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A COMPACTNESS RESULT FOR A SYSTEM WITH HOLDERIAN CONDITION.

SAMY SKANDER BAHOURA

ABSTRACT. We give a quantization analysis to an elliptic system with Dirichlet condition. An application, we

have a compactness result for an elliptic system with Hölderian condition.
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1. INTRODUCTION AND MAIN RESULTS

We set ∆ = ∂11 + ∂22 on open analytic domain Ω of R2.

We consider the following equation:

(P )























−∆u = V (1 + |x|2β)ev in Ω ⊂ R
2,

−∆v = Weu in Ω ⊂ R
2,

u = 0 in ∂Ω,

v = 0 in ∂Ω.

Here, we assume that:

0 ≤ V ≤ b1 < +∞, eu ∈ L1(Ω) and u ∈ W 1,1
0 (Ω),

0 ≤ W ≤ b2 < +∞, ev ∈ L1(Ω) and v ∈ W 1,1
0 (Ω),

and,

0 ∈ ∂Ω, β ∈ [0, 1/2).

When u = v, the above system is reduced to an equation which was studied by many authors, with or

without the boundary condition, also for Riemann surfaces, see [1-17], one can find some existence and

compactness results, also for a system.

Among other results, we can see in [6] the following important Theorem,
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Theorem A.(Brezis-Merle [6]).Consider the case of one equation; if (ui)i = (vi)i and (Vi)i = (Wi)i are

two sequences of functions relatively to the problem (P ) with, 0 < a ≤ Vi ≤ b < +∞, then, for all compact

set K of Ω,

sup
K

ui ≤ c = c(a, b,K,Ω).

Theorem B (Brezis-Merle [6]).Consider the case of one equation and assume that (ui)i and (Vi)i are

two sequences of functions relatively to the previous problem (P ) with, 0 ≤ Vi ≤ b < +∞, and,

∫

Ω
euidy ≤ C,

then, for all compact set K of Ω,

sup
K

ui ≤ c = c(b, C,K,Ω).

Next, we call energy the following quantity:

E =

∫

Ω
euidy.

The boundedness of the energy is a necessary condition to work on the problem (P ) as showed in [6], by

the following counterexample.

Theorem C (Brezis-Merle [6]).Consider the case of one equation, then there are two sequences (ui)i and

(Vi)i of the problem (P ) with, 0 ≤ Vi ≤ b < +∞, and,

∫

Ω
euidy ≤ C,

and

sup
Ω

ui → +∞.

When β = 0, the above system have many properties in the constant and the Lipschitzian cases. Indeed

we have (when β = 0):

In [12], Dupaigne-Farina-Sirakov proved (by an existence result of Montenegro, see [16]) that the so-

lutions of the above system when V and W are constants can be extremal and this condition imply the

boundedness of the energy and directly the compactness. Note that in [11], if we assume (in particular) that
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∇ log V and ∇ logW and V > a > 0 or W > a′ > 0 and V,W are nonegative and uniformly bounded

then the energy is bounded and we have a compactness result.

Note that in the case of one equation (and β = 0), we can prove by using the Pohozaev identity that if

+∞ > b ≥ V ≥ a > 0, ∇V is uniformely Lipschitzian that the energy is bounded when Ω is starshaped.

In [15] Ma-Wei, using the moving-plane method showed that this fact is true for all domain Ω with the same

assumptions on V . In [11] De Figueiredo-do O-Ruf extend this fact to a system by using the moving-plane

method for a system.

Theorem C, shows that we have not a global compactness to the previous problem with one equation,

perhaps we need more information on V to conclude to the boundedness of the solutions. When ∇ log V is

Lipschitz function and β = 0, Chen-Li and Ma-Wei see [7] and [15], showed that we have a compactness

on all the open set. The proof is via the moving plane-Method of Serrin and Gidas-Ni-Nirenberg. Note that

in [11], we have the same result for this system when ∇ log V and ∇ logW are uniformly bounded. We will

see below that for a system we also have a compactness result when V and W are Lipschitzian and β ≥ 0.

Now consider the case of one equation. In this case our equation have nice properties.

If we assume V with more regularity, we can have another type of estimates, a sup+ inf type inequalities.

It was proved by Shafrir see [17], that, if (ui)i, (Vi)i are two sequences of functions solutions of the previous

equation without assumption on the boundary and, 0 < a ≤ Vi ≤ b < +∞, then we have the following

interior estimate:

C
(a

b

)

sup
K

ui + inf
Ω

ui ≤ c = c(a, b,K,Ω).

