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Abstract
We investigate the problems and challenges of
evaluating the robustness of Differential Equation-
based (DE) networks against synthetic distribu-
tion shifts. We propose a novel and simple accu-
racy metric which can be used to evaluate intrinsic
robustness and to validate dataset corruption sim-
ulators. We also propose methodology recommen-
dations, destined for evaluating the many faces of
neural DEs’ robustness and for comparing them
with their discrete counterparts rigorously. We
then use this criteria to evaluate a cheap data aug-
mentation technique as a reliable way for demon-
strating the natural robustness of neural ODEs
against simulated image corruptions across multi-
ple datasets.

1. Introduction
Neural Ordinary Differential Equations (NODEs) (Chen
et al., 2019), conjoining dynamical systems (DS) and ma-
chine learning (ML), have come to be a popular source
of interest, in particular for tackling generative problems
and continuous-time modeling, and seem to have a bright
future among the ML community. Nevertheless, many ques-
tions regarding their robustness have been raised, creating
a debate on whether these networks benefit from natural
robustness properties or if the latter are overestimated.

Likewise, the importance of reliability in real-world appli-
cations with AI-driven decision-making in safety-critical
systems have brought a lot of attention to studying a model’s
behavior under distribution shifts. Understanding the latter
implies focusing on how feasible is a chosen model’s do-
main generalization against the kinds of shifts that may
occur in real-world scenarios. The past few years have seen
an emerging industry proposing new and relevant shifted
datasets for different actors and purposes. Numerous bench-
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marks (Hendrycks & Dietterich, 2019; Mu & Gilmer, 2019;
Koh et al., 2021; Salehi et al., 2021) addressing different
aspects of distribution shifts have come to light and the
rigorous analysis and evaluation of both models and bench-
marks have become increasingly important. Although they
transfer poorly to real-world shifted images, synthetic dis-
tribution shifts are a good starting point for experimenting
a new model’s accuracy and robustness. For instance, in
(Gilmer et al., 2019) it is hypothesized that methods that
incur into vanishing gradients also show no improvement
in Gaussian noise, a phenomenon which they relate in a
rigorous way to adversarial attacks. Corruption robustness
can be then seen as a sanity check to ensure that a pro-
posed adversarial defense method doesn’t present gradient
masking. Nevertheless, it is important to separate accuracy
improvements from robustness improvements when inter-
preting the results and different metrics have been proposed
for doing so (Hendrycks et al., 2021; Taori et al., 2020).
For common corruptions (Hendrycks & Dietterich, 2019),
the (un-normalized, unaveraged) relative Corruption Error
(rCE) is the difference1 of the model’s corrupted and clean
errors. As the very notion of a corruption is always relative
to a clean counterpart, we find that this metric has a partic-
ular weakness for simulated corruptions as it doesn’t take
into account the following structural principle underlying
such corruptions: miss-classified clean images should result
in miss-classified simulated corruptions. As such, the rCE
answers questions like ”how much does the model decline
under corruption inputs” but it doesn’t detect the corruption
error contributions coming from clean miss-classifications.

This brief account aims to lay initial ground on theoretical
and application-driven aspects, problems and methodology
perspectives for evaluating robustness of NODEs against
synthetic distribution shifts. For this purpose, we

1. assess and highlight several properties of NODEs in
connection to different robustness criteria, link them to
specific aspects of real-world data features they may
capture and determine general guidelines on when and
how they can be compared to static networks or be-
tween them;

2. introduce an intrinsic robustness metric Arel
c , well-

1Precise definitions are recalled in (2), Appendix A.
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suited for evaluating well-posedness of dataset cor-
ruption simulators, and capable of measuring a
model’s corruption accuracy more subtly than the rCE
(Hendrycks & Dietterich, 2019);

3. evaluate an easy-to-implement robustifying method
for NODEs against corrupted images, leading us to
conclude that NODEs are naturally more robust to
several synthetic distribution shifts than their discrete
counterparts and that noisy learning for NODEs acts,
as expected, as a robustness locus widening.

We aim to propose a baseline upon which to build step-wise
incremental implementations of robustifying methods for
NODEs under such corruptions. It is our hope that our
proposed metric and methodology recommendations will
be helpful both when studying implicit nets robustness and
when designing new and more diverse corruption simulation
algorithms and datasets.

