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Abstract: Human activity recognition (HAR) is fundamental to many services in smart buildings.
However, providing sufficiently robust activity recognition systems that could be confidently de-
ployed in an ordinary real environment remains a major challenge. Much of the research done in this
area has mainly focused on recognition through pre-segmented sensor data. In this paper, real-time
human activity recognition based on streaming sensors is investigated. The proposed methodology
incorporates dynamic event windowing based on spatio-temporal correlation and the knowledge of
activity trigger sensor to recognize activities and record new events. The objective is to determine
whether the last event that just happened belongs to the current activity, or if it is the sign of the
start of a new activity. For this, we consider the correlation between sensors in view of what can be
seen in the history of past events. The proposed algorithm contains three steps: verification of sensor
correlation (SC), verification of temporal correlation (TC), and determination of the activity triggering
the sensor. The proposed approach is applied to a real case study: the “Aruba” dataset from the
CASAS database. F1 score is used to assess the quality of the segmentation. The results show that
the proposed approach segments several activities (sleeping, bed to toilet, meal preparation, eating,
housekeeping, working, entering home, and leaving home) with an F1 score of 0.63–0.99.

Keywords: real-time human activity recognition; dynamic segmentation; smart building; event
correlation; temporal correlation; triggering sensor

1. Introduction

Environmental regulations do not consider the building as a simple consumer of
energy. Instead, they put the human being at the center of concerns, so that the building
is perfectly integrated into its ecosystem [1]. The buildings of tomorrow must be fully in
line with a vision of a renewed society, where comfort is in harmony with the dynamic
management of energy. To reach these goals, it is also important to develop new control
functions that offer stronger interactions with the residents. A number of important
studies [2,3] have shown that human behavior is the origin of significant differences in
energy consumption (more than 20%). From this perspective, the building is seen as
an ecosystem in which the equipment must meet the needs of the occupants internally,
externally, and in the surrounding neighborhood. The building ecosystem is consequently
complex, insofar as it is made up of heterogeneous coordinated systems for optimized
management.

Each building is characterized not only by its location and configuration, but also by
its occupants. The needs of the occupants change over time, and the control system must be
able to adjust. The arrival of digital technology in buildings (such as building information
modeling (BIM), the Internet of things (IoT), and sensors) provides additional information
that can be used for building energy management [4]. This is possible thanks to targeted
and adapted processing that uses the data generated by these communicating objects to
understand occupants’ behavior, evaluates various equipment performances, anticipates
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faults, and automates home services. Feedback to residents themselves can also been
considered as an added value (schedule of presence/absence, energy-consuming behavior).
In fact, besides the techniques that interact with the building directly, many researchers
focus on occupants to improve the energy efficiency in smart homes. Their goal is to
enhance occupants’ knowledge of their activities and their impacts on energy consumption.
Then, their practices can be adjusted to reduce wasted energy and improve their comfort.
Therefore, many recommendation methods and forms of energy feedback have been pro-
posed for occupants [5]. These tools aim to provide insights on the impacts of their activities
on building energy consumption. This information helps residents handle and understand
the finances related to energy usage. On the other hand, the recommendation systems
could support occupants in evaluating their activities regarding energy consumption and
comfort. Their past activities could be analyzed to suggest better practices [6].

It is from this perspective that the Delta Dore company intends to pursue its innovation
efforts. Developing new solutions for the recognition of human activities is a question of
offering services regarding energy consumption, health, and comfort in a home [7].

With the massive arrival of sensors that can communicate at low cost, the building
sector is currently experiencing an unprecedented revolution: the building is becoming in-
telligent, that is, it offers new services to occupants related to security, energy management,
and comfort. Article 23 of the 2012 thermal regulations (France) imposes the minimum
measurement of certain consumption items, which promotes the deployment of sensor
networks in new buildings. In addition, several research projects show the interest of public
bodies and companies (e.g., Delta Dore) in guaranteeing overall performance (actual total
consumption, interior comfort) after rehabilitation using these sensor networks. In addition
to the various aspects of comfort and energy consumption, these sensors also make it
possible to estimate the behaviors of the occupants, which determine energy consumption,
by estimating the number of occupants per zone and their metabolic contribution, activities,
and routines.

