
HAL Id: hal-03782509
https://hal.science/hal-03782509

Submitted on 21 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sentinel: A Safety Architecture for SAE J3016 Level 5
Autonomous Vehicles

Spencer R Deevy, Alan Wassyng, Mark Lawford, Vera Pantelic, Richard Paige

To cite this version:
Spencer R Deevy, Alan Wassyng, Mark Lawford, Vera Pantelic, Richard Paige. Sentinel: A Safety Ar-
chitecture for SAE J3016 Level 5 Autonomous Vehicles. Critical Automotive applications: Robustness
& Safety, Sep 2022, Saragoza, Spain. �hal-03782509�

https://hal.science/hal-03782509
https://hal.archives-ouvertes.fr


Sentinel: A Safety Architecture for SAE J3016
Level 5 Autonomous Vehicles

Spencer R. Deevy ∗, Alan Wassyng ∗, Mark Lawford ∗, Vera Pantelic ∗, Richard Paige ∗
∗McMaster Centre for Software Certification, McMaster University, Canada

Abstract— The rapid adoption of artificial intelligence (AI)
techniques is being used to develop increasingly capable au-
tonomous vehicles. While the major focus has been on improving
the performance and accuracy of AI techniques applied to
autonomous vehicles, development towards functional safety has
been lagging behind. This paper proposes Sentinel, a fault-
tolerant safety architecture, designed to mitigate safety concerns
surrounding AI techniques employed by upcoming SAE J3016
Level 5 autonomous vehicles. The architecture draws inspiration
from existing autonomous vehicle architectures as well as archi-
tectures in the related domains of AI and organic computing.
An assurance case was constructed to demonstrate that Sentinel
provides high level features that support compliance with SAE
J3016 Level 5 autonomy and that Sentinel meets or exceeds the
safety of other autonomous vehicle architectures.

I. INTRODUCTION

Artificial intelligence (AI) has been the major enabler of
increased autonomy in autonomous vehicles [1], [2], [3], [4].
In particular, the highest level of autonomy according to the
Society of Automotive Engineers (SAE) J3016 Levels of Driv-
ing Automation [5], Level 5, assumes full autonomy under all
possible environmental conditions with no driver intervention.
Vehicles employ AI techniques such as machine learning
(ML) to achieve dynamic driving tasks (DDTs) such as lane
detection, lane keeping, vehicle and pedestrian detection and
predictive path planning under all environmental conditions.
Coping with all types of roadways, all weather conditions, and
any number of potentially unknown obstacles, increases the
need for robust AI on-board such vehicles. Further, for Level
5 autonomous vehicles, degradation below full autonomous
operation is not possible in the absence of human intervention.
Therefore, a significant concern to be addressed with Level
5 autonomous vehicles is ensuring their safety under all
potential hazardous scenarios. In particular, to the best of the
authors’ knowledge, no publicly available architecture exists
for achieving Level 5 autonomy, namely, a safety architecture
that recognizes the need for AI techniques to achieve Level 5
features while maintaining vehicle safety.

This paper proposes a novel safety architecture for Level
5 autonomous vehicles, Sentinel. Sentinel leverages selected
features of several modern architectures proposed in domains
such as artificial intelligence, autonomous vehicles, and or-
ganic computing. It also uses traditional safety patterns. We
reason about and demonstrate the effectiveness of the Sentinel
architecture using an assurance case. The assurance case
argues that Sentinel provides design features that support
compliance with SAE J3016 Level 5 autonomy. Further, it

argues that Sentinel meets or exceeds the safety of other
autonomous vehicle architectures. The architecture provides a
high-level framework to enable autonomous vehicle function-
ality, whereas lower-level design decisions and implementation
methods are left as future work.