2. On evaluating common robustness for
neural ODEs

Evaluating robustness of NODEs is particularly challenging:
their output is computed via iterative optimization schemes
and such test-time optimization has shown to prevent the
proper evaluation of established robustness methods de-
signed for static networks like AUTOATTACK in the adver-
sarial context (Croce et al., 2022). Additionally, comparing
NODEs to chosen static analogs has shown to disregard
implicit assumptions (adaptive step-size solvers, inexact
backward pass computation) which pose methodological
problems preventing to formally compare them and ulti-
mately incurs into falsifying the results of many conducted
experiments. We will concentrate on classification tasks in
this report.

Neural ODEs meet dynamical systems: Denote hx a fea-
ture extractor (FE) and hy a fully-connected classifier (FCC).
The inference of a NODE model is carried out by solving,for
ż denoting the time-derivative: ż(t) = f(t, z(t), θ(t), x)

z(0) = hx(x)
ŷ(Tx) = hy(z(Tx))

t ∈ Tx = [0, Tx] (1)

Contrary to static architectures, f formalizes the dynam-
ics controlling a continuous-in-depth model, t ∈ Tx be-
ing its depth variable and the components in (1) traduce
the following features: the dependence on hx for z(0) is
traduced by input layer augmentation; the dependence on
t for f (resp. θ) is traduced by depth-dependence (resp.
depth-variance2) and is taken in practice as an augmenta-
tion component (Dupont et al., 2019); the dependence on

2When θ is a constant function, we still use the term depth-
dependence.

x for f (resp. Tx) is traduced as data-control (resp. depth-
adaptation) and can traduce recurrent architectures. We refer
to (Massaroli et al., 2020) for details on these features and
to (Kidger, 2022) for a clear comprehensive introduction to
neural DEs.

Several overlaps occur between ML and DS modeling tech-
niques and approaches which we now try to articulate to
shed light on their singular benefits. These distinctions will
be the basis of our methodology guidelines for evaluating
and comparing general Neural Differential Equation (NDE)
models.

DS-inspired neural DEs: These consist in manufacturing
constraints on a loss function or on the weight matrices in-
side the dynamics that would enhance their robustness from
a stability analysis point of view. Another way of stating DS-
inspired NDEs is to say that the ML focus comes post-hoc
the DS focus: the trained architecture is supposed to have
benefit of theoretical properties at training or inference. We
highlight the fact that such approaches can serve different
purposes: (Pal et al., 2022; Ivan et al., 2022; Djeumou et al.,
2022) address mainly speed problems while (Kang et al.,
2021; Yan et al., 2020; Huang et al., 2022) addresses sta-
bility training considerations (Li et al., 2019) for NODEs
e.g. using steady-states, Lyapunov equilibrium points. This
usually is an idealized analysis made upon an idealized ML
architecture. A common problem would be to neglect the
numerical errors that come to hand while training, which
were absent from classical discrete neural networks. First,
in (Ott et al., 2021) it is shown that there exists a critical
step size only beyond which the training yields a valid ODE
vector field. Thus, for instance, the system theoretic for-
mulation of the Picard-Lindelöf theorem, used for ensuring
non intersecting trajectories, effectively applies only if such
condition is met. Methodology point: ensure that the dis-
cretization resulting from the numerical solver’s execution
preserves formalized DS properties. A first characterization
of robustness for NODEs is then met.

DS-based neural DEs: These consist in formalizing NDE
architectures as analogs of system theoretic paradigms such
as a full use of the components of (1) but also formalizing
neural CDEs, SDEs and PDEs (Kidger, 2022; Fermanian
et al., 2021; Xu et al., 2022; Li et al., 2021). Here, the
ML focus comes ante-hoc the DS focus: the formalized
architecture is supposed to be endowed with structural char-
acteristics both at training and inference. This approach is
more involved than the previous one as it needs to have at
hand simultaneously an adapted, analytically proven, ad-
joint method analog or generalization, and a non empty
choice of adapted numerical solvers. For instance, Kidger
(Kidger, 2022) adapted the analytic adjoint method for neu-
ral CDEs and neural SDEs while developing for the latter
an algebraically reversible Heun method SDE solver. While
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NODEs have served as inspiration for constructing many
discrete neural architectures by formalizing in continuous-
time an ODE and discretizing it, the difficulty has been to
create continuous time analogs for discrete neural compo-
nents. For instance, crafting a stateful batch normalization
(BN) layer has been recently reflected in the NODE formu-
lation (Queiruga et al., 2021) as a generalized ODE. On
the contrary, in (Huang et al., 2022) ResNets have BN lay-
ers, NODEs have group normalization (GN) layers and the
length of the skip connection does not coincide between the
compared architectures and in (Xu et al., 2022), although
testing NODEs against corruptions, a mix between deter-
ministic and stochastic methods may weaken their claims.
Methodology point: ensure that the chosen NDE architec-
ture identifies in a clear manner all arguments of the func-
tion passed to the DE solver, determine if the latter is an
exact or an approximate solver; distinguish stochastic and
deterministic architectures; comparing NDEs and discrete
architectures should be mathematically justified by an ex-
plicit end-to-end discretization scheme, taking into account
the nature of the hx and hy layers and identifying, for in-
stance, NODE blocks and weight-tied residual blocks. This
constitutes a second robustness characterization.