The recognition of human activities is fundamental to many services [8,9], but provid-
ing sufficiently robust HAR systems that could be deployed in an ordinary real environment
remains a major challenge. The existing works in the literature have focused mainly on
recognition through pre-segmented sensor data (i.e., dividing the data stream into segments,
each defined by its beginning and its end) [10]. In fact, in a smart building, sensors record
the actions and interactions with the residents’ environment over time. These recordings
are logs of events that capture the actions and activities of daily life. Most sensors only send
their status in the case of status change, not only to reserve the power of battery, but also to
not overload wireless communications. Moreover, sensors may have different triggering
times. This results in irregular and scattered time series sampling. Therefore, the recogni-
tion of human activities in a smart home is a pattern recognition problem in a time series
with irregular sampling. Segmentation techniques provide a representation of sensor data
for human activity recognition algorithms. A time window method is commonly used in
events’ segmentation for HAR. However, in the context of a smart home, sensor data is
often generated episodically over the time, so a fixed size time window is not feasible. One
of the challenges of dynamic segmentation based on data streaming is how to correctly
identify whether two sensor events with a certain temporal separation belong to the same
activity or not.

To perform real-time recognition, the objective is to determine if the last event that
has just occurred belongs to the current activity, or if it is the sign of the start of a new
activity. For this, we consider the correlation between sensors in view of what can be seen
in the history of past events. The proposed algorithm contains three steps: (i) verification of
sensor correlation (SC), (ii) verification of temporal correlation (TC), and (iii) identification
of the activity triggering the sensor.

This paper is organized as follows: Section 2 presents the problem statement, as
well as the objective and the main contribution of the paper. The related works are sum-
marized in Section 3. Section 4 is devoted to a description of the proposed approach.



Sensors 2022, 22, 5458 3 of 20

To assess the efficiency of the proposed methodology, simulation results for a real case
study are presented in Section 5. Section 6 discusses the findings of the literature review,
the proposed methodologies, their limits, and the results. Finally, concluding remarks are
given in Section 7.

2. Problem Statement and Research Objective

In an instrumented building, sensors may trigger at different times [11]. This results
in irregularity in the data sampling in the time series. Therefore, HAR in a smart building
is a pattern recognition problem in a time series with irregular sampling [12].

In this section, the existing methodologies for sensor data stream segmentation in
a smart building are firstly highlighted. These approaches provide a representation of
sensor data for HAR algorithms. Then, the challenges regarding the temporal complexity
of human activity data in real use cases are discussed in details.

2.1. Existing Works

In an HAR task, each piece of sensor data needs to be divided into chunks, in a
windowed manner. Some windowing approaches [13–17] are more appropriate for real-
time activity recognition than others. Real-time is a necessity because a smart building
should be reactive. For example, let us take the example of a health service in an smart
building. It would be useless to detect the fall of an elderly person one hour after it has
happened; however, it would be useful to detect it at the moment of the fall. Another
example is that of lowering energy use. Indeed, it is useless to decide to cut the heating or
lower the shutters only several hours after having registered the activity of the inhabitants.

This section details the most used data segmentation techniques in a real-time
HAR context.

2.1.1. Time Window

Figure 1 illustrates an example of a sequence of activities, represented by Activity 1,
Activity 2, Activity 3, and Activity 4, along with the corresponding events in temporal
order. On the other hand, the interval of time between each pair of events is variable.

Figure 1. Sequence of activities.

Time windowing (TW) techniques consist of dividing the data stream into time seg-
ments with a regular time interval, such as every 60 s, as described in Figure 2.

Figure 2. Time window.

The selection of the optimal duration of the time interval is the biggest challenge for
these techniques. In fact, if the time interval is very large, the events could be common
to many activities, and consequently the predominant activity in the time window will
have the more influence in the label’s choice [18]. TW techniques are commonly used in the
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segmentation of events for real-time activity recognition. This technique is more favorable
to the sensor time series with regular or continuous time sampling. However, in the smart
home context, sensor data are often generated in a discrete form along the timeline, where
a fixed-size time window is not suitable.

2.1.2. Sensor Events Window

A sensor events windowing technique consists of dividing the whole sequence into
a set of sliding windows with an equal number of sensor events [13], for example, every
20 sensor events, as demonstrated in Figure 3.

Figure 3. Sensor event window.

Each window is labeled with the last event’s label in the window, and the sensor
events that precede the last event in the window define the last event’s context.

This is easier to implement; however, the challenge consists of the fact that the actual
occurrence of the activities is not intuitively reflected [15]. In fact, one sliding window
could cover two or more activities, or events belonging to one activity can be spread
into several sliding windows. Furthermore, if several activities occur simultaneously, this
technique is unable to segment events. In addition, this window type differs in terms of
duration, and it is consequently impossible to interpret the time between events.

2.1.3. Activity-Based Event Window

To solve these issues regarding the sensor event windowing technique, the activity-
based event windowing method segments the events into blocks that are compatible with
the occurrence of each activity, as presented in Figure 4. This approach precisely defines
the boundaries of the activity, but it may take a longer time until adequate information to
define one segmentation is received. This is a challenge. Moreover, the challenge is how
to determine whether two sequential events belong to identical activities or not. In the
following, we discuss a two-step dynamic segmentation approach.

