be considered.

4.1 Arnold’s theorem

In 1966, Arnold [26] showed that the flow described by Euler’s equations coincides with the geodesic
flow on the manifold of volume preserving diffeomorphisms. This theoretical result therefore gives
the reason why regularizing our flows with Euler’s equations is a desirable property. Mainly that
Euler’s equations take the path with the lowest energy to reach the final configuration. Consider the
Euler equations: 

∂tv + (v · ∇)v = −∇p, t ∈ [0, T ], x ∈ Ω,

∇ · v = 0, t ∈ [0, T ], x ∈ Ω,

v · n = 0, t ∈ [0, T ], x ∈ ∂Ω,

v(0, ·) = v0,

(8)

where v := v(t,x) is the velocity field, p := p(t,x) the pressure and n := n(x) the outward normal
at the boundary of Ω. We introduce E the energy of a smooth function X(t, ·):

E(X) =

∫ T

0

∫
Ω

1

2
|∂tX(t,x)|2dxdt, (9)

Now assumeφ ∈ SDiff(Ω). Arnold’s problem’s consists in finding the path X(t, ·)t∈[0,T ] in SDiff(Ω)
joining the identity to φ which minimizes E :

min
X(t,·)∈SDiff(Ω)

E(X), X(0, ·) = Id, X(T, ·) = φ(·). (10)

In other words (10) is the geodesic in SDiff(Ω) between Id and φ.
Theorem 2 (Arnold [26]). Assuming the existence of a solution to Arnold’s problem, X is solution to
(10) if and only if v(t,x) := ∂tX(t,x) satisfies Euler’s equations (8).

4.2 Penalization of Euler’s equations in high dimensions

Numerical schemes developed to efficiently solve the Euler equations [30; 31] (mainly for fluid
mechanics problems, i.e. for dimensions up to 3) scale badly when the dimension increases. In
this work, the solution to Euler’s equations is interpreted as the geodesic to reach the solution of
the OT problem and the dimension can be arbitrary large. Therefore we approach the equation (8)
through a penalization procedure which can be carried out in any dimension. As explained in the
previous section we notice that the second and third equations in (8) are satisfied by construction in
the network.

Our remaining goal is to constrain the network to be a smooth solution to ∂tv + (v · ∇)v = −∇p.
The left hand side can therefore be written as the gradient of a scalar function and we note that if a
vector wt,x ∈ Rd satisfies wt,x = ∇p(t,x), then its Jacobian is symmetric∇wt,x = (∇wt,x)T . In
order to solve the first equation in (8), we propose to penalize the non-symmetric part of the Jacobian
for the total derivative of v. Since a Jacobian-vector product can be efficiently evaluated in high
dimensions (unlike the calculation of the full Jacobian which is computationally expensive), we do
not calculate directly the Jacobian and use instead the following property of symmetric matrices: if
M is symmetric then yTMz− zTMy = 0, ∀y, z ∈ Rd. The idea is to sample random vectors y, z
during the training and to penalize this term for the total derivative, that is to minimize:

R(x) := Ey,z

[∫ T

0

(
yT (∇wt,x)z− zT (∇wt,x)y)

)2
dt

]
, y, z ∼ N (0, Id), (11)

with wt,x = ∂tv + (v · ∇)v. In practice, we do not compute the full time integral in (11) as it would
be computationally too expensive but calculate the penalization only at our time steps discretization.

Approximation of the total derivative. To reduce the computational burden, we do not calculate
exactly the total derivative wt,x but use an approximation of its Lagrangian formulation instead.
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More precisely, consider the variable X(t,x) from (4) that is the position of a particle at time t with
initial position x. We recall the equality (see Appendix B.5) D

Dtv(t,X(t,x)) = ∂tv(t,X(t,x)) +
(v(t,X(t,x)) · ∇)v(t,X(t,x)) and therefore choose to approximate the right hand side by using a
first order Taylor expansion of Dv/Dt:

D

Dt
v(t,X(t,x)) ≈ v(tn+1,X(tn+1,x))− v(tn,X(tn,x))

∆t
, ∆t := tn+1 − tn. (12)

In practice, ∆t is set to 2
√
ε where ε is the machine precision. This approximation can be easily

computed since it requires only the evaluation of the velocity at two positions of a particle.

