
3D nanoparticle superlocalization with a thin diffuser: 
supplementary information 

TENGFEI WU,1,2 MARC GUILLON,2,3 CLEMENCE GENTNER, 1 HERVE 

RIGNEAULT,4  GILLES TESSIER,1 PIERRE BON,5,6 PASCAL BERTO1,3,* 
1Sorbonne Université, CNRS, INSERM, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France 
2Université de Paris, SPPIN – Saints-Pères Paris Institute for the Neurosciences, CNRS, 75006 Paris, France 
3Institut Universitaire de France (IUF), Paris, France 
4Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France 
5Université de Bordeaux, Laboratoire Photonique Numérique et Nanosciences, UMR 5298, 33400, Talence, France. 
6Institut d’Optique & CNRS, LP2N UMR 5298, 33400, Talence, France. 
*Corresponding author: pascal.berto@u-paris.fr 

  



S1: Comparison of experimental speckle and simulated speckle 

This section presents a model of the complex transmission of a 1o diffuser. To this aim, we 

first characterized the phase-delay profile introduced by a 1° holographic diffuser (Edmund 

Optics) by imaging it in transmission using a commercial high-resolution wavefront sensor 

(PHASICS, SID4). Based on this phase measurement, we extracted a phase correlation width of 

𝑤FWHM=46,1 µm and a standard deviation of  δ̅ =0.156 µm in the plane of the diffuser. We then 

generated numerically a pseudo-random phase mask φD with identical statistical properties. In 

practice, this phase map φD was generated by creating a random pixel map uniformly distributed 

between −1 and 1 , and filtering it using a Gaussian filter|1]:  
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With r the radial coordinate and w =
wFWHM

4√ln(2)
 the standard deviation of the spatial correlation.  

For a thin diffuser, the angular standard deviation of the intensity per transverse dimension can be 

expressed as [2]:  
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Which leads to a scattering angle θFWHM =
θ0

√8ln(2)
≈ 1.07° in excellent agreement with the 1° 

scattering angle expected for this diffuser. 

 

As described in the main text, after interaction of a plane wave with this mask of complex 

transmission 𝐷 = 𝑒𝑖𝜑𝐷 , a Fresnel propagation computation allows to compute speckle 

patterns at any distance d from the diffuser. Figure S1(a) shows the simulated speckles at 

three different distances d. Figure S1(b) shows speckles acquired experimentally, using the 

1° holographic diffuser in the corresponding conditions. Qualitatively, the three speckle 

patterns are indeed similar for any distance. A 1-D profile of the (2D) autocorrelation of the 

simulated and experimental speckles (here for d=3.9mm), shown in Fig. S1(c), confirms that 

the speckle grain size obtained with our procedure (FWHM~24µm) is in good agreement 

with the experimental one (FWHM~29µm). 



 

Fig. S1. Comparison of simulated and experimental speckles. (a) Simulated speckles for d=1.3mm, 2.6mm and 3.9mm. (b) 

Experimental speckles in the corresponding conditions. (c) Autocorrelation profiles of simulated and experimental speckles 

for d=3.9mm.  

  



S2: Phase and intensity disentanglement and retrieval 

Let us consider an impinging wavefield 𝐸𝑖𝑛 = √𝐼𝑒𝑖𝜑, composed of a phase term φ (see Fig. S2(b)) 

and an intensity term I (see Fig. S2(c)). After propagation through the thin diffuser 𝐷, the resulting 

distorted speckle 𝑆𝑜𝑏𝑗 is modified in two aspects compared with the reference speckle pattern 𝑆𝑟𝑒𝑓 

(planar wavefront). First, as shown in the zoomed images in Fig. S2(a), the local phase gradient of the 

wavefront causes local displacements u of speckle grains. Second, the intensity modulation of the 

impinging beam locally affects the energy in each speckle grain.  