Figure 4. Drawing of the activity’s boundaries.

2.2. Objective

In the literature, an important number of research works have been developed in the
field of human activity recognition. However, a number of problematic challenges remain
outstanding, such as human activity recognition in real time. The main contribution of this
work is to develop a real-time HAR based on dynamic event segmentation and the trigger
sensor’s activity.

• Dynamic windowing. Most existing solutions dealing with HAR are offline and aim to
recognize activities based on pre-segmented datasets, while real-time HAR based on
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streaming ambient sensor data residue is problematic. This research work discusses
a novel dynamic online events segmentation approach, which facilitates real-time
activity recognition. Moreover, with this approach, we could predict the current
activity label in a timely manner. The objective of dynamic segmentation makes it
possible to delimit the beginnings and ends of each activity.

• Trigger sensor. This paper considers the importance of knowing the triggering sensor
of an activity for the HAR in the context of daily living. Once the beginnings and end-
ings of each activity are determined by the real-time dynamic segmentation algorithm,
knowledge of the triggering sensor helps identify the activity.

The identification of the triggering sensors of an activity consists of selecting the one
that appears first most often among the occurrences of this activity in the dataset.

2.3. Contribution

In summary, our contribution demonstrates that, by the dynamic sensor windowing
and the knowledge of the triggering sensor, we can improve the classification of activities.

3. Real-Time Recognition of Human Activities in Smart Homes

The HAR task proceeds from pattern recognition, where the techniques are decom-
posed into two categories.

3.1. Ontology-Based Approaches

Various techniques have been proposed in the literature to tackle the HAR task,
and most of the basic ones focus on the location of sensors in the house because it is a
crucial part of the context. They assume that the semantics of a spatial position are static;
that is why they focus on how to specify the semantics of a spatial position. They also focus
on how to identify the spatial position of occupants [19].

Location-based techniques [20,21] work well to some extent. However, they are unable
to recognize human activities with enough accuracy. For example, if the occupant stays in
a kitchen, she or he may be cooking food or putting the dishes away; the efficiency of this
method is limited because a location hosts various activities. For now, research has failed
to handle these changes in semantics.

Another type of ontology-based approach is the thing-based technique [22], which
identifies, in a dynamic manner, the change in activities by using remote sensors to identify
the objects that the occupant is interacting with [23]. For example, to recognize an occupant
activity, [24] developed a system of semantics identification that identified the activity
space from objects forming the immediate environment of the occupant.

Furthermore, these techniques try to overcome the diversity of activities in the most
comprehensive way possible. However, they require a complete knowledge of the domain
to elaborate activities models. They are not robust to handle settings change and uncertainty,
and they have implementation problems regarding the recognition accuracy of the used
sensors depending on their cost. In addition, they propose following expert knowledge
to model activities, which is time consuming and difficult to maintain in the case of
environment evolution.

3.2. Data-Driven Approaches

Another technique to recognize human activities in real time is to monitor the ap-
pliances’s status in order to understand the behavior of the different loads in a smart
home area.

In the scientific literature, several load monitoring techniques can be implemented.
They can be divided into two categories [25], as follows:

• Intrusive load monitoring (ILM) is a data collection methodology where each appli-
ance node is equipped with many devices to detect the sensor events and therefore
characterize in detail the occupant activities using deep learning techniques, for exam-
ple.
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The databases generated by these systems can be labeled manually (i.e., the user labels
the monitored appliance) or automatically (i.e., the system is trained with examples
from distinctive appliances and then recognizes the appliance that is being used).
Generally, manual setup ILM systems outperform automatic setup ILM systems.
Accuracy of the results is the main benefit of this method, but it requires expensive
and complex installation systems.

• Non-intrusive load monitoring technique (NILM) is an alternative operation, in which
one single monitoring device is installed at the main distribution board in the home
area. An algorithm is performed to determine the operation’s stat for each appliance.
The main advantage of the NILM approach is the fact that only one single monitoring
device is needed. Therefore, it lowers the cost significantly at the home level. The main
disadvantage is the lower accuracy compared to ILM systems (in particular, those
with manual labeling [26]).

In general, the appliances of a household can be categorized in the following classes:
(i) finite-state appliances such as dishwashers or fridges, which have different states, each
one having its duration (cyclic or fixed) and its own power demand; (ii) continuously
varying appliances, such as computers, which have different states and behavior that is
not periodic; (iii) on/off appliances, such as light bulbs with a fixed demand of power;
(iv) permanent demand appliances, such as alarm-clocks, which are always in “ON” mode
with a fixed power request.

The appliances can be recognized by “event-based” approaches that detect the
ON/OFF changes, or by “non-event-based” or “energy-based” approaches that detect
whether an appliance is ON during a sampled duration.