5 Procedure

In order to solve the optimal transport problem, we consider the inverse of the transformation given in
Theorem 1 (that is f := g−1) because the NF architectures are defined in practice from the unknown
probability distribution µ to a Gaussian distribution ν and are not always easily invertible.

The GP flow is parametrized as a standard residual network (ResNet) with a Runge-Kutta 4 time
discretization [32] (other discretizations are possible) and is estimated by minimizing ‖x− s ◦ f(x)‖2
over the parameters of the velocity field. In practice when regularizing with Euler’s equations, we
replace the term ∇w in (11) by (12) and calculate the Jacobian-vector product with the function
torch.autograd from pytorch. A parameter λ > 0 is also added in front of the penalization term:

min
θ
Eµ(x)

[
‖x− sθ ◦ f(x)‖2 + λRθ ◦ erf ◦

f(x)√
2

]
, (13)

where the vector θ denotes the parameters of the velocity field v, f is the NF architecture, s the GP
flow and R corresponds to the term penalized with Euler’s equations. The subscript θ has been added
to emphasize the dependence of s and R to the parameters. To minimize (13), a sampling strategy
from the probability distribution µ is required. Two possibilities can be considered:

• If we do not want to invert the NF model (for example if it is computationally expensive) we
can simply minimize the first term in (13) over the training data. The probability distribution
µ in (13) is then the unknown distribution from which the data are taken. This assumes
however that the training data are correctly mapped to the standard distribution ν with f .

• If the NF model is cheap to invert, we consider the points f−1(xG) where xG are samples
from the standard normal distribution ν. In this case, the probability distribution µ in (13) is
the transformation of ν by the inverse of the NF model µ = f−1

# ν.

If the NF model transforms perfectly the training data over the standard normal ν, these two ap-
proaches are equivalent. If this is not the case, we notice that the second approach requires a cheap
inverse of the NF model, but has the advantage of not using any training data to train the GP flow and
may therefore better generalize especially when the training data does not match the Gaussian well.

6 Results

We perform density estimation and evaluate the OT cost on two dimensional toy problems and real
high dimensional tabular data sets. We apply GP flows on two popular NF models: FFJORD, a
continuous NF [8] and BNAF, a discrete NF [10]. Both of these models are solid references among NF
and do not incorporate any OT knowledge in their architecture or training procedure. To compare our
results with an OT-efficient approach, we also consider the CP-Flow architecture [20]. The CP-flow
network is constrained to be the gradient of a scalar convex function and converges by construction
towards the optimal map (provided the optimization problem reaches a global minimum), making it a
good candidate for comparison. All the codes are taken from the official repositories1. The FFJORD
model has an inverse function directly available in the code, which is not the case for the BNAF
model. Therefore, as explained in the previous section, the GP flow is trained using f−1 applied on a
standard multi-dimensional normal distribution for FFJORD, whereas only the training data are used
for BNAF. We will consider the BNAF model in 2D and the FFJORD model on the dSprites dataset
(d = 10) because interpolations in the dSprites latent space require the NF architecture to have an
inverse function available.
1 github.com/rtqichen/ffjord, github.com/nicola-decao/BNAF, github.com/CW-Huang/CP-Flow
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Figure 3: Eight gaussians test case. Top: density estimation. Middle: deformation of a uniform mesh by the
NF model. Bottom: Colored source distribution. From left to right: CP-Flow (OT=2.62, loss=2.86), BNAF
(OT=2.88, loss=2.85), BNAF+GP (OT=2.60, loss=2.85).

6.1 Density estimation on toy 2D data

We perform density estimation on several 2d standard toy distributions [8; 33]. First we consider the
eight gaussians test case and study the transformation of a uniform mesh by the NF model. We run the
CP-Flow and the BNAF model. The GP transformation is then computed on the pre-trained BNAF
models. As shown in Figure 3, the mesh transformation when adding the GP flow is getting closer to
the CP-Flow one, and the OT cost is roughly the same. Another illustration of the transformation
of the source distribution is given at the bottom of Figure 3. We clearly see the added value of GP
flow, as the points’ configuration gets much closer to an isotropic distribution of the colors on the
Gaussian, that indicates that we get much closer to the Monge map. Note that adding the GP flow
does not affect the estimated density nor the test loss.