Now, if we suppose (Vi)i uniformly Lipschitzian with A the Lipschitz constant, then, C(a/b) = 1 and

c = c(a, b,A,K,Ω), see [5].

Here we are interested by the case of a system of this type of equation. First, we give the behavior of the

blow-up points on the boundary and in the second time we have a proof of compactness of the solutions to

Gelfand-Liouville type system with a Hölderian condition.

Here, we write an extention of Brezis-Merle Problem (see [6]) to a system:

Problem. Suppose that Vi → V and Wi → W in C0(Ω̄), with, 0 ≤ Vi and 0 ≤ Wi. Also, we consider

two sequences of solutions (ui), (vi) of (P ) relatively to (Vi), (Wi) such that,

∫

Ω
euidx ≤ C1,

∫

Ω
evidx ≤ C2,

is it possible to have:

||ui||L∞ ≤ C3 = C3(β,C1, C2,Ω)?

and,
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||vi||L∞ ≤ C4 = C4(β,C1, C2,Ω)?

In this paper we give a caracterization of the behavior of the blow-up points on the boundary and also

a proof of the compactness theorem when Vi and Wi are uniformly Lipschitzian. For the behavior of the

blow-up points on the boundary, the following condition are enough,

0 ≤ Vi ≤ b1, 0 ≤ Wi ≤ b2,

The conditions Vi → V and Wi → W in C0(Ω̄) are not necessary.

But for the proof of the compactness for the Gelfand-Liouville type system (Brezis-Merle type problem)

we assume that:

||∇Vi||L∞ ≤ A1, ||∇Wi||L∞ ≤ A2.

Our main result are:

Theorem 1.1. Assume that maxΩ ui → +∞ and maxΩ vi → +∞ Where (ui) and (vi) are solutions of

the probleme (P ) with:

0 ≤ Vi ≤ b1, and

∫

Ω
euidx ≤ C1, ∀ i,

and,

0 ≤ Wi ≤ b2, and

∫

Ω
evidx ≤ C2, ∀ i,

then; after passing to a subsequence, there is a finction u, there is a number N ∈ N and N points

x1, x2, . . . , xN ∈ ∂Ω, such that,

∫

∂Ω
∂νuiϕ →

∫

∂Ω
∂νuϕ+

N
∑

j=1

αjϕ(xj), αj ≥ 4π,

for any ϕ ∈ C0(∂Ω), and,

ui → u in C1
loc(Ω̄− {x1, . . . , xN}).

∫

∂Ω
∂νuiϕ →

∫

∂Ω
∂νuϕ+

N
∑

j=1

βjϕ(xj), βj ≥ 4π,

for any ϕ ∈ C0(∂Ω), and,
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vi → v in C1
loc(Ω̄− {x1, . . . , xN}).

In the following theorem, we have a proof for the global a priori estimate which concern the problem (P ).

Theorem 1.2. Assume that (ui), (vi) are solutions of (P ) relatively to (Vi), (Wi) with the following

conditions:

x1 = 0 ∈ ∂Ω, β ∈ [0, 1/2),

and,

0 ≤ Vi ≤ b1, ||∇Vi||L∞ ≤ A1, and

∫

Ω
eui ≤ C1,

0 ≤ Wi ≤ b2, ||∇Wi||L∞ ≤ A2, and

∫

Ω
evi ≤ C2,

We have,

||ui||L∞ ≤ C3(b1, b2, β,A1, A2, C1, C2,Ω),

and,

||vi||L∞ ≤ C4(b1, b2, β,A1, A2, C1, C2,Ω),

2. PROOF OF THE THEOREMS

Proof of theorem 1.1:

We have:

ui ∈ W 1,1
0 (Ω).

Since eui ∈ L1(Ω) by the corollary 1 of Brezis-Merle’s paper (see [6]) we have eui ∈ Lk(Ω) for all k > 2
and the elliptic estimates of Agmon and the Sobolev embedding (see [1]) imply that:

ui ∈ W 2,k(Ω) ∩ C1,ǫ(Ω̄).

And,
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We have:

vi ∈ W 1,1
0 (Ω).