Phase and intensity entanglement: In regions of high intensity gradient, the Demon-based 

estimation of the speckle grains displacement u partially fails since the energies carried by the 

speckle grains in the 𝑆𝑜𝑏𝑗  and 𝑆𝑟𝑒𝑓maps are not comparable anymore. The resulting errors in the 

phase gradient estimation (𝜵ꓕ𝜑 = 𝑘0𝒖 𝑑⁄ ) leads to strong artifacts in the reconstructed phase (see 

Fig. S2(d)). The most straightforward approach to retrieve intensity uses a normalization of the 

distorted speckle by the reference speckle. However, as can be seen in Fig. 2(e), some artifacts also 

occur (especially in high-phase-gradient regions, as shown in the insets). These artifacts are mainly 

caused by the local displacement of speckle grains u induced by a local phase gradient. Mutual errors 

in the phase and intensity reconstructions are clearly caused by their entanglement in the speckle 

pattern 

 

Fig. S2. Phase and intensity disentanglement for complex field retrieval (numerical simulations). (a) A reference speckle 

pattern (corresponding to a plane wave) is distorted when introducing both phase and intensity modulations This induces 

local changes in both the position and contrast of speckle grains. A complex field containing (b) a phase and (c) an intensity 

term is used as “ground truth”.  Direct reconstructions of the phase (d) and intensity (e) are affected by artifacts. The phase 

and intensity disentanglement method proposed in this work yields maps (f and g) which are mostly devoid of such defects.  

 



Phase and intensity disentanglement: In Figure S3, we describe an iterative correction strategy to 

disentangle the phase and intensity. Here, we make use of (i) the low spatial frequency content of the 

speckle to retrieve the intensity pattern and (ii) the high-spatial frequency content to retrieve the 

displacement vector field u.  

First, we start by calculating a preliminary 2D map u of the speckle grain displacement between 

the reference 𝑆𝑟𝑒𝑓(𝑟) and distorted 𝑆𝑜𝑏𝑗(𝑟) speckles, using the Demon algorithm. The opposite 2D 

displacement map -u is then applied to the distorted speckle pattern. This compensates most of the 

local displacement of speckle grains and yields a speckle pattern 𝑆𝑜𝑏𝑗(𝑟 − 𝑢) closely approximating 

𝑆𝑟𝑒𝑓(𝑟) in terms of grain position, but not intensity. A preliminary Intensity image can therefore be 

estimated by normalizing the registered speckle pattern 𝑆𝑜𝑏𝑗(𝑟 − 𝑢) by the reference 𝑆𝑟𝑒𝑓(𝑟). To 

minimize the effect of the registration errors and take into account the numerous dark regions of the 

speckle map, a regularization must be applied to retrieve the intensity modulation map 𝐼(𝑟). Here, 

we use a small Gaussian kernel to filter both the registered speckle and the reference before 

normalization. The reference speckle is finally multiplied by the estimated intensity image: 

𝑆𝑟𝑒𝑓𝑖+1(𝑟) = 𝐼(𝑟). 𝑆𝑟𝑒𝑓𝑖
(𝑟). In this way, we build a new reference speckle pattern 𝑆𝑟𝑒𝑓𝑖+1  in which 

speckle grains are locally comparable in intensity, but not position, to the distorted speckle 𝑆𝑜𝑏𝑗 . In a 

second iteration, this reference is used to re-estimate the speckle grain displacement (again using the 

Demon algorithm), thus providing a better estimate of u, and of the 2D phase gradient. After 2D 

integration, we finally obtain an artefact-free phase map as shown in Figure S2(g). This improved 2D 

local displacement map u can then be used to calculate an improved intensity map, as shown in the 

third image of Fig. S2(c). This procedure can be repeated to increase the accuracy, but two iterations 

typically provide sufficient accuracy, especially in the case of small displacements and weak intensity 

modulations. 



 

Fig. S3. Flow chart of iterative phase and intensity reconstruction from speckle patterns. 

 

Finally, we illustrate the benefit of this iterative method when considering a simulated wavefield 

resulting from the interaction of light with a 100nm gold nanoparticle (NP) at a certain defocus 

(400nm in this example). Here, the phase shift and the intensity contrast are much weaker than for 

the wavefield considered in Fig. S2. However, artifacts similar to those reported above occur in both 

the phase and intensity recovery, as shown in Fig. S4(a and b), second column. After using the two-

step local disentanglement strategy described above, both the phase and intensity reconstructions 

are improved (Fig. S4, third column). Although the phase is clearly improved, some differences are 

visible in the intensity image, due to small registration errors.  