Euler’s penalization. To highlight the value of using the Euler’s penalization we turn our attention
to the two moons dataset. First, to evaluate the quality of the solution of the Euler equations with
the proposed approach, we compare our solution with a more standard approach where the initial
condition is optimized through a numerical scheme (implemented in Pytorch, so as to be differentiable)
which directly solves the Euler equations, in the line of ”differentiable physics” approaches [34]. The
baseline numerical scheme is a spectral method, a very efficient and popular numerical method [30].
We do not go into details on how to implement such methods since they are restricted in practice
to low dimensions and we refer to [30; 31] for a complete presentation. On Figure 4, we compare
three different cases: GP alone, GP with Euler penalization and GP with Euler constrain through a
spectral method. As indicated by the similar OT costs the final positions of particles are very similar
for each model. Turning our attention to the trajectories, the initial incompressible velocities and the
energy Ē are very close both for the penalization-based procedure and the spectral method which
shows that we can correctly solve the Euler equations in 2D with our penalization approach (the
additional benefit being the generalization to high dimensions). Without the addition of the Euler
constraint however, the initial velocity field looks very different resulting in a higher energy, and thus
a transformation that does not correspond to a geodesic in SDiff(Ω).
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Figure 4: Two moons test case with the BNAF model (initial OT=1.35). Top: target density after the application
of the GP flow. Bottom: representation of the initial incompressible velocity field v0 of the GP flow. From
left to right: GP only (Ē = 0.2, OT=0.99), GP with Euler through the penalization procedure (11) (Ē = 0.08,
OT=1.0), GP with a spectral method solving directly the Euler equations (Ē = 0.07, OT=1.0). For the last two
mentioned the initial velocity fields are the same and the energy Ē is lowered showing that the penalization
procedure efficiently solve Euler’s equations.

6.2 Improving disentanglement preservation with optimal transport

Disentangle representations allow to encode the data in a latent space where change in one direction
result in the change over one generative factor in the data. Recently the construction of variational
auto-encoders (VAE) [1] with disentangle latent space has received much attention [35; 36; 37; 38].
Applying a NF architecture to such latent space may be needed for various tasks such as density
estimation, generative process or general interpolation. The latter requires to preserve as much of the
data structure as possible. We therefore propose to experimentally study disentanglement preservation
of NF with and without OT. To do this we apply a NF architecture (FFJORD in our case) to the VAE’s
latent distribution and consider the addition of a GP flow. For the disentangle interpolation in the NF
target (gaussian) space we consider the same directions which are present in the VAE latent space and
are aligned with the axis. This may be a naive approach since these directions may change depending
on the source and target distribution but it seems enough here to already see an improvement. Our
experiments are run with the β-TCVAE architecture [37] and the latent space dimension is 10.

dSprites test case. The dSprites dataset [27] is made of 64× 64 images of 2D shapes procedurally
generated from 5 ground truth independent latent factors. These factors are shape, scale, rotation,
x and y positions of a sprite. Since the factors are known we can compute a quantitative evalua-
tion of disentanglement and we choose here to consider the metric from [39] on the continuous
factors (i.e. all the factors except the shape) for the three criteria: disentanglement, completeness
and informativeness. Table 1 shows that FFJORD destroy the latent structure and give the worst
disentanglement, completeness and informativeness scores. Adding GP flows allow to recover the
same disentanglement score as the initial latent space and get values closer both for completeness
and informativeness. Note that the disentanglement score is slightly better with FFJORD+GP than
the initial one however this is probably only due to some approximation in the metric used here
since there is no reason that GP flows improved the disentanglement compared to the initial latent
space. On Table 2 the OT costs are compared and as expected GP flows allow to reduce the OT
cost without changing the loss. Interestingly GP flows with no additional regularization do not
converge completely to the Monge map because particles get out of the domain at some point making
it impossible to continue the training process. We conjecture that this may be due to non-smooth
trajectories of our GP flows and a regularization is therefore needed. As shown on Table 2 adding
Euler regularization fixed this issue and allows to further reduce the OT cost.