Since evi ∈ L1(Ω) by the corollary 1 of Brezis-Merle’s paper (see [6]) we have evi ∈ Lk(Ω) for all k > 2
and the elliptic estimates of Agmon and the Sobolev embedding (see [1]) imply that:

vi ∈ W 2,k(Ω) ∩ C1,ǫ(Ω̄).

Since Vie
vi and Wie

ui are bounded in L1(Ω), we can extract from those two sequences two subsequences

which converge to two nonegative measures µ1 and µ2. (This procedure is similar to the procedure of

Brezis-Merle, we apply corollary 4 of Brezis-Merle paper, see [6]).

If µ1(x0) < 4π, by a Brezis-Merle estimate for the first equation, we have eui ∈ L1+ǫ around x0, by the

elliptic estimates, for the second equation, we have vi ∈ W 2,1+ǫ ⊂ L∞ around x0, and , returning to the

first equation, we have ui ∈ L∞ around x0.

If µ2(x0) < 4π, then ui and vi are also locally bounded around x0.

Thus, we take a look to the case when, µ1(x0) ≥ 4π and µ2(x0) ≥ 4π. By our hypothesis, those points

x0 are finite.

We will see that inside Ω no such points exist. By contradiction, assume that, we have µ1(x0) ≥ 4π. Let

us consider a ball BR(x0) which contain only x0 as nonregular point. Thus, on ∂BR(x0), the two sequence

ui and vi are uniformly bounded. Let us consider:

{

−∆zi = Vie
vi in BR(x0) ⊂ R

2,

zi = 0 in ∂BR(x0).

By the maximum principle we have:

zi ≤ ui

and zi → z almost everywhere on this ball, and thus,

∫

ezi ≤

∫

eui ≤ C,

and,

∫

ez ≤ C.

but, z is a solution in W 1,q
0 (BR(x0)), 1 ≤ q < 2, of the following equation:
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{

−∆z = µ1 in BR(x0) ⊂ R
2,

z = 0 in ∂BR(x0).

with, µ1 ≥ 4π and thus, µ1 ≥ 4πδx0 and then, by the maximum principle in W 1,q
0 (BR(x0)):

z ≥ −2 log |x− x0|+ C

thus,

∫

ez = +∞,

which is a contradiction. Thus, there is no nonregular points inside Ω

Thus, we consider the case where we have nonregular points on the boundary, we use two estimates:

∫

∂Ω
∂νuidσ ≤ C1,

∫

∂Ω
∂νvidσ ≤ C2,

and,

||∇ui||Lq ≤ Cq, ||∇vi||Lq ≤ C ′
q, ∀ i and 1 < q < 2.

We have the same computations, as in the case of one equation.

We consider a points x0 ∈ ∂Ω such that:

µ1(x0) < 4π.

We consider a test function on the boundary η we extend η by a harmonic function on Ω, we write the

equation:

−∆((ui − u)η) = (1 + |x|2β)(Vie
vi − V ev)η+ < ∇(ui − u)|∇η >= fi

with,

∫

|fi| ≤ 4π − ǫ+ o(1) < 4π − 2ǫ < 4π,

−∆((vi − v)η) = (Wie
ui −Weu)η+ < ∇(vi − v)|∇η >= gi,

with,
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∫

|gi| ≤ 4π − ǫ+ o(1) < 4π − 2ǫ < 4π,

By the Brezis-Merle estimate, we have uniformly, eui ∈ L1+ǫ around x0, by the elliptic estimates, for

the second equation, we have vi ∈ W 2,1+ǫ ⊂ L∞ around x0, and , returning to the first equation, we have

ui ∈ L∞ around x0.

We have the same thing if we assume:

µ2(x0) < 4π.

Thus, if µ1(x0) < 4π or µ2(x0) < 4π, we have for R > 0 small enough:

(ui, vi) ∈ L∞(BR(x0) ∩ Ω̄).

By our hypothesis the set of the points such that:

µ1(x0) ≥ 4π, µ2(x0) ≥ 4π,

is finite, and, outside this set ui and vi are locally uniformly bounded. By the elliptic estimates, we have

the C1 convergence to u and v on each compact set of Ω̄− {x1, . . . xN}.

Indeed,

By the Stokes formula we have,

∫

∂Ω
∂νuidσ ≤ C,

We use the weak convergence in the space of Radon measures to have the existence of a nonnegative

Radon measure µ such that,

∫

∂Ω
∂νuiϕdσ → µ1(ϕ), ∀ ϕ ∈ C0(∂Ω).