To further improve the intensity reconstruction, an additional deconvolution operation can be 

added to the iterative process. To achieve this, a larger smooth kernel can be applied to filter the 

speckle patterns before normalization, which removes most of the registration errors. A 

deconvolution process, considering the same known smooth kernel, finally enables a better 

reconstruction. A mathematical justification and an illustration of the possibilities of this 

deconvolution step is provided below in S3.   



 

Fig. S4. Recovery of the complex field of 100nm gold NP with a thin diffuser. The ground truth of phase and intensity are 

respectively shown in the first column of (a) and (b). The middle column is the result before unmixing the phase and 

internsity in the distorted speckle pattern, and the last column shows the performance after unmixing. 

  



S3: Intensity reconstruction: a demonstration 

Here, we derive a mathematical justification for intensity modulation extraction from the low 

spatial frequency content of speckles pattern displayed on the camera. We assume that the 

transformation between the reference speckle and the distorted speckle can be written:      

𝑆𝑜𝑏𝑗(𝑟) = [𝐼 × 𝑆𝑟𝑒𝑓](𝑟 + 𝑢)                                                                  (1) 

where 𝑟 denotes the coordinates in real space and u is the displacement vector.  

The object intensity I and the local speckle shift u are iteratively estimated. Their estimates are 

hereafter noted I’ and u’. Thus the registered speckle can be expressed as: 

𝑆𝑜𝑏𝑗′(𝑟) = [𝐼′ × 𝑆𝑟𝑒𝑓](𝑟 + 𝑢′)                                                                (2) 

where 𝑆𝑜𝑏𝑗′ , 𝐼′ and 𝑢′ differ from 𝑆𝑜𝑏𝑗, I, u due to the imperfect estimation of both speckle distortions 

and intensity modulation. A first order Taylor expansion of Eq. (2) in both I-I’ and u-u’ yields: 

                                         𝑆𝑜𝑏𝑗′(𝑟) ≅ [𝐼′ × 𝑆𝑟𝑒𝑓](𝑟 + 𝑢) + (𝑢′ − 𝑢) ∙ 𝛻[𝐼 × 𝑆𝑟𝑒𝑓](𝑟 + 𝑢)                               (3) 

where the term in (𝑢′ − 𝑢)𝛻[(𝐼′ − 𝐼)𝑆𝑜𝑏𝑗] is a second order perturbation, which can therefore be 

neglected. Because of the gradient, the second term in Eq. (3) is dominated by high spatial frequencies. 

Applying a low-pass filter LP, we then get: 

                                                           𝐿𝑃 ∗ 𝑆𝑜𝑏𝑗′(𝑟) ≅ 𝐿𝑃 ∗ [𝐼′ × 𝑆𝑟𝑒𝑓](𝑟 + 𝑢)                                                    (4) 

We now approximate that the convolution product is distributive relatively to the product so that 

𝐿𝑃 ∗ (𝐼′ × 𝑆𝑟𝑒𝑓) ≅ (𝐿𝑃 ∗ 𝐼′) × (𝐿𝑃 ∗ 𝑆𝑟𝑒𝑓) , which would be perfectly correct if 𝑆𝑟𝑒𝑓  were a grid 

pattern as in QLSI. In our case, this approximation holds on the fact that the spatial power spectrum 

of a speckle is Dirac-like at low spatial frequencies. Identifying 𝑆𝑜𝑏𝑗 and 𝑆𝑜𝑏𝑗′, we then get: 

                                                                           𝐿𝑃 ∗ 𝐼′ ≅
𝐿𝑃∗𝑆𝑜𝑏𝑗(𝑟)

𝐿𝑃∗𝑆𝑟𝑒𝑓(𝑟+𝑢′)
                                                                      (5) 

where in practice, LP is chosen as a Gaussian kernel. From the speckle images 𝑆𝑜𝑏𝑗 and 𝑆𝑟𝑒𝑓, one can 

then calculate the low-pass filtered intensity 𝐿𝑃 ∗ 𝐼′ using Equation (5). We illustrate the feasibility 

of this operation in Fig. S5. Fig. S5(a) and S5(b) compare the result of a direct low-pass LP applied to 

the ground truth intensity image with that derived by Eq. (5). The difference between them is shown 

in Fig. S5(c): the maximum difference is only around 2.5% of the intensity contrast, which indicates 

that Eq. (5) LP yield similar results and have minimal influence on the final reconstruction as we 

show below.  