Different sensor measurements and feature data are required for these techniques,
such as voltage and current. The most important parameter in the complexity level of the
discretion methods is the sampling rate. It affects not only the type of feature that can be
measured, but also the type of algorithm that can be used. A detailed review of the features
and algorithms is included in [27].

Another important issue in data-driven approaches is related to the quality of data.
In this work, we are interested in dealing with ambiguous outliers’ detection in both
training and testing data and in the insufficiency of labeled data. Outliers could be detected
using a multiclass deep auto-encoding Gaussian mixture model, for example [28]. This is a
set of individual unsupervised Gaussian mixture models that helps the deep auto-encoding
model to detect ambiguous outliers in both training and testing data.

Although well-documented, most HAR techniques only use pre-segmented datasets.
However, human activities need to be monitored in real time in many scenes. This
requires the HAR algorithm to steer clear of pre-segmented sensor data and focus on
streaming data.

4. Proposed Methodology for Human Activity Recognition
4.1. Key Ideas

This work tackles the challenge of how to determine whether two sequential events be-
long to identical activities or not. It focuses on a two-step dynamic segmentation approach
that incorporates the computation of sensor correlation and temporal correlation.

In the following, we describe the proposed methodology for real-time human activity
recognition in smart homes, designed as a classifier of a semantic time series. It relies on a
real-time dynamic windowing of sensor events and trigger sensor identification for each
activity combined as depicted in Figure 5. To summarize, this algorithm processes real-time
streaming sensor data, which comprises two phases. In the offline phase, the dataset is
cleaned, and the data are sampled. The online phase is a three-step methodology: the
checking of event correlation, the checking of time correlation, and the identification of the
triggering sensor.
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Figure 5. Diagram of the online HAR framework.

For a better understanding of this technique, we will follow the step-by-step workflow
described in this schema.

4.2. Step 1: Dynamic Windowing in Real Time
4.2.1. Computation of Event Correlation

In a general case, an event sequence can be represented as E = {e1, e2, ..., en}, where ei
refers to the ith event, and each ei ∈ E contains a vector of information < Ti, si, Vi > where
Ti, si, and Vi represent respectively:

• ei: ith event.
• Ti: time stamp of the ith event (date, hour:minute:second).
• si: sensor name of the ith event.
• vi: sensor value of the ith event.

Thus, one of the challenges is how to split the sensor sequence into a series of event
chunks that are associated with corresponding activities.

In this paper, the dynamic segmentation of events is proposed. It is determined using
the Pearson product moment correlation (PMC) coefficient between the events [29]. PMC,
or more formally ρX,Y, is a measure of the linear correlation between two variables, X and
Y (two events in our case study). It is calculated using Equation (1).

ρX,Y =
cov(X, Y)

σXσY
(1)

where:

• cov(X, Y) is the covariance of X and Y.
• σX and σY are the standard deviation of X and Y, respectively.

It produces a value between −1 and 1. Three cases are distinguished:

• X and Y are totally positively correlated if ρX,Y = 1.
• X and Y are totally negative correlated if ρX,Y = −1.
• X and Y are not correlated if ρX,Y = 0.

In the case of the smart home test bed used in this work and presented in Section 5.1,
each sensor is encoded with an identifier of the location where the sensor is installed.

Let us consider the following example: Figure 6 shows an example of the PMC sensor
correlation rate between nine sensors installed in a home configuration. As is depicted,
the sensors 3, 4, 5, 6, and 7 are highly correlated.
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Figure 6. An example of sensor correlation.

Thus, the PMC value (i.e., ρX,Y) between two geographically close sensors is more
likely to be higher than two sensors geographically far from each other. It suggests also
that sensors in the same or adjacent regions are more likely to be triggered together
or sequentially.

Thus, the threshold value for ρX,Y is set at 1 (i.e., the sensors are highly correlated).
Therefore, given the incoming event sequence E = {e1, e2, ..., en}, if the ρX,Y between event
ei (triggered by sensor si) and event ei+1 (triggered by sensor si+1) is 1, it can be considered
that event ei and event ei+1 are correlated.

4.2.2. Computation of Temporal Correlation of Sensor Events

The most known methods used in sensor event segmentation for real-time HAR are
time windowing techniques [29–31]. However, in the smart home context, sensor data
are often generated in a discrete manner, so a fixed time window is not practical along
the schedule.