DS-destined neural DEs: These consist in manufacturing
NDEs that incorporate known modeling physical constraints.
Here, the ML focus is ad-hoc to the DS focus: the proposed
architecture is supposed to capture intrinsically the dynam-
ics (e.g. Lagrangians, Hamiltonians) of the studied phe-
nomenon and NDEs specify DEs (Zhong et al., 2020). This
is different, though somehow related, to physics-informed
NNs (Karniadakis et al., 2021), which aim to obtain solu-
tions through NNs to pre-specified DEs for which traditional
solvers are computationally expensive. Well-defined NDEs
may not effectively capture continuous-time inductive biases
if the used numerical ODE methods have too low order of
convergence while high-order methods need for fast and ex-
act gradient computations (Matsubara et al., 2021; Djeumou
et al., 2022). Methodology point: conduct NDE-oriented
numerical convergence tests, presenting a non-trivial differ-
ence between the ML-based (Bottou & Bousquet, 2007) and
the round-off (Chaitin-Chatelin & Frayssé, 1996) numerical
errors, such as proposed in (Krishnapriyan et al., 2022) to
check if the implemented model successfully learned mean-
ingful continuous dynamics. We then find a third robustness
characterization for such networks.

Leveraging well-studied mathematical approaches for sta-
bility, robustness and resilience3 into the continuous-time
ML community can prove to be very advantageous and the
above robustness properties, while already being studied
jointly in the cited works, call for clear distinctions between

3For instance, NODEs with depth-adaptation should be evalu-
ate their recovery rate in time after an input perturbation.

such notions. Their formal analysis will be the subject of an
extended version of the present report, complementary to
the system-theoretic approach which is being conducted in
parallel (Gonzalez et al., 2022).

Intrinsic robustness metrics: We now define the metric
Arel

c mentioned in the introduction of this report. Let C
be a set of simulated corruptions c = (c̃, s), where c̃ is
a corruption label and s is a severity level. We make the
assumption that for each c ∈ C one can generate (at least)
one corruption simulation xc of a clean image x. We denote
y the true label of x, ycl the model’s prediction on x and
yc the model’s prediction on xc. Let N be the size of the
dataset. Define M =

∑N
i=1 I{yi

cl=yi}, Acl = M/N, and for
c ∈ C,

Ac =
1

N

N∑
i=1

I{yi
c=yi}, Arel

c =
1

M

N∑
i=1

I{yi
c=yi& yi

cl=yi}

where I{ycl=y} = 1 if ycl = y and 0 else. Methodology
point: the clean accuracy Acl is used to save the model’s
parameters during training; the absolute corruption accuracy
Ac gives the model’s accuracy for a corruption c; the rela-
tive corruption accuracy Arel

c computes how many corrupted
simulations xc were correctly classified among the correctly
classified clean counterparts; the positiveness of the rCE
remains a relevant sanity check for debugging and verifying
that the above hypothesis is preserved by the corruption sim-
ulator. By leveraging the above-mentioned structural prin-
ciple for simulated corruptions, this metric addresses more
accurately (in the statistical analysis sense) questions like
”how do corruptions intrinsically behave for this model”.

Our experiments show that Arel
c doesn’t overestimate the

model’s robustness and abnormal behavior4 implies that a
selected corruption simulation is ill-posed. On the other
hand, the Relative mCE increasingly underestimates it, as
highly accurate models will see a greater proportion of their
miss-classified corruptions to come from miss-classified
clean samples, making Ac to decrease while clean accuracy
increases, as shown in Fig. 3 of (Hendrycks & Dietterich,
2019). This phenomenon is confirmed in Figures 5–8 of
(Mu & Gilmer, 2019) where miss-classified clean images
represent 12% of the shown examples and none of them
incur into well-classified associated corruptions.