II. NEW ARCHITECTURE: SENTINEL

The proposed architecture, Sentinel, is shown in Figure 1.
At the highest level of abstraction, the architecture consists of
twelve software modules. The twelve modules can be grouped
into three categories: Operational, Support, and Safeguard.
Operational modules (indicated by blue boxes in Figure 1)
are responsible for basic driving behaviour of the vehicle and
consist of the sensors, perception, planning, plan execution,
actuator interface and actuators modules. Support modules
(indicated by green boxes in Figure 1) provide several ser-
vices to the operational modules to aid in vehicle safety and
performance but are not strictly required for regular vehicle
operation. Modules in this category are the agent interface,
data management, simulation, and proactive safety modules.
Safeguard modules (indicated by orange boxes in Figure 1)
provide a safe control bypass from sensors to actuators,
thereby allowing the vehicle to safely react to unanticipated
hazardous conditions. The reactive safety module and the
control mode selector constitute the safeguard category.

A. Operational Modules

Operational modules enable the base functionality of au-
tonomous driving, where each of the modules is essential to
achieving this goal and no additional functionality beyond
these capabilities is present in these modules. Readers will
note that these modules essentially make up the common
sense-plan-act chain commonly used across several industries,
discussed in [6].

The sensory module encapsulates the on-board sensor suite
and corresponding software components interfacing those sen-
sors to other vehicle software. The data collection and any
preprocessing performed on raw sensor data belong to this
module. Additionally, sensor error detection is captured in this
module, to be used by safety modules for initiating a DDT.
A similar pattern is used in the cognitive ADAS architecture
described in [6], which contains a path from the sensor layer,
through an Internet of Things (IoT) connection, to the failure
detection module. Upon detection of a sensor failure a signal
is sent to the cognition layer to initiate a fallback DDT
action. Sentinel’s sensory module is responsible for producing
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Fig. 1. Sentinel Architecture

a set of raw and/or preprocessed sensor data to be sent to
the perception module for sensor fusion and reality model
generation tasks.

Broadly speaking, the perception module is responsible for
constructing a model of reality to be utilized by the planning
module. This task normally involves sensor fusion and sen-
sor data consolidation and involves multiple features in the
environment being identified. The perception module makes
use of both artificial intelligence algorithms and traditional
algorithms for perception, with the intent of partial function
overlap between any artificial intelligence algorithm and at
least one traditional algorithm, taking inspiration from the ar-
guing machines framework described in [7]. While the arguing
machines framework utilizes an AI algorithm for redundancy,
Sentinel makes use of several traditional algorithms to provide
partial function overlap with any in-use AI algorithm, utilizing
Dempster-Shafer theory to combine (probabilistic) outputs of
all algorithms into a final belief in the combined outputs of
each algorithm, similar to the method used in [8]. This is
done to reduce the risk of any singular AI component failing
by performing cross validation against traditional alternatives.

Another distinction between the proposed solution and ex-
isting ones is that reality model(s) produced by each perception
algorithm should express each object and/or characteristic of
the environment with a probabilistic belief in the validity
of the object/characteristic being true. Probabilistic decision
making in autonomous vehicles utilizing AI algorithms can
be seen in [9], [8], [3]. This is done so that the perceptual
fusion component can properly combine probabilities of each
feature to construct a final, more accurate probabilistic reality
model. This reality model describes perceived objects within
a perceived environment, while ascribing a probability of that

belief to each object in the model. These objects need not
only be ascribed one definition and probability. For instance
an object may have a 97% probability of being an object in the
environment while also having a 70% probability of being a
bicycle. This overlay of probabilities allows for more nuanced
and appropriate decision-making in later stages of the sense-
plan-act chain.

The planning module is responsible for generating a set
of routes and associated high-level actions, to be utilized
by the plan execution module to generate high-level plan
execution commands. These tasks require a minimum of the
aforementioned reality model and a specified goal the plan
aims to achieve. Several other modules are utilized to improve
the safety of generated plans. The majority of existing planning
techniques solely rely on the current reality model and goal for
plan generation. Humans, however, do not plan vehicle routes
this way. Humans take note of other vehicles and entities in the
environment, track their trajectories, and plan according to a
predicted future state. For example, if a lane-change manoeu-
vre is desired and another vehicle is approaching in the other
lane at a high speed, a human would often wait for the vehicle
to pass before initiating a lane change. Operating on only the
current reality model may lead to an unsafe condition where
the lane change manoeuvre is undertaken while the vehicle in
the neighbouring lane is approaching. To mitigate this, some
recent research has been done on predictive planning methods
[1], [2], rather than the traditional reactive approach. To enable
predictive planning, we first send the collection of generated
routes to a simulation module, where the environmental state
and routes are used to predict near-term future states of entities
in the environment. Fusion of several planning algorithms can
then be performed to consolidate the plans with the highest



probability of success over the current and near-term future
states into a singular plan to then be executed by the vehicle.
This information is then sent to the proactive safety module
for a safety analysis to be conducted on those future states.
The idea of running near-term predicted environmental states
through a safety check for vehicle planning is novel.

