

Mise en œuvre de composites thermoplastiques. *Méthodologie de caractérisation de la déconsolidation et de l'adhésion.*

Arthur Levy arthur.levy@univ-nantes.fr

IN Nantes ✔ Université

June 2022

2006 : Ingénieur Centrale Nantes, matériaux et procédés 2010 : PhD , Ecole Centrale - GeM, Nantes

> 2011 - 12 : Post-doctorate, University of Delaware

Montréal

Delaware

2012 - 14 : Research assistant McGill, Montreal

2014 - 19 : Assistant Professor, LTEN -Polytech, Nantes

Algérie Jl2>

Paris

France

Kingdr

Nantes

Madrid

Casablanca

Outline

- Nantes, France,
 - Nantes Université / Polytech
 - Laboratoire de Thermique et Energie de Nantes
 - Procédé polymères et composites
- Composite manufacturing
 - Deconsolidation
 - Adhesion

Nantes

Nantes (600 000 inhab.)

A Composite hub in France

Nantes Université

Created in 2022.

Second biggest university in France by number of students. The largest University and second most important centre for research in the West of France.

Nantes Université

- 43,000 students, including 5,000 international students (License - Master – Doctorate)
- 7,800 members of staff including:
 - 4,600 support staff and technicians
 - 3,257 lecturers, lecturer-researchers
- 20 faculties, schools or institutes
- 1,500 (approximately) PhD students
- 42 research structures

Engineering Curriculum

Polytech Network

THE NETWORK OF FRENCH GRADUATE SCHOOLS OF ENGINEERING

- **15** public graduate engineering faculties
- an alliance with **4** partners schools
- 12 different scientific fields
- 17 500 students
- 90 000 alumni
- 100 partner universities around the world
- 2 000 Masters and Ph.D students

Polytech' Nantes

7 engineering specialities

+ joint degree ETS

Laboratoire de Thermique et Energie de Nantes (LTEN)

Laboratoire de Thermique et Energie de Nantes (LTEN)

Composite team

Steven Le Corre

Jean-Luc Bailleul

Vincent Sobotka

Elissa El Rassy

Nicolas Boyard

14

LTEN expertise

Composite manufacturing processes

Composite use in aeronautical industry

Today's challenges

Increase part complexity

Pylone MATCH project

Boeing assembly line

- Intricate / thick parts
- Large parts
- Assembly

Cheap / sustainable

www.sabca.be

- Fast and efficient cycles
- Out-of-autoclave
- Defect free

TP composites / robust forming processes

TPC manufacturing processes

Motivation

Industrial goal: control and optimize forming/assembling processes.

Scientific aim : develop predictive tools (simulation).

Modelling and characterization of the leading phenomena during :

I – Deconsolidation

II - Adhesion

I - Deconsolidation

Luc Amedewovo, Arthur Levy, Steven Le Corre, Laurent Orgeas, Basile de Parscau

Industrial context

GF / PEI resistance welding

GF/PEI resistance welding

[Shi et al. 16]

I'=

Thermo stamping

Need for prediction and control

State of the art hypothesis

Scientific approach

Development of a characterization bench under processing conditions

Existing methods

Post-process)

Thickness measurement (caliper)

Density measurement

Microscopy

Infrared thermography

Ultrasounds

Micro-tomography

On line measurements

ThermoMechanical Analysis (TMA) Optical measurement (image correlation)

CODEC bench

[Amedewovo et al. 22]

CODEC bench

Validation

I^IEN

 \Rightarrow CODEC bench resolution : ±36 µm

First results

Test procedure

Material **CF/PEKK** (Toray Composites) 348 * 348 mm*2,90 mm 16 plis UD à 0° Consolidation • Oven (VbO) • Press 0.005 -0.00 perte de masse (%) -0.01 -0.015 -0.02 -0.025 -0.03

Pre-conditionning

- Drying 180°C / 72h
- Ambiant storage 5 months

Results press/oven

Results press/oven

Results dry/wet

Results dry/wet

Results dry/wet

Non séché Vc=60°C/min

Séché Vc=10°C/min

Conclusion

Development of CODEC

Lab scale deconsolidation Representative of manufacturing conditions In situ continuous measurement

First results on Carbon/PAEK

Effect of moisture Effect of residual stress

Ongoing work

In-situ observation in synchrotron (ESRF)

LEN

II – Adhesion kinetics in thermoplastic composite manufacturing

Julien Avenet, Thomas Cender, Arthur Lepoivre, Jean-Luc Bailleul, Steven Le Corre, Arthur Levy

LEN

Thermoplastic composite adhesion

Goal : predict mechanical property of interface
Under processing conditions (high temp., short times)

Scientific approach

ETS -

TACOMA welding bench

[Avenet et al, 20]

TACOMA welding bench

Stopped homogeneous welding test

Mechanical characterization

DCB test

45

Kinetics identification

[Avenet et al, 21]

Adhesion regimes

LEN [Avenet et al 21]

[Avenet et al 20]

LEN

Correlation with rheological time

I'EN

Preprocessing influences weldability

Temps de contact (s)

Effect of pressure 2

Intimate contact is non-Newtonian

0,0

Implementation

[Lepoivre, PhD, 2021]

[Lepoivre PhD, 21]

dt

Parametric study, processing window

Conclusion

Novel welding bench

Procedure for adhesion kinetics identification

Healing can be implemented in simulation tools

Perspectives

Sustainability

Material

End of life Recyclability Low tech / footprint

Manufacturing

Energy efficiency Scraps Consummable

Acknowledgments

Polytech Nantes, Martine Dubé and Pascal Hubert (for travel funding)

Steven Le Corre and the LTEN lab

Jerome Delmas, Nicolas Lefevre, Arnaud Arrivé, Julien Aubril

arthur.levy@univ-nantes.fr