We take an x0 ∈ ∂Ω such that, µ1(x0) < 4π. For ǫ > 0 small enough set Iǫ = B(x0, ǫ) ∩ ∂Ω on the unt

disk or one can assume it as an interval. We choose a function ηǫ such that,























ηǫ ≡ 1, on Iǫ, 0 < ǫ < δ/2,

ηǫ ≡ 0, outside I2ǫ,

0 ≤ ηǫ ≤ 1,

||∇ηǫ||L∞(I2ǫ) ≤
C0(Ω, x0)

ǫ
.
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We take a η̃ǫ such that,

{

−∆η̃ǫ = 0 in Ω ⊂ R
2,

η̃ǫ = ηǫ in ∂Ω.

Remark: We use the following steps in the construction of η̃ǫ:

We take a cutoff function η0 in B(0, 2) or B(x0, 2):

1- We set ηǫ(x) = η0(|x− x0|/ǫ) in the case of the unit disk it is sufficient.

2- Or, in the general case: we use a chart (f, Ω̃) with f(0) = x0 and we take µǫ(x) = η0(f(|x|/ǫ)) to have

connected sets Iǫ and we take ηǫ(y) = µǫ(f
−1(y)). Because f, f−1 are Lipschitz, |f(x)− x0| ≤ k2|x| ≤ 1

for |x| ≤ 1/k2 and |f(x)− x0| ≥ k1|x| ≥ 2 for |x| ≥ 2/k1 > 1/k2, the support of η is in I(2/k1)ǫ.























ηǫ ≡ 1, on f(I(1/k2)ǫ), 0 < ǫ < δ/2,

ηǫ ≡ 0, outside f(I(2/k1)ǫ),

0 ≤ ηǫ ≤ 1,

||∇ηǫ||L∞(I(2/k1)ǫ)
≤

C0(Ω, x0)

ǫ
.

3- Also, we can take: µǫ(x) = η0(|x|/ǫ) and ηǫ(y) = µǫ(f
−1(y)), we extend it by 0 outside f(B1(0)).

We have f(B1(0)) = D1(x0), f(Bǫ(0)) = Dǫ(x0) and f(B+
ǫ ) = D+

ǫ (x0) with f and f−1 smooth diffeo-

morphism.























ηǫ ≡ 1, on a the connected set Jǫ = f(Iǫ), 0 < ǫ < δ/2,

ηǫ ≡ 0, outside J ′
ǫ = f(I2ǫ),

0 ≤ ηǫ ≤ 1,

||∇ηǫ||L∞(J ′
ǫ)
≤

C0(Ω, x0)

ǫ
.

And, H1(J
′
ǫ) ≤ C1H1(I2ǫ) = C14ǫ, since f is Lipschitz. Here H1 is the Hausdorff measure.

We solve the Dirichlet Problem:

{

−∆η̄ǫ = −∆ηǫ in Ω ⊂ R
2,

η̄ǫ = 0 in ∂Ω.

and finaly we set η̃ǫ = −η̄ǫ + ηǫ. Also, by the maximum principle and the elliptic estimates we have :

||∇η̃ǫ||L∞ ≤ C(||ηǫ||L∞ + ||∇ηǫ||L∞ + ||∆ηǫ||L∞) ≤
C1

ǫ2
,

with C1 depends on Ω.
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We use the following estimate, see [8],

||∇vi||Lq ≤ Cq, ||∇ui||q ≤ Cq, ∀ i and 1 < q < 2.

We deduce from the last estimate that, (vi) converge weakly in W 1,q
0 (Ω), almost everywhere to a function

v ≥ 0 and
∫

Ω ev < +∞ (by Fatou lemma). Also, Vi weakly converge to a nonnegative function V in L∞.

We deduce from the last estimate that, (ui) converge weakly in W 1,q
0 (Ω), almost everywhere to a function

u ≥ 0 and
∫

Ω eu < +∞ (by Fatou lemma). Also, Wi weakly converge to a nonnegative function W in L∞.

The function u, v are in W 1,q
0 (Ω) solutions of :

{

−∆u = V (1 + |x|2β)ev ∈ L1(Ω) in Ω ⊂ R
2,

u = 0 in ∂Ω.

And,

{

−∆v = Weu ∈ L1(Ω) in Ω ⊂ R
2,

v = 0 in ∂Ω.

According to the corollary 1 of Brezis-Merle’s result, see [6], we have eku ∈ L1(Ω), k > 1. By the

elliptic estimates, we have u ∈ C1(Ω̄).