3. Experiments
We propose a minimalist, yet precise, comparative analy-
sis on the robustness of a simple NODE (ODENet) and its
discrete counterpart (ResNet) against simulated image cor-
ruptions. The chosen5 Models are trained on MNIST with

4Such as unexpectedly observing Ac > Arel
c .

5Results of the remaining corrupted datasets and specifics on
the chosen architectures are available in Appendix A.



Noisy Learning for Neural ODEs Acts as a Robustness Locus Widening

Table 1. Mean Arel
c (%) on corrupted MNIST. A > 5% difference of model’s performance is colored in orange. The last block computes

the improvement on Arel
c for each model induced by noisy training w.r.t. clean training. The listed corruptions are 1: gaussian, 2: shot,

3: impulse, 4: defocus, 5: glass, 6: motion, 7: zoom, 8: snow, 9: frost, 10: fog, 11: brightness, 12: contrast, 13: elastic transform, 14:
pixelate, 15: jpeg compression.

Model Training Acl Ac
rel on Noise Ac

rel on Common Corruptions (severity 1)
Gaussian (�) Noise Blur Weather Digital
50 75 100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ResNet
Clean

99.45 98.1 88.9 66.3 99.7 99.8 98.8 79.9 35.9 96.9 99.4 98.1 97.9 58.9 99.7 97.5 67.2 98.8 99.8
ODENet 99.59 99.2 89.2 74.1 99.9 99.9 99.4 82.7 57.3 98.1 99.8 99.5 99.3 93.4 99.9 99.5 77.9 98.8 99.9

ResNet
Noisy

99.44 - - 98.7 99.9 99.2 99.8 81.7 71.8 93.0 99.6 99.4 99.6 85.3 99.8 97.8 91.3 99.5 99.9
ODENet 99.59 - - 99.3 99.9 99.9 99.9 91.2 87.1 98.6 99.8 99.7 99.9 95.2 99.9 99.6 95.9 99.7 99.9

ResNet
Noisy Ac

rel- clean Ac
rel 32.4 0.2 -0.6 1 1.8 35.9 -3.9 0.2 0.7 1.7 26.4 0.1 0.3 24.1 0.7 0.1

ODENet 25.2 0 0 0.5 8.5 29.8 0.8 0 0.2 0.6 1.8 0 0.1 18 0.9 0

Table 2. Mean Arel
c (%) at changes in corruption severity for MNIST. At fixed (c, s) ∈ C, each block (in green) contains results for

cleanly trained ResNet (upper-left), ODENet (lower-left) and their noisy counterparts (upper-right, lower-right) The listed corruptions are
as in Table 1. Performance shifts are colored in red. Corruptions where noisy training is not beneficial are colored in blue.

Sev. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
99.7 99.9 99.8 99.2 98.8 99.8 79.9 81.7 35.9 71.8 96.9 93.0 99.4 99.6 98.1 99.4 97.9 99.6 58.9 85.3 99.7 99.8 97.5 97.8 67.2 91.3 98.8 99.5 99.8 99.9
99.9 99.9 99.9 99.9 99.4 99.9 82.7 91.2 57.3 87.1 98.1 98.6 99.8 99.8 99.5 99.7 99.3 99.9 93.4 95.2 99.9 99.9 99.5 99.6 77.9 95.9 98.8 99.7 99.9 99.9

2
99.4 99.9 99.6 99.9 96.3 99.6 54.0 51.4 33.1 68.8 83.0 75.5 99.1 99.6 91.5 98.3 84.0 98.8 45.8 74.4 99.4 99.7 91.7 93.3 37.4 70.7 98.6 99.5 99.7 99.9
99.8 99.9 99.8 99.9 98.1 99.7 41.5 58.9 50.3 84.5 88.3 92.1 99.7 99.7 98.0 99.5 94.6 99.7 86.6 85.5 99.8 99.9 99.0 99.3 50.7 82.9 99.1 99.6 99.9 99.9

3
98.6 99.7 99.4 99.8 91.4 99.5 16.1 18.4 13.0 23.6 47.6 49.2 98.7 99.4 82.8 88.9 69.7 96.7 34.7 55.3 97.9 99.5 77.7 83.0 21.6 41.1 91.6 97.6 99.7 99.9
99.5 99.9 99.6 99.8 94.0 99.7 7.6 11.1 16.4 30.4 61.3 65.4 99.5 99.7 93.9 96.1 89.4 99.6 75.8 64.4 99.4 99.9 95.7 98.3 29.0 56.1 95.8 98.7 99.8 99.8