The plan execution module is responsible for generating a
final set of control execution commands that enacts one of
the provided action plans. These commands are to be sent
through the control mode selector module to the actuator
interface module, to be utilized for actuator control. To reduce
the set of action plans to a singular output set of high-level
control signals, our novel proposal is that the action plans
be processed in order of the highest probability of belief and
lowest predicted risk combination. This permits plans to be
generated with the most accurate data, so that plans with the
lowest predicted risk to take precedence.

The actuator interface module encapsulates the actuator-
specific electronic control unit (ECU) modules responsible
for executing specific portions of the path execution signals
provided by the control mode selector module. Path execution
commands are sent to corresponding ECUs and converted into
timed low-level control signals to be sent to the actuators.

The actuation module encapsulates the on-board actuator
suite and corresponding software components interfacing those
actuators to other vehicle software. Additionally, actuator error
detection is captured in this module, to be used by safety
modules for initiating a DDT fallback.

B. Support Modules

Support modules enhance and/or aid the operational mod-
ules with additional information and features that allow for
more nuanced and appropriate decision-making, especially
when faced with uncertainty and predictive planning.

The agent interface module is responsible for allowing
direct communication with external agents, namely other au-
tonomous vehicles, infrastructure, and passengers. This allows
the vehicle to make more informed decisions and aids in
passenger safety and satisfaction. This is a design feature that
has been employed by modern architectures such as the multi-
layer observer/controller architecture and the cognitive ADAS
architecture from [6]. It has been shown to improve the validity
and reliability of on-board perception and path planning in
autonomous vehicles [10], [11].

The data management module is responsible for storing
and allowing access to data pertaining to vehicle operation.
Several components provide a support role to the sense-plan-
act chain, such as knowledge databases and maps databases
for localization and route planning tasks, as seen in [12]. An
additional AI snapshot database has been added based on
overfitting issues pertaining to reinforcement learning (RL),
if such algorithms are deemed necessary for Level 5 function-
ality. To avoid extreme overfitting cases, this component may
take snapshots of the current parameters of each RL algorithm
being used. Should the performance of any RL algorithm
falter, the algorithm could be rolled back to a previous

iteration. This sacrifices some of the knowledge learned by the
algorithm since the last snapshot but may provide a mechanism
to avoid the overfitting issue. The rollback feature is inspired
by similar functionality applied to genetic algorithms in the
organic computing architecture in [13].

The simulation module is responsible for producing a set
of predicted near-term future states for each action plan
it simulates. As inputs, it receives perceptual and planning
information from the respective modules in the sense-plan act
chain. Utilizing this information, object tracking and predictive
planning mechanisms enable near-term future locations of
objects in the environment. Near-term simulation has been
successfully applied to several autonomous control problems
in [3], [13], and is a core feature of the organic computing
architecture in [13].

The proactive safety module is the second stage in the
predictive planning process. While predictive planning is not
a new concept, the notion of running predicted states through
a safety check in order to calculate predicted risk levels
is novel. This module receives predicted near-term future
environmental states from the simulation module and a set of
safety requirements common to both the proactive and reactive
safety modules. This module is responsible for performing a
safety analysis on the set of predicted future states linked to
each candidate action plan initiated by the planning module.
The safety analysis associated with each action plan candidate
involves checking predicted states against a set of safety
requirements to determine the number and severity of safety
violations in each set of predicted states. This is done for each
set of predicted states and the final collection of safety reports
is sent to the planning module. The planning module can then
use this information to decide on a subset of candidate action
plans that pose the least amount of risk to future scenarios.
The proactive safety module utilizes a classical redundancy
pattern, triple modular redundancy (TMR).