According to the corollary 1 of Brezis-Merle’s result, see [6], we have ekv ∈ L1(Ω), k > 1. By the elliptic

estimates, we have v ∈ C1(Ω̄).

For two vectors f and g we denote by f · g the inner product of f and g.

We can write:

−∆((ui − u)η̃ǫ) = (1 + |x|2β)(Vie
vi − V ev)η̃ǫ − 2∇(ui − u) · ∇η̃ǫ. (1)

−∆((vi − v)η̃ǫ) = (Wie
ui −Weu)η̃ǫ − 2∇(vi − v) · ∇η̃ǫ.

We use the interior esimate of Brezis-Merle, see [6],

Step 1: Estimate of the integral of the first term of the right hand side of (1).

We use the Green formula between η̃ǫ and u, we obtain,

∫

Ω
(1 + |x|2β)V evη̃ǫdx =

∫

∂Ω
∂νuηǫ ≤ C ′ǫ||∂νu||L∞ = Cǫ (2)
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We have,

{

−∆ui = (1 + |x|2β)Vie
vi in Ω ⊂ R

2,

ui = 0 in ∂Ω.

We use the Green formula between ui and η̃ǫ to have:

∫

Ω
(1 + |x|2β)Vie

vi η̃ǫdx =

∫

∂Ω
∂νuiηǫdσ → µ1(ηǫ) ≤ µ1(J

′
ǫ) ≤ 4π − ǫ0, ǫ0 > 0 (3)

From (2) and (3) we have for all ǫ > 0 there is i0 = i0(ǫ) such that, for i ≥ i0,

∫

Ω
|(1 + γ|x|2β)(Vie

vi − V ev)η̃ǫ|dx ≤ 4π − ǫ0 + Cǫ (4)

Step 2: Estimate of integral of the second term of the right hand side of (1).

Let Σǫ = {x ∈ Ω, d(x, ∂Ω) = ǫ3} and Ωǫ3 = {x ∈ Ω, d(x, ∂Ω) ≥ ǫ3}, ǫ > 0. Then, for ǫ small enough,

Σǫ is hypersurface.

The measure of Ω− Ωǫ3 is k2ǫ
3 ≤ meas(Ω− Ωǫ3) = µL(Ω− Ωǫ3) ≤ k1ǫ

3.

Remark: for the unit ball B̄(0, 1), our new manifold is B̄(0, 1 − ǫ3).

( Proof of this fact; let’s consider d(x, ∂Ω) = d(x, z0), z0 ∈ ∂Ω, this imply that (d(x, z0))
2 ≤ (d(x, z))2

for all z ∈ ∂Ω which it is equivalent to (z − z0) · (2x − z − z0) ≤ 0 for all z ∈ ∂Ω, let’s consider a chart

around z0 and γ(t) a curve in ∂Ω, we have;

(γ(t)− γ(t0) · (2x− γ(t)− γ(t0)) ≤ 0 if we divide by (t− t0) (with the sign and tend t to t0), we have

γ′(t0) · (x− γ(t0)) = 0, this imply that x = z0 − sν0 where ν0 is the outward normal of ∂Ω at z0))

With this fact, we can say that S = {x, d(x, ∂Ω) ≤ ǫ} = {x = z0 − sνz0 , z0 ∈ ∂Ω, −ǫ ≤ s ≤ ǫ}. It is

sufficient to work on ∂Ω. Let’s consider a charts (z,D = B(z, 4ǫz), γz) with z ∈ ∂Ω such that ∪zB(z, ǫz)
is cover of ∂Ω . One can extract a finite cover (B(zk, ǫk)), k = 1, ...,m, by the area formula the measure

of S ∩ B(zk, ǫk) is less than a kǫ (a ǫ-rectangle). For the reverse inequality, it is sufficient to consider one

chart around one point of the boundary.

We write,

∫

Ω
|∇(ui − u) · ∇η̃ǫ|dx =

∫

Ωǫ3

|∇(ui − u) · ∇η̃ǫ|dx+

∫

Ω−Ωǫ3

|∇(ui − u) · ∇η̃ǫ|dx. (5)

Step 2.1: Estimate of
∫

Ω−Ωǫ3
|∇(ui − u) · ∇η̃ǫ|dx.