4
93.7 99.6 98.1 99.4 68.1 98.7 11.1 13.7 12.6 20.7 24.7 29.7 98.0 99.2 71.3 79.2 68.5 96.8 30.6 50.2 93.0 99.2 50.9 59.7 16.9 26.9 64.2 84.6 99.6 99.8
93.8 99.7 98.6 99.6 77.1 99.4 8.9 3.5 15.2 25.4 35.0 41.5 99.3 99.5 98.5 91.1 89.4 99.5 69.7 58.8 97.4 99.8 44.8 95.0 21.2 37.0 79.2 91.6 99.7 99.9

5
67.3 98.9 94.9 98.7 39.1 95.9 9.9 11.2 12.3 18.3 19.6 24.2 96.4 98.8 67.0 84.1 60.6 94.4 24.4 36.9 74.1 98.7 25.9 33.7 14.4 17.1 61.9 78.1 99.5 99.6
76.2 99.2 96.4 99.3 52.8 97.7 9.6 4.9 14.2 19.5 25.0 34.6 99.0 99.2 87.5 94.3 86.7 99.4 52.2 43.3 93.2 99.7 15.2 86.6 16.9 23.8 72.1 84.0 99.7 99.8

two methods: clean training is done on clean-only images;
noisy training is conducted on a random combination of
50% of clean images and 50% of images added Gaussian
noise with randomly chosen σ ∈ {50, 75, 100}. We train
each model on three different random seeds, each trained
model is then tested on 3 runs of corruption simulations and
only report the mean of the resulting 9 tests in Tables 1 &
2. We report the mean of the 3 models clean accuracy Acl

used to save each model’s parameters at which the rest of
the tests are conducted.

Results: Table 1 shows that ODENet is consistently more
robust than ResNet and that cleanly trained ODENet has
less necessity of data augmentation to achieve good perfor-
mances than ResNet do, as seen in the last lines of Table 1,
make us conclude that they are naturally more robust than
ResNet. This experimental result is compatible with those
appearing in the test-time adaptive models literature (Sun
et al., 2020; Wang et al., 2021). In light of the study in
(Gilmer et al., 2019) relating adversarial attacks as naturally
appearing in the scope of common corruptions, this result
can also be thought as a sanity check for determining that
adversarial robustness for NODEs, contrary to what is hy-
pothesized in (Huang et al., 2022), might not come from
obfuscated gradients. This fact seems to be further con-

firmed in (Chu et al., 2022) although we have some reserves
on their argument: increasing the time horizon of a NODE
should, in our opinion, rather be linked to the model’s re-
silience, roughly seen as the speed of convergence after an
input perturbation, while robustness criteria usually focuses
on the distances and positions of inputs incurring on in-
variance of a model’s prediction. At increasing severity, as
shown in Table 2, notice that, while ODENet is more robust
than ResNet on most corruptions, their decay of robustness
is bigger, shifting on some of the corruptions to ResNets as
the best model. Nonetheless, the same shift occur at higher
severity levels with noisy trained ODENets. Namely, for
defocus blur, on clean train mode, the shift was done at
level 3 while at noisy train mode it was only done at level
4. Analogously, for contrast corruption, the shift at sever-
ity 4 on clean train mode was never reached on noisy train
mode. This sheds evidence to the fact that noisy training
for ODENets acts as a robustness locus widening i.e. that
the robustness neighborhood of data points x become big-
ger with data augmentation. Notice that these robustness
neighborhoods are threat-model free: they do not depend
on the choice of a norm ball as is commonly considered
on gradient-based defenses. Finally, noisy training made
ResNet more vulnerable to corruptions 2 and 6 at severity 1
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but this vulnerability got corrected at severity 3. This may
suggest that partial information on the trade-off between
accuracy and robustness may be captured by a notion of
model’s deterioration resilience whose rigorous study will
be included in our upcoming extended study.
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A. Detailed experiment results
In this Appendix we give further details on the application of our methodology to the presented experiments: the chosen
corrupt simulation algorithm is shown to be non-trivial along different tested datasets (no miss-classified clean images incur
into well-classified corrupted counterparts); we do not include corruptions in our train or validation sets, networks share
the same hx and hy modules; weight-tied ResNet blocks correspond to discretized NODE blocks. Since our model is not
DS-destined, we do not conduct a numerical convergence test for the chosen Euler method.