A segmentation is a set of segments S = {s1...sm}. Each segment contains a set of
sensor events, triggered by a human during an activity. A segment has a label, which is
the label of the activity. It has a start date and an end date. It is encoded in the template of

sj =< e f irst...elast; labelj >, so e f irst =< Tf irst, s f irst, Vf irst > and elast =< Tlast,

slast, Vlast >. Then s f irst
j = Tf irst and slast

j = Tlast.
An activity has several occurrences in the database, so an activity can be represented

by several segments.
Determining whether two events with a certain temporal separation belong to the

same activity or not is the main challenge of dynamic segmentation.
Let us consider two events with a high dependency between sensors and a large

time interval. These two events should not be in the same sliding window. Consequently,
a measure based on time correlation is employed to decide if two events are temporally
dependent or not. In this work, a time-correlation-based method is investigated in order to
identify whether two events are time correlated or not.
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For an existing segmentation, the first and last time stamps are designated as Tf irst
and Tlast, respectively. Then, each incoming event ei ∈ E is manipulated twice with Tf irst
and Tlast, utilizing Equations (2) and (3), respectively.

T f irst
cor =

time distance
Maximum Time Span

=
Tlast − Tf irst

Tmax
(2)

Tlast
cor =

time distance
Maximum Time Interval

=
Tlast − Tf irst

P
(3)

where:

• Tmax is the maximum duration for a given activity.
• P is the probability of occurrence of an activity in a given area. It is a constant value

that represents the probability of occurrence of activity in a zone. For example, “meal
preparation” is supposed to occur in the kitchen, with a probability equal to 100%. In a
dataset, the sequence of events is recorded in a chronological order, so Tlast− Tf irst > 0
and Tmax > 0. With regard to the threshold P, it is related to the duration of activities.

However, the disadvantage of this approach is that there may be significant differences
between the durations of various activities. For example, on analysis of the longer term
dataset, the average duration of sleeping is 3 h: 35 min: 57:45 s, while the average duration
of eating is 09 min: 55:23 s. To address this issue, different threshold parameters are set
corresponding to each functioning area (Table 1).

Table 1. Average duration of activities.

Activity Average Duration

Sleeping 3:56:57

Bed to toilet 0:02:43

Housekeeping 0:20:10

Eating 0:09:55

Meal preparation 0:07:33

Work 0:17:04

Relax 0:33:23

Enter home 0:00:06

Leave home 0:00:06

In summary, the following Algorithm 1 describes the pseudocode of the algorithm
dealing with real-time streaming events. It is a two-step methodology: (i) the computation
of sensor correlation (SC); (ii) the computation of temporal correlation (TC).

The sensor correlation shows that sensors in the same zone or close functioning areas
are more likely to be triggered together or sequentially. The temporal proximity of the
events corresponds to a geographical proximity of the sensors, which justifies the relevance
of the approach.

For an incoming event ei, both sensor and temporal correlations will be conducted
with all the existing segmentations. Then, if SC and TC are verified, ei will be added to the
segmentation that aligns with both SC and TC results. However, if none of the existing
segmentations can be identified, a new segmentation can be initialized with ei.
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Algorithm 1 Real-time dynamic windowing

Require: Sequence of events E = {e1, e2, ..., en}
Ensure: set of segmentations S = {s1, s2, ..., sn}

if S not exist then
Initialize s1 and add e1 to s1

else if thenS exist
for sj: j = 1 to n do<>

if sj 6= ∅ then
SC = sensor correlation (ej, elast)

T f irst
cor = time correlation (ej, e f irst)

Tlast
cor = time correlation (ej, elast)

if SC = True AND (T f irst
cor = True AND Tlast

cor = True) then add ej to sj

else if SC = True AND (T f irst
cor = False OR Tlast

cor = False) then clear sj and start a
new segmentation from the next event

end if
else if sj = ∅ then Initialize sj+1 and add ej to sj+1
end if

end for
end if

4.3. Step 2: Identification of Triggering Sensors

The calculation of the correlation between sensors seeks to recover the sensors that are
correlated. Highly correlated sensors (i.e., whose PMC value is equal to 1) are frequently
co-located in the same area (i.e., there is a geographical proximity between the sensors).

Among many co-located sensors, some of them are the triggering sensors for each
activity. The identification of the triggering sensors of an activity consists of first selecting
the one that appears most often among the occurrences of this activity in the dataset. In this
work, this criterion is used to recognize the activity once the beginning and the ending of a
segment are determined.

4.4. Algorithm Performance Evaluation

Validation is an essential part of evaluating the algorithm performance. Here, to vali-
date the proposed algorithm, we verify whether it can accurately estimate occupant activities.

In statistical analysis, the F-score is an indicator about the accuracy of a defined test. It
is calculated from the precision (P) and recall (R) of the test defined by
Equations (4) and (5), where:

• TP: represents the true positive.
• FP: represents the false positive.
• FN: represents the false negative.

The F1 score is the harmonic mean of the precision and recall. An F-score equal to 1
indicates a perfect precision and recall, and an F-score equal to 0 indicates that either the
recall or the precision is null.