To illustrate the preservation of disentanglement some interpolations are also presented in Figures
5 and 6 in Appendix D. As we can see on the initial latent space picture, since the dimensions are
sorted with respect to their KL divergence only the first dimensions carry information and therefore
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Model Disent. Compl. Inform.
Init. latent space 0.58 0.81 0.55

FFJORD 0.39 0.26 0.62
FFJORD+GP 0.60 0.68 0.61

FFJORD+GP+EULER 0.59 0.67 0.59

Table 1: Quantitative evaluation of disentanglement (higher is better), completeness (higher is better) and
informativeness (lower is better) on the dSprites dataset. Adding GP flows make the scores closer to the initial
ones.

Model Loss OT cost

FFJORD -17.52 10.45
FFJORD+GP -17.52 5.60

FFJORD+GP+EULER -17.52 5.26
Table 2: Loss and mean OT costs for the dSprites dataset. GP flows reduce the OT cost without changing the
loss. Adding Euler regularization allows to further reduced the OT cost.

each of the first 5 lines correspond to a generative factor. When interpolating on the last dimensions
the image stays the same. This structure is lost when mapping the latent space to a gaussian with the
FFJORD architecture. When adding GP flows we recover this structure and the interpolation better
match the initial latent one.
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A Practical construction of incompressible vector fields in high dimensions

The goal here is to construct incompressible vector fields as in Proposition 2.

A.1 A first approach

Let u : Rd → Rd be a vector valued function. This time we consider the case

ψij = ui − uj .

Note that even if this is more general than the first case the functions ψij satisfy the relation

ψij = ψik + ψkj (14)

and therefore do not describe completely the divergence-free functions from Proposition 2.

Lemma 2. Let u : Rd → Rd then the vector field

v(x) = ∇u 1− diag(∇u) 1, (15)

is divergence free. Here 1 is the unit vector 1 = (1, ..., 1).

To construct these functions we need 1) to compute the product between the Jacobian of a vector
valued function and a constant vector 2) sum the diagonal elements of the Jacobian matrix. To satisfy
the boundary conditions one can modify this equation as in Lemma 1 to obtain

v(x) = (x2 − 1)�[
2Mx +∇u(x)(x2 − 1)− ((x2 − 1) · diag∇u(x))1

]
,

(16)

where M ∈ Rd×d is the matrix with the components Mij = ui − uj .
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In practice we have written the function u as the composition of linear functions with some simple
non linearity

u(x) = Mnxn + bn,

xi = σ(Mi−1xi−1 + bi−1), i = 1, ..., n− 1,

x0 = x,

(17)

where Mi are rectangular matrices and bi vector field and typically we have taken σ = tanh. The
advantage with the formulation (17) is that the Jacobian can be computed analytically

∇u(x) = Mn∇xn,
∇xi = diag(σ′(Mi−1∇xi−1 + bi−1))Mi−1,

for i = 1, ..., n− 1. This allows a fast evaluation of the term (16) in particular when summing the
diagonal elements of the Jacobian.

A.2 Generalization to all incompressible vector fields

As stated above the functions (16) do not describe all the incompressible vector fields from Proposition
2 due to the equality (14). In practice it should be possible to enriched this space by considering
functions un : Rd → Rd−n and then padded the missing dimensions with zeros. This is equivalent
to consider

ψij =

{
uni − unj , if i, j ≥ n+ 1,

0, otherwise.

To construct our solutions based on un we define the matrix (∇u(x))n ∈ Rd×d and the vector
1n ∈ Rd as

(∇u(x))nij =

{
∂iu

n
j , if i, j ≥ n+ 1

0, otherwise.
, 1ni =

{
1, if i ≥ n+ 1

0, otherwise.
.

Lemma 3. Let n ∈ N∗, n ≤ d− 1 and consider the function un : Rd → Rd−n. Then the vector field
vn : Rd → Rd defined as

vn(x) = (∇u)n 1n − diag(∇u)n 1n, (18)

is divergence free.