A.1. Model specifications

All our models share the same FE and FCC modules and the RM modules consist on the same layers to which one either
applies a residual connection (for ResNet) or the odeint function (for ODENet). In order to favor our ability to compare
ResNets and ODENets, we fix the Euler method as our ODE numerical solver at time range [0, 1] with 0.1 time steps which
corresponds to ten weight-tied residual blocks. Finally, we use Group Normalization (GN) instead of Batch Normalization
(BN) to ensure that the dynamics of the RM module truly correspond to an autonomous NODE.

Table 3. The FE hx and FCC hy modules are identical for all our ResNet and ODENet models for MNIST, SVHN and CIFAR. The
arguments of Conv2d are in order: the input channel, output channel, kernel size, stride and padding. Conv2dTime ensures time-
dependence of the convolution component. The two arguments of the Linear layer represents the input dimension and the output dimension
of this fully-connected layer.

Common Modules Sequenced Layers

hx
Conv2d(1, 64, 3, 1) + GN + ReLU
Conv2d(64, 64, 4, 2) + GN + ReLU

hy AdaptiveAvgPool2d + Linear(64,10)

RM Internal Layers (input x)

ResNet
out:=(Conv2d(64, 64, 3, 1,1) + GN + ReLU

Conv2d(64, 64, 3, 1,1) + GN + ReLU)
out +x

ODENet
f=(Conv2dTime(64+1, 64, 3, 1,1) + GN + ReLU
+Conv2dTime(64+1, 64, 3, 1,1) + GN + ReLU)

odeint(f , x, [0,1], �t=0.1, Euler)

We train all our models for 100 epochs, learning rate 0.001, milestones [30, 60, 90]; decay 0.0005, L2-penalty 0.2. Both
models have around 142k parameters.

While, in (1), f formalizes a single layer’s dynamics, it usually is taken in practice to be a composition of explicit functions
that we pass to the ODE solver (a block). Using BN as a block component holds mini-batch information, which not only
cannot be formalized as an autonomous ODE but may lead to gradient explosion at back-propagation. When comparing
ODENet and ResNet blocks (without BN), one must ensure that each composite function for a NODE block is both stateful
(has an implicit dependence on the integration time) and input-autonomous (does not present dependence or has leaked
information of the rest of the samples) either at training, validation or testing. We use the ReLU function for practical
purposes (increased performance) after checking that models trained with fully differentiable functions present the same
behavior. We avoid taking into account in our analysis neither neural SDEs, which can genuinely be seen as continuous-time
analog of noise injection robustifying methods, but whose inference is not deterministic and which do not take into account
stateful BN layers, as they induce depth-varying architectures which do not have a clear discrete counterpart upon which
one could establish a comparative analysis. Choosing the good basis function method for the latter to achieve competitive
results (Queiruga et al., 2021) was a long effort, according to the authors, and hasn’t yet come close to state-of-the-art
clean accuracy performances. In addition, BN which has been shown to be crucial to achieve state-of-the-art robustness
performances, has also been shown to be a source of adversarial vulnerability and it is unclear if their stateful counterpart
from (Queiruga et al., 2021) will present or not this same behavior. Finally, our discretized NODE block is formulated in
terms of weight-tied ResNet blocks and matches the function to which the residual skip connection is added with the one
sent to the ODE solver and does not match to the total length of convolution blocks present in the architecture. For instance,
appending 10 independent identical residual convolutional blocks does not correspond to passing a single convolutional
block through a ODE solved with fixed 10 Euler steps as the state space of the NODE is controlled by only one set of
convolutional block parameters.
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A.2. Further Simulation Corrupted Dataset Experiments

We use several datasets and their synthetic corruptions by using the same simulation algorithm and selecting corruptions that
make sense on all datasets. Noisy training is done with randomly added noise with σ ∈ {10, 15, 25} for the SVHN dataset,
and with σ ∈ {10, 15, 20} for the CIFAR10 dataset. Our experiment’s relative perturbed accuracy is given in Tables 4 and 5
for SVHN6.

Table 4. Mean Arel
c (%) on corrupted SVHN images for ResNet and ODENet. The listed corruptions are as in Table 1. The last block

computes the improvement on performance for each model induced by noisy training w.r.t. clean training. Corruptions where noisy
training is not beneficial are colored in blue and a > 5% difference of model’s performance is colored in orange.