P =
TP

TP + FP
(4)

R =
TP

TP + FN
(5)

F-score = 2× P× R
P + R

(6)

An example of F-score calculation of sleeping activity is given in Figure 7.
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Figure 7. Precision and recall.

5. Case Study

To test the methodology and its generalization, it was implemented in a real case study.
In this section, to be consistent with previous sections, eight activities are used to illustrate
the methodology. A two-year dataset from November 2010 to June 2011 is used for testing.

5.1. Data Set Description

The experiment was conducted on the CASAS dataset [32], specifically Aruba, as
introduced by Washington State University. This dataset contains sensor data that was
collected in the home of a volunteer adult. The resident in the home was a woman.
The woman’s children and grandchildren visited on a regular basis.

The following activities are annotated within the dataset. The number in parentheses
is the number of times the activity appears in the data.

• Meal preparation (1606);
• Relax (2910);
• Eating (257);
• Work (171);
• Sleeping (401);
• Wash dishes (65);
• Bed to toilet (157);
• Enter home (431);
• Leave home (431);
• Housekeeping (33).

The events are generated from motion sensors (these sensor IDs begin with “M”), door
closure sensors (these sensor IDs begin with “D”), and temperature sensors (these sensor
IDs begin with “T”). The layout of the sensors in the home is shown in Figure 8.
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Figure 8. Sensor configuration of the dataset Aruba.

Figure 9 represents an extract of the dataset with raw sensor data, where the annotated
sensor events in the dataset include different categories of predefined activities of daily life,
while the untagged sensor events are all labeled with “Other Activity”.

Figure 9. An extract of Aruba dataset with raw data.

For reasons of software development, the motion sensors and door sensors with
“SensorValue” of “ON/OPEN” and “OFF/CLOSE” are mapped to “1” and “0”, respectively.
“Date” is converted from the form of “yyyy-mm-dd H:M:S” to epoch time in milliseconds
relative to the zero hour of the current day.
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5.2. Implementation and Results

In this section, we will firstly discretize the sensor data at a fixed rate. Secondly, we
will apply the real-time dynamic segmentation of events to determine the beginning and
the ending of each segment and then identify the activity using the trigger sensor. Finally,
we will compare the simulated and real activities using the F-score indicator.

5.3. Discretization of the Data Set

In this work, the data are sampled with a sampling rate equal to 1 s. This value is
justified by the fact that, if we increase the sampling rate, we lose information. Therefore,
the smaller the value is, the richer the segment is in events, and the more accurate the
segmentation will be. Figures 10 and 11 show, respectively, the data evolution of three
motion detection sensors (M003, M005, and M007), as well as the temperature sensors.

Figure 10. Sampled detection motions.

Figure 11. Sampling of temperature sensor events.

5.4. Trigger Sensor Identification for Each Sensor

Figures 12–14 show histograms of the first sensor of an activity for occurrences of the
activity in the dataset.
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Figure 12. Trigger sensors for the activities sleeping, housekeeping, relaxing, and meal preparation.

Figure 13. Trigger sensors for the activities bed to toilet, work, eating, and wash dishes.

Figure 14. Trigger sensors for the activities leave home and enter home.

For some activities, such as sleeping, bed to toilet, work, and eating, the triggering
sensor is always the same (M003, M004, M026, and M014, respectively). However, for other
types of activities, such as housekeeping, different sensors can trigger the activity (M008,
M013, M020, and M031).
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5.5. Results of Activities’ Recognition

Figures 15 and 16 show, respectively, the results of the real-time dynamic sensor event
segmentation algorithm (i.e., the identification of the beginning and end of activities) for
five activities—sleeping, bed to toilet, meal preparation, leave home, and enter home—over
24 h on 4 November 2010.

Figure 15. Segmentation of the activities sleeping, bed to toilet, and meal preparation.

Figure 16. Segmentation of the activities leave home and enter home.

Over 24 h on 4 November 2010, the activity sleeping happened two times. Table 2
shows the segments of the two real and simulated sleeping activities (i.e., the beginning
and the end of each activity).

Table 2. Timestamp comparison between real and simulated activities on 4 November 2010.

Real Activity Simulated Activity Trigger Sensor

Sleeping (1) Begin: 00 H: 03 MIN: 50 S Begin: 00 H: 03 Min: 50 S M003
End: 05 H:40 MIN: 43 S End: 05 H:40 MIN:25 S

Sleeping (2) Begin: 05 H:43 MIN:45 S Begin: 05:44:03 M003
End: 08 H: 01 MIN: 12 S End: 08 H: 00 MIN: 23 S
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Table 3 shows the evaluation of the quality of segmentation for the sleeping activity
using F-score.

Table 3. F-score comparison between real and simulated activities on 4 November 2010.