To satisfy the boundary condition one can modify the equation (18) as in Lemma 1 to obtain

vn(x) = (x2 − 1)�[
2Mnx + (∇u)n(x)(x2 − 1)− ((x2 − 1) · diag(∇u(x))n)1n

]
,

(19)

where Mn
ij = uni − unj , if i, j ≥ n+ 1 and Mn

ij = 0 otherwise.

One could then add some functions v0 + v1 + v2... to get a more general incompressible function
(the approach given in (16) is equivalent to consider only v0). It is possible to recover all the
incompressible functions from Proposition 2 by adding the blocks v0 + v1 + ... + vd−2 because
the problematic relation (14) is broken thanks to the zeros padding of the new blocks. Note that in
practice this requires to construct the d− 1 vector valued functions un ∈ Rd−n, n = 0, ..., d− 2, and
therefore to find a pythonic way to efficiently pad matrices with different dimensions. For simplicity,
we have chosen to only construct d− 1 vector valued functions vn ∈ Rd in our applications.

B Technical material

B.1 Proof of Proposition 1

We recall that here erf : Rd → Rd is the distribution function of a one dimensional Gaussian applied
component wise.
Proposition. Let s a smooth Gaussian preserving function satisfying (3). Then there exists φ :
(−1, 1)d → (−1, 1)d such that |det∇φ| = 1 and

s(x) =
√

2 erf−1 ◦φ ◦ erf( x√
2

), x ∈ Rd. (20)
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Proof. We recall some basic properties about the distribution function of a one dimensional Gaussian
and its inverse. One has for x ∈ R

erf(x) =
2√
π

∫ x

0

et
2

dt,
d

dx
erf(x) =

2√
π
e−x

2

,

d

dx
erf−1(x) =

√
π

2
e(erf−1(x))2 .

(21)

Consider the function φ : (−1, 1)d → (−1, 1)d defined as

φ(x) = erf ◦ s√
2
◦
√

2 erf−1(x). (22)

The goal here is to show that |det∇φ| = 1 then equation (20) will follows from (22). By definition

|det∇φ(x)| := |det∇
(
erf ◦ s√

2
◦
√

2 erf−1(x)

)
|.

Applying the equalities (21) component wise and denoting x = (x1, ..., xd) one gets

|det∇φ(x)| = |
∏
i

2√
Π
e
−( s√

2
◦
√

2 erf−1(x))2i × det∇s(
√

2 erf−1(x))√
2

×
∏
i

√
2

√
Π

2
e(erf−1(x))2i |,

since the determinant of the composition is the product of the determinants. That is

|det∇φ(x)| = |
∏
i

e
−( s√

2
◦
√

2 erf−1(x))2i × det∇s(
√

2 erf−1(x))

×
∏
i

e(erf−1(x))2i |,

which can be written

|det∇φ(x)| = e(−‖s(
√

2 erf−1(x))‖2+‖
√

2 erf−1(x)‖2)/2 × | det∇s(
√

2 erf−1(x))|.

Finally using |det∇s(x)| = e(‖s(x)‖2−‖x‖2)/2 one obtains |det∇φ(x)| = 1.

B.2 Orientation reversing function

In the following Lemma we prove that very orientation reversing function satisfying det∇ψ = −1
can be written as the composition of a volume and orientation preserving function and the function
h(x1, ..., xd) = (−x1, x2, x3, ..., xd).

Lemma. Assume ψ : Rd → Rd is a function satisfying det∇ψ = −1 and let h(x1, ..., xd) =
(−x1, x2, x3, ..., xd). Then there exists a volume and orientation preserving function φ such that
ψ = φ ◦ h.

Proof. We define φ as φ = ψ ◦ h. This function is indeed volume and orientation preserving since
it satisfies det∇φ = det∇ψ det∇h = 1. By noticing h ◦ h = Id one gets ψ = φ ◦ h.

Lemma. Assume the Monge map m and the NF architecture g are C1 diffeomorphisms. Then the
corresponding GP flow s isC1, the associated functionφ is alsoC1 and either satisfies det∇φ(x) =
1 ∀ x or det∇φ(x) = −1 ∀ x.