Model Training Acl Ac
rel on Noise Ac

rel on Common Corruptions (severity 1)
Gaussian (�) Noise Blur Weather Digital
10 15 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ResNet
Clean

94.3 47.2 29.3 20.1 84.7 83.2 81.9 93.7 93.8 95.3 98.9 77.4 88.3 50.7 99.2 97.5 66.6 97.7 97.2
ODENet 96.3 63.7 44.0 31.7 92.3 91.4 91.1 95.3 96.3 96.8 99.3 83.4 91.8 59.3 99.6 98.8 84.7 98.9 98.1

ResNet
Noisy

94.2 - - 93.2 95.2 95.2 93.9 93.4 94.8 95.1 98.9 81.9 91.3 45.8 99.1 97.4 87.5 98.3 97.9
ODENet 96.2 - - 96.2 97.5 97.3 97.0 94.6 96.4 96.5 99.3 86.7 94.6 53.2 99.6 98.1 93.0 99.1 98.8

ResNet
Noisy Ac

rel- clean Ac
rel 73.1 10.5 12 12 -0.3 1 -0.2 0 4.5 3 -4.9 0.1 -0.1 20.9 0.6 0.7

ODENet 64.5 5.2 5.9 5.9 -0.7 0.1 -0.3 0 3.3 2.8 -6.1 0 -0.7 8.3 0.2 0.7

Table 5. Mean Arel
c (%) at changes in severity. The listed corruptions are as in Table 1. Red color means a shift of best model’s accuracy

w.r.t. previous severity value. Corruptions where noisy training is not beneficial are colored in blue.

Model Training Sev.
Noise Blur Weather Digital

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ResNet

Clean

1
84.7 83.2 81.9 93.7 93.8 95.3 98.9 77.4 88.3 50.7 99.2 97.5 66.6 97.7 97.2

ODENet 92.3 91.4 91.1 95.3 96.3 96.8 99.3 83.4 91.8 59.3 99.6 98.8 84.7 98.9 98.1
ResNet

2
69.3 64.8 64.8 84.1 81.2 87.0 98.7 57.3 73.6 39.8 97.8 95.9 42.6 97.4 95.9

ODENet 83.0 80.8 80.2 86.9 87.1 90.6 99.1 68.1 80.5 48.5 98.9 98.0 63.0 98.9 97.2
ResNet

3
48.6 46.1 51.9 46.2 38.2 70.2 98.5 64.1 63.2 26.5 95.5 91.9 24.2 89.1 94.7

ODENet 67.1 65.8 70.8 45.6 45.7 76.7 99.0 71.0 71.9 33.2 97.4 96.4 35.8 93.9 96.3
ResNet

4
32.2 26.6 31.7 28.0 30.4 54.6 98.3 54.4 60.9 19.9 91.9 75.5 18.7 68.0 90.5

ODENet 50.1 44.5 51.2 21.2 35.6 61.3 98.7 62.4 70.1 25.1 94.8 90.7 24.7 75.0 93.3
ResNet

5
18.9 18.7 19.6 21.3 24.7 47.3 97.7 52.2 55.0 15.0 85.3 49.2 15.4 59.3 83.5

ODENet 33.2 33.4 35.1 13.6 24.9 53.8 98.3 61.5 64.8 18.8 89.9 78.9 17.7 65.7 87.9

ResNet

Noisy

1
95.2 95.2 93.9 93.4 94.8 95.1 98.9 81.9 91.3 45.8 99.1 97.4 87.5 98.3 97.9

ODENet 97.5 97.3 97.0 94.6 96.4 96.5 99.3 86.7 94.6 53.2 99.6 98.1 93.0 99.1 98.8
ResNet

2
90.1 89.1 88.0 83.7 85.3 86.4 98.7 64.5 79.9 36.0 98.0 96.0 74.2 98.3 97.0

ODENet 94.8 94.0 93.7 85.4 90.0 89.8 99.1 73.8 86.1 42.4 99.0 96.7 84.8 99.0 98.1
ResNet

3
80.3 79.6 82.0 44.4 44.2 70.2 98.6 66.5 71.6 24.4 95.9 92.3 51.4 94.3 96.2

ODENet 88.7 88.6 90.2 45.6 54.4 76.1 98.9 72.6 80.2 29.6 97.5 93.6 66.7 96.7 97.4
ResNet