11



First, we know from the elliptic estimates that ||∇η̃ǫ||L∞ ≤ C1/ǫ
2, C1 depends on Ω

We know that (|∇ui|)i is bounded in Lq, 1 < q < 2, we can extract from this sequence a subsequence

which converge weakly to h ∈ Lq. But, we know that we have locally the uniform convergence to |∇u| (by

Brezis-Merle’s theorem), then, h = |∇u| a.e. Let q′ be the conjugate of q.

We have, ∀f ∈ Lq′(Ω)

∫

Ω
|∇ui|fdx →

∫

Ω
|∇u|fdx

If we take f = 1Ω−Ωǫ3
, we have:

for ǫ > 0 ∃ i1 = i1(ǫ) ∈ N, i ≥ i1,

∫

Ω−Ωǫ3

|∇ui| ≤

∫

Ω−Ωǫ3

|∇u|+ ǫ3.

Then, for i ≥ i1(ǫ),

∫

Ω−Ωǫ3

|∇ui| ≤ meas(Ω− Ωǫ3)||∇u||L∞ + ǫ3 = ǫ3(k1||∇u||L∞ + 1).

Thus, we obtain,

∫

Ω−Ωǫ3

|∇(ui − u) · ∇η̃ǫ|dx ≤ ǫC1(2k1||∇u||L∞ + 1) (6)

The constant C1 does not depend on ǫ but on Ω.

Step 2.2: Estimate of
∫

Ωǫ3
|∇(ui − u) · ∇η̃ǫ|dx.

We know that, Ωǫ ⊂⊂ Ω, and ( because of Brezis-Merle’s interior estimates) ui → u in C1(Ωǫ3). We

have,

||∇(ui − u)||L∞(Ωǫ3 )
≤ ǫ3, for i ≥ i3 = i3(ǫ).

We write,

∫

Ωǫ3

|∇(ui − u) · ∇η̃ǫ|dx ≤ ||∇(ui − u)||L∞(Ωǫ3 )
||∇η̃ǫ||L∞ ≤ C1ǫ for i ≥ i3,

For ǫ > 0, we have for i ∈ N, i ≥ max{i1, i2, i3},
12



∫

Ω
|∇(ui − u) · ∇η̃ǫ|dx ≤ ǫC1(2k1||∇u||L∞ + 2) (7)

From (4) and (7), we have, for ǫ > 0, there is i3 = i3(ǫ) ∈ N, i3 = max{i0, i1, i2} such that,

∫

Ω
| −∆[(ui − u)η̃ǫ]|dx ≤ 4π − ǫ0 + ǫ2C1(2k1||∇v||L∞ + 2 + C) (8)

We choose ǫ > 0 small enough to have a good estimate of (1).

Indeed, we have:

{

−∆[(ui − u)η̃ǫ] = gi,ǫ in Ω ⊂ R
2,

(ui − u)η̃ǫ = 0 in ∂Ω.

with ||gi,ǫ||L1(Ω) ≤ 4π −
ǫ0
2
.

We can use Theorem 1 of [6] to conclude that there are q ≥ q̃ > 1 such that:

∫

Vǫ(x0)
eq̃|ui−u|dx ≤

∫

Ω
eq|ui−u|η̃ǫdx ≤ C(ǫ,Ω).

where, Vǫ(x0) is a neighberhood of x0 in Ω̄. Here we have used that in a neighborhood of x0 by the

elliptic estimates, 1− Cǫ ≤ η̃ǫ ≤ 1.

Thus, for each x0 ∈ ∂Ω− {x̄1, . . . , x̄m} there is ǫx0 > 0, qx0 > 1 such that:

∫

B(x0,ǫx0)
eqx0uidx ≤ C, ∀ i. (9)

Now, we consider a cutoff function η ∈ C∞(R2) such that

η ≡ 1 on B(x0, ǫx0/2) and η ≡ 0 on R
2 −B(x0, 2ǫx0/3).

We write

−∆(viη) = Wie
uiη − 2∇vi · ∇η − vi∆η.

By the elliptic estimates, (vi)i is uniformly bounded in L∞(Vǫ(x0)). Finaly, we have, for some ǫ > 0 small

enough,

||vi||C0,θ [B(x0,ǫ)] ≤ c3 ∀ i.
13



Now, we consider a cutoff function η ∈ C∞(R2) such that

η ≡ 1 on B(x0, ǫx0/2) and η ≡ 0 on R
2 −B(x0, 2ǫx0/3).