Proof. The definition of s := m ◦ g−1 ensures that s is indeed C1. Moreover since g is invertible
either det∇g > 0 everywhere or det∇g < 0 everywhere (if det∇g(x) = 0 this would means
that g is not invertible at this point) and the same argument applies to g−1 and to the Monge map
m. Therefore the equality s = m ◦ g−1 implies that either det∇s > 0 everywhere or det∇s < 0
everywhere. The equality φ = erf ◦ s√

2
◦
√

2 erf−1 shows that φ is also C1 and that the sign of
det∇φ does not change.
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B.3 Proof of Proposition 2

Proposition. Consider an arbitrary vector field v : Rd → Rd. Then ∇ · v = 0 if and only if there
exists smooth scalar functions ψij : Rd → R, with ψij = −ψji such that

vi(x) =

d∑
j=1

∂xj
ψij(x), i = 1, ...d, (23)

where v = (v1, ..., vd).

Proof. 1) First we prove that ∇ · v = 0. The divergence of v can be written

∇ · v =
∑
i

∂xi

∑
j

∂xj
ψij .

Using ψij = −ψji one has

∇ · v =
∑
i

∑
j
j<i

∂xi∂xjψ
i
j −

∑
j
j>i

∂xi∂xjψ
j
i

 , (24)

For the term
∑
i

∑
j
j<i

∂xi
∂xj

ψij on the left hand side one can sum over the index j first instead of

the index i that is ∑
i

∑
j
j<i

∂xi∂xjψ
i
j =

∑
j

∑
i
i>j

∂xi∂xjψ
i
j .

Injecting this equality in (24) one gets

∇ · v =
∑
j

∑
i
i>j

∂xi
∂xj

ψij −
∑
i

∑
j
j>i

∂xi
∂xj

ψji = 0.

2) Now we prove that every vector field satisfying∇ · v = 0 can be written under the form (23). The
proof from Stephen Montgomery-Smith is available online2 for completeness we rewrite it here. The
proof is made by induction with the following assumption.

Assumption 1. Let k ∈ N, k ≤ d. Given a smooth vector field v such that divk v :=
∑k
i=1 vi = 0,

there exists scalar functions ψij : Rd → R, 1 ≤ i, j ≤ k with ψij = −ψji such that vi =
∑
j ∂jψ

i
j .

The Assumption 1 is trivial for k = 0. Suppose it is true for k − 1 we prove it for k: assume
divk v = 0 and let

f1(x1, ..., xn) =

∫ x1

0

∂kvk(ξ, x2, ..., xn)dξ. (25)

Since ∂1f1 = ∂xvk one has

∂1(v1 + f1) + ∂2v2 + ...+ ∂k−1vk−1 = 0.

Thanks to Assumption 1 there exists functions ψij with ψij = −ψji such that

v1 + f1 =

k−1∑
j=1

∂jψ
1
j , vi =

k−1∑
j=1

∂jψ
i
j , for 2 ≤ i ≤ k − 1. (26)

Now we define

f2(x1, ..., xd) =

∫ x1

0

vk(ξ, x2, ..., xk−1, 0, xk+1..., xd)dξ −
∫ xk

0

f1(x1, ..., xk−1, ξ, ..., xd)dξ,

(27)
2 https://math.stackexchange.com/questions/578898
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then
∂kf2 = −f1, (28)

and using (25) in (27) one gets

∂1f2 = vk(x1, ..., xk−1, 0, ..., xd)−
∫ xk

0

∂kvk(x1, ..., xk−1, ξ, ..., xd)dξ = −vk. (29)

Now we extend the functions ψij , 1 ≤ i, j ≤ k − 1 by defining ψ1
k = −ψk1 = f2 and ψik = −ψki = 0

for 2 ≤ i ≤ k. Then extending the equations (26) with k one has

k∑
j=1

∂jψ
1
j = v1 + f1 + ∂kf2 = v1,

k∑
j=1

∂jψ
i
j = vj , 2 ≤ i ≤ k − 1

where we used the equality (28) in the first equation. Moreover with the definition of the function ψkj
one has

k∑
j=1

∂jψ
k
j = −∂1f2 = vk,

thanks to (29). This prove Assumption 1 for k.