4
66.0 61.7 66.4 28.3 34.4 54.0 98.3 56.6 70.2 19.3 92.4 76.4 37.8 82.6 93.2

ODENet 78.9 75.5 79.9 26.6 43.2 60.0 98.7 63.0 78.9 25.0 94.8 83.5 51.0 88.0 95.1
ResNet

5
47.6 48.9 50.2 21.3 25.4 47.3 97.7 56.9 65.0 15.3 86.3 47.3 26.5 74.8 87.7

ODENet 63.1 65.0 66.4 17.4 30.0 52.0 98.3 65.1 73.9 19.3 89.9 66.2 34.0 80.7 90.9

Results: ODENet is consistently more robust than ResNet and the latter benefited more than ODENet from noisy training.
This confirms our MNIST conclusions on the natural robustness of ODENet. Notice that noisy training makes the models
slightly more vulnerable for some corruptions. At severity changes, noisy training acts here again as a robustness locus
widening. Interestingly, for those corruptions where noisy training made the model more vulnerable at severity 1, noisy
trained models see their vulnerability remain only on half of those corruptions at severity 5. Finally, as shown in orange, it
seems that noisy training makes ODENet more resilient to corruption deterioration than it does to ResNet.

6The results for CIFAR showing no novel or different behaviour than the one conducted for SVHN other than an overall drop in
accuracy, we do not present them in this preliminary report.
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A.3. Further thoughts on corruption simulators and their metrics

Baseline Normalization: Usual corruption metrics such as the mCEf and the relative mCEf for a model f are computed
with respect to a baseline (e.g. AlexNet) error in order to normalize it over those corruptions that are known to be particularly
challenging. For (c, s) ∈ C, they are the average over all 15 corruptions labels c of the clean and corrupted top-1 error rates
(averaged first across all 5 severity levels):

CEf
c =

( 5∑
s=1

Ef
s,c

)/( 5∑
s=1

EAlexNet
s,c

)
, rCEf

c =

( 5∑
s=1

Ef
s,c − Ef

clean

)/( 5∑
s=1

EAlexNet
s,c − EAlexNet

clean

)
(2)

We do not normalize our metrics for two reasons. First, the mCEf was proposed as an attempt to unify robustness bench-
marking under a unique number across many models, which we do not do here. But most importantly, it has been shown
that feature aggregating networks and deeper nets markedly enhance robustness. Thus, as NODEs consist on a paradigm
shift of the notion of depth, which becomes adaptive even while testing, we find that testing such network against a baseline
fixed depth network such as AlexNet could be harmful for our comparative analysis. This is somewhat concordant with the
last recommendation in (Croce et al., 2022) for generating adversarial attacks for adaptive test-time defenses. We do not
average our metrics across severity levels to analyse their behaviour at increasing severity.

Corruption simulators: Instead of testing our models on static corrupted datasets (MNIST-C, CIFAR10-C, ImageNet-C),
we run the exact same corruption simulator7 on the datasets of all our experiments (and which is the same one used by
the authors that proposed the above-mentioned static corrupted datasets). For simplicity, corruptions that were specially
tailored for MNIST (such as zig-zag or canny edges) that only make sense to be conducted on that dataset will be left
out from our comparative study, as well as fully formalizable corruptions (such as rotations, translations..) that one can
use as auxiliary data augmentation techniques such as adversarial and S&P noise augmentations. This should be taken
into account as a partial reproducibility issue: while the performance of the considered models should decrease when
tested on compressed JPEG corrupted datasets such as ImageNet-C, the comparative results conducted in this work do not
show any qualitative distinction (although the overall model’s accuracies decrease). Also, our objective is not to propose
an architecture capable of achieving state-of-the-art robust performances in either of the mentioned datasets. Our choice
to fix a common corruption simulator for different datasets is somehow a model-driven choice. It has been shown that
classification error patterns between robust models and those coming from human perception are fundamentally different. As
such, focusing on understanding a model’s behavior around simulated corruptions can be improved by fixing one simulator
and generating corruptions among different datasets. This allows to release some part of the randomness of a generated
simulation and prevents different data augmentation techniques to guess a corruption simulator’s parameters, which in a
sense can be seen as information leakage. By using the corruption simulator as a white-box component of our generated
corruption dataset we hope this will promote better model’s transferability to some degree.

7Available at https://github.com/bethgelab/imagecorruptions.

https://github.com/bethgelab/imagecorruptions