We finally demonstrate that a deconvolution of the retrieved LP intensity by an appropriate Gaussian 

Kernel enables to retrieve the high frequency information of the intensity map 𝐼′. The Richardson-

Lucy based deconvolutions are performed respectively for both cases and the corresponding results 

are shown in Fig. S5(d) and S5(e), which are approximated and agree well with the ground truth [Fig. 

S5(f)]. A further comparison is performed in Fig. S5(g), in which we plot and compare the central 



profile, marked as the dashed line of Fig. S5(f). This shows that the deconvolution process enables a 

satisfactory intensity reconstruction. 

  

Fig. S5. Deconvolution process to recover the intensity. (a) Direct use of a Gaussian low-pass filter to smooth the ground 

truth intensity image. (b) Calculation using Eq. (5) (c) difference between images a and b. (d) Richardson-Lucy 

deconvolution of a. (e) deconvoution of b. (f) Ground truth intensity image. (g) profiles of d, e and f along a central line.  

  



Supplementary S4 – Estimation of the 3D localization precision.  

This section details the protocol used to estimate the 3D localization precision of the proposed 

approach. A series of N speckle images were collected on immobilized NPs at video rate (20Hz). For 

each frame, all NPs in the FOV were superlocalized to estimate their position 𝐩𝐢. Although the NPs 

are immobilized on the coverslip, they undergo a displacement d due to mechanical drift and 

vibrations of the sample (see fig 3.d). For each NP, we consider that the position pi is the sum of a 

mechanical sample displacement d, common to all objects within the field-of-view, plus a position 

estimation error εi of our approach, different for each particle. In order to estimate the accuracy of 

our superlocalization approach, i.e. the standard deviation of the error σ(ε) , we considered the 

position of 2 NPs: 

  𝐩𝟏 = 𝐝 + 𝛆𝟏                                                                      

  𝐩𝟐 = 𝐝 + 𝛆𝟐                                                                      

To eliminate the mechanical displacement d and isolate the estimation error 𝛆𝐢 of our approach, we 

subtract the measured position of two NPs in the field-of-view (∆𝐩 = 𝐩𝟐 − 𝐩𝟏 = 𝛆𝟐 − 𝛆𝟏). Since the 

position measurement of each NP is affected by independent but equivalent noise distribution, the 

mean square fluctuations of the errors εi are the same for all particles, i.e. σ(ε1) = σ(ε2), thus: 

                                                                           σ(ε) =
σ(∆p)

√2
                                                                               (2) 

For a series of N=300 speckle images, we obtained a localization precision of σx,y(ε) =1.3nm in the 

lateral and  σz(ε)=6.3nm in the axial direction when operating close to the plane of best focus. 

  



Supplementary S5 

In this section, we estimate the localization precision in 3D at different depths. To this aim, a series 

of displacements along the axial direction (defocus) were applied to the sample (from Δz = 0 µm to 

Δz = 2.6 µm in 200nm steps, with z≈0 the imaging plane of the NPs) using the piezo stage. For each 

NP axial position, we collected N=25 phase and intensity images using our thin-diffuser based WFS. 

The electromagnetic field acquired at the best focus plane were used to obtain the calibration curve 

by performing proper numerical propagation. By using this calibration curve and a nonlinear 

Levenberg–Marquardt fit, we obtained the 3D position of the nanoparticles at each depth. The 

localization precision at different depths, obtained using the protocol detailed in Supplementary S4, 

is plotted in Fig. S6. In this group of data, we obtained a precision of 7.8nm along the axial direction 

(Z) and 0.9nm along the lateral direction (XY) at the focal plane. At the edge of the axial range 

(Z=2.6µm), we obtain a localization precision of 71.0nm and 19.2nm along the axial and lateral 

direction respectively. 

  

 

Fig. S6. Localization precision at different depths along the axial  

direction Z (red circle) and the lateral direction X (blue cross) 
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