Accuracy Recall F-Score Absolute Error

Sleeping (1) 1 0.99 0.99 9 s

Sleeping (2) 0.99 0.99 0.99 78 s

Average error 0.995 0.99 0.99 43.5 s

Over 24 h on 4 November 2010, the activity eating happened four times. Table 4 shows
the segments of the different eating activities.

Table 4. Timestamp comparison between real and simulated activities on 4 November 2010.

Real Activity Simulated Activity Trigger Sensor

Eating (1) Begin: 09 H: 56 MIN: 41 S Begin: 09 H: 56 MIN: 41 S M014
End:09 H: 59 MIN: 04 S End: 09 H: 59 MIN: 09 S

Eating (2) Begin: 09 H: 59 MIN: 47 S Begin: 10 H: 00 MIN: 41 S M014
End: 10 H: 02 MIN : 48 S End: 10 H: 01 MIN: 31 S

Eating (3) Begin: 15 H: 25 MIN: 35 S Begin: 15 H: 25 MIN: 15 S M014
End: 15 H:28 MIN:42 S End:15 H:28 MIN:37 S

Eating (4) Begin: 17 H:35 MIN:16 S Begin:17 H:36 MIN:26 S M014
End: 17 H:37 MIN:11 S End:17 H:37 MIN:04 S

Table 5 shows the evaluation of the quality of segmentation for the eating activity
using F-score.

Table 5. F-score comparison between real and simulated eating activities on 4 November 2010.

Accuracy Recall F-Score Absolute Error

Eating (1) 1 0.974 0.986 2.5 s

Eating (2) 0.576 0.538 0.555 71.5 s

Eating (3) 0.906 0.974 0.938 12.5 s

Eating (4) 0.5u27 0.917 0.966 38.5 s

Average error 0.752 0.850 0.861 31.25 s

In this paper, only the details about sleeping and eating activities are given. The de-
tails for other activities are omitted. Table 6 summarizes the segmentation performance
(precision, recall, and F-score) on 4 November 2010 for all the activities.

Table 6. Activities recognition performance evaluation on 4 November 2010.

Activities Accuracy Recall F-Score Average Error

Sleeping 0.995 0.99 0.99 43.5 s
Bed to toilet 1 0.933 0.965 4.5 s

Housekeeping 0.989 0.968 0.978 13.5 s
Relax 0.876 0.847 0.830 118.75
Eating 0.752 0.850 0.861 31.25 s
Work 0.652 0.637 0.644 280.75 s

Leave Home 0.625 0.69 0.63 1.25 s
Enter Home 0.152 0.2 0.16 12.75
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Table 7 summarizes the segmentation performance (precision, recall, and F-score) on 5
November 2010 for all the activities.

Table 7. Activities recognition performance evaluation on 5 November 2010.

Activities Accuracy Recall F-Score Average Error

Sleeping 0.999 0.99 0.99 25.16 s
Bed to toilet 0.844 0.948 0.892 15.5 s

Housekeeping 0.998 0.988 0.992 53.5 s
Relax 0.769 0.825 0.75 101 s
Eating 0.684 0.927 0.787 48.5 s
Work 0.639 0.627 0.569 178.85 s

Leave Home 0.715 0.59 0.64 5 s
Enter Home 0.714 0.565 0.59 4.5 s

The problem of concurrent or multi-user activities recognition associated with cor-
related sensors’ events remains a critical research challenge. For example, the activity
of housekeeping in the kitchen and meal preparation are both associated with a certain
number of sensors, such as common motion detection sensors for example. If such ac-
tivities occur simultaneously or are intersecting, this approach may not be achievable in
segmenting such sensor events. Even if occurring in both of the datasets in this work, such
situations are infrequently considered. However, scenarios where there is more that one
resident are quite common and must be given much attention by the research community.

5.6. Comparison with Other Methods

The proposed method is a segmentation method to be used by recognition methods,
not a recognition method in itself. In the literature, all the existing segmentation methods
are offline, and there is not much attention to real-time segmentation.

By identifying the triggering sensor, it turns out that the proposed segmentation
technique makes it possible to recognize the activity, but that is a side effect. Therefore,
in this work, the results are compared to those of the data labeled in the dataset.

Despite certain biases in the dataset and the topology of the house, our performance
is less good than the algorithms of the domain, but it is not bad either. As a comparison,
the recognition performance (i.e., the average F-score) for eight activities (sleeping, bed
to toilet, eating, housekeeping, relax, work, enter home, and leave home) of the proposed
algorithm is 0.766, while this value is equal to 0.73 using the decision tree technique
presented in [33], 0.765 using sensor-event-based windowing technique [13], 0.760 using
a combination of SWMI (fixed-length sensor windows with mutual-information-based
weighting of sensor events) and SWTW (fixed-length sensor windows with time-based
weighting of the sensor events) techniques [13], 0.773 using SWTW technique [13], and 0.83
using the naive Bayes tree technique presented in [33].