We write

−∆(uiη) = (1 + |x|2β)Vie
viη − 2∇ui · ∇η − ui∆η.

By the elliptic estimates, (ui)i is uniformly bounded in L∞(Vǫ(x0)) and also in C0,θ norm.

If we repeat this procedure another time, we have a boundedness of (ui)i and (vi)i in the C1,θ norm,

because they are bounded in W 2,q ⊂ Lq∗ norms with 2q/(2 − q) = q∗ > 2.

We have the same computations and conclusion if we consider a regular point x0 for the measure µ2.

We have proved that, there is a finite number of points x̄1, . . . , x̄m such that the squence (ui)i and (vi)i
are locally uniformly bounded (in C1,θ, θ > 0) in Ω̄− {x̄1, . . . , x̄m}.

Proof of theorem 1.2:

Without loss of generality, we can assume that 0 is a blow-up point. Since the boundary is an analytic

curve γ1(t), there is a neighborhood of 0 such that the curve γ1 can be extend to a holomorphic map such

that γ′1(0) 6= 0 (series) and by the inverse mapping one can assume that this map is univalent around 0. In

the case when the boundary is a simple Jordan curve the domain is simply connected. In the case that the

domains has a finite number of holes it is conformally equivalent to a disk with a finite number of disks

removed. Here we consider a general domain. Without loss of generality one can assume that γ1(B
+
1 ) ⊂ Ω

and also γ1(B
−
1 ) ⊂ (Ω̄)c and γ1(−1, 1) ⊂ ∂Ω and γ1 is univalent. This means that (B1, γ1) is a local chart

around 0 for Ω and γ1 univalent. (This fact holds if we assume that we have an analytic domain, (below a

graph of an analytic function), we have necessary the condition ∂Ω̄ = ∂Ω and the graph is analytic, in this

case γ1(t) = (t, ϕ(t)) with ϕ real analytic and an example of this fact is the unit disk around the point (0, 1)
for example).

By this conformal transformation, we can assume that Ω = B+
1 , the half ball, and ∂+B+

1 is the exterior

part, a part which not contain 0 and on which ui converge in the C1 norm to u. Let us consider B+
ǫ , the half

ball with radius ǫ > 0. Also, one can consider a C1 domain (a rectangle between two half disks) and by

charts its image is a C1 domain) We know that:

ui ∈ W 2,k(Ω) ∩ C1,ǫ(Ω̄).

Thus we can use integrations by parts (Stokes formula). The Pohozaev identity applied around the blow-

up 0:

∫

B+
ǫ

∆ui < x|∇vi > dx = −

∫

B+
ǫ

∆vi < x|∇ui > dx+

∫

∂+B+
ǫ

g(∇ui,∇vi)dσ, (10)
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Thus,

∫

B+
ǫ

Vi(1 + |x|2β)evi < x|∇vi > dx = −

∫

B+
ǫ

Wie
ui < x|∇ui > dx−

∫

∂+B+
ǫ

g(∇ui,∇vi)dσ, (11)

After integration by parts, we obtain:

∫

B+
ǫ

2Vi(1 + (1 + β)|x|2β)evidx+

∫

B+
ǫ

< x|∇Vi > evidx+

∫

∂B+
ǫ

< ν|x > Vidσ+

+

∫

B+
ǫ

Wie
uidx+

∫

B+
ǫ

< x|∇Wi > euidx+

∫

∂B+
ǫ

< ν|x > Widσ =

= −

∫

∂+B+
ǫ

g(∇ui,∇vi)dσ,

Also, for u and v, we have:

∫

B+
ǫ

2V (1 + (1 + β)|x|2β)evdx+

∫

B+
ǫ

< x|∇V > evdx+

∫

∂B+
ǫ

< ν|x > V dσ+

+

∫

B+
ǫ

Weudx+

∫

B+
ǫ

< x|∇W > eudx+

∫

∂B+
ǫ

< ν|x > Wdσ =

= −

∫

∂+B+
ǫ

g(∇u,∇v)dσ,

If, we take the difference, we obtain:

(1 + o(ǫ))(

∫

B+
ǫ

Vie
vidx−

∫

B+
ǫ

V evdx)+

+(1 + o(ǫ))(

∫

B+
ǫ

Wie
uidx−

∫

B+
ǫ

Weudx) =

= α1 + β1 + o(ǫ) + o(1) = o(1), (12)

a contradiction.
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