C. Safeguard Modules

Safeguard modules are responsible for bypassing the sense-
plan-act chain in the event that the sense-plan-act chain fails
to predict and react to a hazardous event. This time-criticality
and failure of the sense-plan-act chain requires instantaneous
intervention in order to bring the vehicle to a safe state. Since
the Level 5 autonomy does not include a human driver, an
automated controller is responsible for this task.

The reactive safety module is responsible for sensing un-
safe conditions, providing continual fail-safe control actions,
and assuming control over actuators in the event of unsafe
conditions. This module receives environmental information
from the perception module and safety requirements from the
common safety requirements data store. The limitation of this
approach is that it relies on perceptual data rather than raw
sensor data, where the former may have inaccuracies intro-
duced via the AI algorithms contained within the perception
module. This was chosen since the reactive safety module may
not have enough information to make an appropriate decision
with raw sensor data. The distinction between a pedestrian



and a plastic bag, for example, is an important one in a
reactive scenario and must be dealt with accordingly. Unless
predictable alternatives to the currently used machine learning
algorithms can be developed to handle these situations, we will
likely have to make reactionary decisions based on perceptual
data rather than raw sensor data. The reactive safety module
uses the perceptual data and the safety requirements shared
with the proactive safety module to determine whether a safety
violation has occurred, and constructs a suitable response. In
all situations the reactive safety module must always have a
set of control actions ready should there be too little time for
re-computation. In the event of a safety violation, the reactive
safety module sends its set of control actions to the control
mode selector, enabling the safety bypass of the sense-plan-act
chain. Once a safe state is reached, the control signals are no
longer sent to the control mode selector. This design coincides
with the simplex pattern, used to achieve graceful degradation
of a system in the event of a failure [14], [15].

The control mode selector is responsible for switching
control between the main sense-plan-act chain and the reactive
safety module. This selector enables control for the reactive
safety module so long as it is receiving control actions from
reactive safety. Once the control signals from the reactive
safety module cease, control is switched back to the main
sense-plan-act chain.

D. Architecture Evaluation

An implementation of the Sentinel architecture has not yet
been realized. To provide some basis for confidence in the
architecture we constructed an assurance case as a qualitative
analysis; see [16]. We reason about the capability of the Sen-
tinel architecture in enabling SAE J3016 Level 5 compliance,
and that Sentinel improves upon safety features offered by
existing autonomous vehicle architectures. The assurance case
breaks down the recommendations provided in the SAE J3016
definition of Level 5 autonomy, decomposing each into claims
any autonomous vehicle architecture would need to meet in
order to achieve compliance. We terminate the argument at
the point where an architecture, such as Sentinel, provides the
architectural components necessary to achieve the stated claim,
as well notes on some of the features and acceptance criteria
required of the architectural component(s). Upon implemen-
tation of Sentinel, or any other Level 5 autonomous vehicle
architecture, the assurance case can be continued from the
bottom-most claims, arguing how the implementation provides
sufficient aforementioned Level 5 functionality.

III. CONCLUSIONS

Level 5 autonomy is still in the early phases of research and
development. Extensive research still needs to be conducted
for many of the techniques discussed in the Sentinel architec-
ture before they can be used in highly autonomous vehicles.
The Sentinel architecture, or at least the integration of several
of the aforementioned modules, would need to be implemented
before a quantitative evaluation of the architecture is possible.
Thus, that evaluation is left as future work.

Sentinel is clearly resource intensive and challenging to
implement with today’s technology. However, we should not
be planning the safety of fully autonomous vehicles on the
basis of the status quo.

It may appear that our view is too software centric. We
realize that safety is a system property. Our goal is to imple-
ment a safety architecture that ensures safety of the vehicle
and its environment. Autonomous vehicles will be controlled
by software. Sentinel is primarily a software intensive system
design that uses hardware and software to plan and monitor a
vehicle’s behaviour in its known environment, and to safeguard
the vehicle, its occupants, and its environment in cases even
when it encounters unforeseen events and conditions.
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