6. Discussion

To recognize an activity in real time, two steps are followed:

• Step 1: Calculation of spatio-temporal correlation
Given an incoming event, the sensor correlation and time correlation will be performed
with all existing segmentations. Subsequently, it will be added to the segmentation
that aligns with the sensor and temporal correlations results. However, if none of
the existing segmentations can be identified, a new segmentation can be initialized
with the incoming event. The objective of this step is to determine the beginning and
the end of each activity. In this work, each beginning and end of each segment are
identified when the sensors are highly correlated (i.e., sensor correlation is equal to 1)
and when the difference between the start and end date of the activity does not exceed
the maximum duration of each activity.
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• Step 2: Identification of the activity’s triggering sensor
Once the beginning and the end of each activity are determined, the knowledge of
the triggering sensor allows the method to recognize the activity. For example, for the
sleeping activity, the beginning of the segment is at t = 00 H: 03: Min: 50 s and the
end of the segment is at t = 05 H: 40: Min: 25 s. Figure 12 shows that during the
test period, the sensor M003 is always the trigger sensor for the “sleeping” activity.
On 4 November 2010, at t = 00 H: 03: Min: 50 s (i.e., the beginning of the segment),
the trigger sensor is also M003, which belongs to the set of trigger sensors. Therefore,
it is indeed the sleeping activity

Tables 6 and 7 summarize the performance of the algorithm. The results show that
the algorithm could segment several activities (sleeping, cleaning, cooking, etc.) with
an F1 score of 0.63 to 0.99. Let us take the example of the “relax” activity. The F-score
decreases between 4 November and 5 November 2010. The value goes from 0.830 to 0.75.
We conclude that on an activity that has few events, and over very long durations, a badly
segmented event will decrease the F-score.

7. Conclusions and Future Works

The recognition of human activities in a building is a problem of pattern recognition
in irregular sampling of a time series. Different sensor event segmentation approaches
in a smart building context are highlighted in the literature. These techniques provide
sensor data representation for HAR algorithms. A time window method is commonly
used, but in a smart home context, sensor data are often generated periodically over time.
Consequently, a time window with fixed size is not feasible. The main challenge regarding
dynamic segmentation based on data streaming is how to correctly identify whether or not
two sensor events with a certain temporal separation belong to the same activity.

This paper presents a real-time event segmentation methodology for real-time human
activity recognition in a building context. It is a two-step methodology: sensor and
temporal correlation calculation, and the triggering sensor identification for each activity.
The dynamic sensor event segmentation approach is performed by calculating the Pearson
product–moment correlation (PMC) coefficient between events. The triggering sensor
of the event is the very first sensor of an activity. In this work, it is not required to be
discriminating (it is sufficient that it is the first), but it happens that we find that it is
generally quite good at discriminating.

The real-time dynamic segmentation allows the method to determine the beginning
and the end of each segment. Once they are determined, the knowledge of the trigger
sensor allows the method to recognize the activity.

The methodology was validated on a real dataset. It has been demonstrated that the
adoption of a trigger sensor identification and real-time dynamic windowing events can
significantly achieve activity recognition with an F1-score of 0.63–0.99.

Future works are suggested as follows:

• In this work, for the sake of simplicity, the trigger sensor is considered as the first
sensor that triggers the activity. It is used as the only discriminating sensor (i.e., this
event makes it possible to clearly differentiate one activity from another). In this work,
it is not required to be discriminating (it is sufficient that it is the first), but it happens
that we find that it is generally quite good at discriminating. Future works will focus
on the identification of trigger sensors using learning algorithms.

• The approach only considered several activities for a single person. It will be interest-
ing to test the performance of this approach for concurrent activities where occupants’
activity profiles and their behaviors of using appliances change over time, which
usually happens when the season or the calendar of an individual changes.

• The appliances, which are not only associated to occupants’ activities, are not ad-
dressed in this work (i.e., fridge, artificial lighting, etc.). It will be interesting to test
the algorithm’s performance with activities that are related to electrical appliances.



Sensors 2022, 22, 5458 19 of 20

• Occupants’ activities can affect many factors in houses, such as the electricity con-
sumption, HVAC, and lighting systems. It will also be interesting to focus on the
impacts on electricity consumption of domestic appliances.

Future research directions will be around the following:

• Testing this method on different hardware architectures, taking into account the cost
of solutions.

• In a “digital twin” approach, a simulator will be used to overcome the difficulty of
obtaining real data, and to generate synthetic data to introduce different variations
(user habits, different sensors, different environment) according to a use case .
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SC Sensor correlation
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PMC Pearson product moment correlation
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