B.4 Proof of Lemma 1

Lemma. Let Ω = [−1, 1]d and consider the functions

ψij(x) = (x2
i − 1)(x2

j − 1)ψ̃ij(x),

where ψ̃ij(x) : Rd → R are arbitrary scalar functions satisfying ψ̃ij = −ψ̃ji . Then the function v
defined in Proposition 2 satisfies∇ · v = 0 and v · n = 0 on ∂Ω.

Proof. Indeed since ψii = 0 there is no ∂xi
term which appear in the sum of (7) for the component vi.

The term x2
i − 1 can therefore be factored that is vi = 0 if xi = ±1. Hence v · n = 0 on ∂Ω.

B.5 Total derivative expansion

In this subsection we recall the expansion of the Lagrangian derivative D
Dtv(t,X(t,x)) =

d
dtv(t,X(t,x)) + (v(t,x · ∇)v(t,X(t,x)). Assume X(t,x) follows the ODE (4){

d
dtX(t,x) = v(t,X(t,x)), x ∈ Ω, 0 ≤ t ≤ T,
X(0,x) = x,

We recall that the notation d/dt must be understood as deriving the first variable of v(t,X(t,x))
while D/Dt represents the derivative in time of the function f(t) := v(t,X(t,x)). By deriving the
first and second variable with respect to t one has

D

Dt
v(t,X(t,x)) =

d

dt
v(t,X(t,x)) + (

d

dt
X(t,x) · ∇)v(t,X(t,x)).

Using d
dtX(t,x) = v(t,X(t,x)) one finally obtains

D

Dt
v(t,X(t,x)) =

d

dt
v(t,X(t,x)) + (v(t,x · ∇)v(t,X(t,x)).

C Experiment details

We run the experiments on two separate GPUs: a NVIDIA Quadro RTX 8000 and a NVIDIA TITAN
X. Our loss is given by the negative log-likelihood (1).

Toy datasets. We give the parameters used for the 2D toy experiments in Table 3. All the 2D test
cases can be found for example here https://github.com/rtqichen/ffjord/blob/master/l
ib/toy data.py. We consider a training set of 80K samples and a testing set of 20K samples, 20
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Model # params (pre-trained model) + GP epochs batch size lr

eight gaussians
BNAF+GP (15.4K) + 332 2000 1000 10−2

two moons
BNAF+GP (15.4K) + 332 50 1000 10−2

Table 3: Parameters used for the training of GP flows on the 2D toy examples.

Model # params (pre-trained model) + GP epochs batch size lr

FFJORD+GP (17.8K) + 10.3K ≈ 200* 1024 5× 10−4

FFJORD+GP+EULER (17.8K) + 10.3K 3000 1024 5× 10−4

Table 4: Parameters used for the training of GP flows on the dSprites data set.
* The training is stopped early due to out-of-domain particles.

time steps with a Runge-Kutta 4 discretization and a GP flow with two intermediate layers of size 15.
For the Euler penalization we take the exact same parameters with λ = 5× 10−4.

dSprites datasets. The VAE architecture used in the experiments is taken from the github repository
of Yann Dubois3. The parameters used for the GP flows are given in Table 4. For all test cases we
consider a GP flow with 15 time steps and three intermediate layers of 50 parameters. For the Euler
penalization we take an initial parameter λ = 5× 10−5 which is then divided 10 times periodically
by a factor 2 during the training.

D Interpolation examples

3 https://github.com/YannDubs/disentangling-vae
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Figure 5: Examples of interpolation for the dSprites dataset where each block correspond to the interpolation of
a different data point along the 10 dimensions axis represented by the rows. The dimensions are sorted with
respect to their KL divergence in the VAE latent space, so the higher rows carry more information while the last
rows should leave the image unchanged.
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Figure 6: Examples of interpolation for the dSprites dataset where each block correspond to the interpolation of
a different data point along the 10 dimensions axis represented by the rows. The dimensions are sorted with
respect to their KL divergence in the VAE latent space, so the higher rows carry more information while the last
rows should leave the image unchanged.
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