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Abstract: Functional near infrared spectroscopy (fNIRS) is a promising neuroimaging 
method for investigating networks of cortical regions over time. We propose a directed 
effective connectivity method (TPDC) allowing the capture of both time and frequency 
evolution of the brain’s networks using fNIRS data acquired from healthy subjects 
performing a continuous finger-tapping task. Using this method we show the directed 
connectivity patterns among cortical motor regions involved in the task and their significant 
variations in the strength of information flow exchanges. Intra and inter-hemispheric 
connections during the motor task with their temporal evolution are also provided. 
Characterisation of the fluctuations in brain connectivity opens up a new way to assess the 
organisation of the brain to adapt to changing task constraints, or under pathological 
conditions. 
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1. Introduction

Functional near-infrared spectroscopy (fNIRS) is a non-invasive imaging technique that has 
become increasingly popular for brain function research in recent years [1,2]. Based on the 
exploration of hemodynamic signals, in the same way as functional magnetic resonance 
imaging (fMRI), and its blood oxygen level dependent signal, fNIRS provides information on 
the functionally evoked changes in cortical oxyhemoglobin (HbO) and deoxyhemoglobin 
(HHb) concentrations with relatively low spatial resolution. However, due to several technical 
advantages (high temporal sampling rate, portability and ability to perform long data 
acquisitions), fNIRS has been extensively used to measure the magnitude of brain activation 
during motor or cognitive tasks, in both healthy and diseased populations [3–5]. Nevertheless, 
as highlighted by some authors, the brain is a complex system par excellence characterised by 
the co-existence of functional segregated parts of the brain, and functional integration among 
these parts [6,7]. Functional specialisation, or segregation, implies that elements of the brain 
network tend to organise into separate, statistically independent areas. It refers to the idea that 
parts of the brain may, for example, specifically cope with the cognitive [8], perceptual [9] or 
motor [10,11] components of a certain task. Functional integration, on the other hand, refers 
to the way these different components are connected to become statistically interdependent to 
some degree [12]. For example, an fNIRS study [13] in healthy subjects showed different 
changes in the link between motor cortex (M1), premotor cortex (PMC) and supplementary 
motor area (SMA) between various finger movement task conditions. By using fMRI, 
Grefkes and Fink (2011) [14] showed relevant changes in intra- and inter-hemispheric brain 
links within the motor network after stroke. Therefore, a key challenge in neuroscience, in 
particular for portable and promising neuroimaging techniques such as fNIRS, is to move 
beyond identification of regional cortical activations toward the characterisation of 
interactions between brain areas [15]. 



Connectivity analyses of the brain have been the object of a growing interest in 
neuroimaging studies in recent years, and applied to both electrophysiology-based 
(electroencephalography [16]; magnetoencephalography [17,18]) and hemodynamics-based 
(fMRI [19,20]; fNIRS [21,22]) modalities. In this line, authors have often used bivariate 
Pearson correlation analysis in the time domain, or its counterpart, namely coherence in the 
frequency domain. While these analyses have shown their ability to distinguish between 
healthy and diseased populations [23,24], they present limitations in two notable respects: 
first, they do not take into account the directionality of the link between two regions of 
interest. Furthermore, the time-series analysis of brain activity is typically limited to only two 
signals (bivariate analysis). That is, these types of analyses are known to not provide a 
comprehensive assessment of inter-channel interactions, as they ignore influences from other 
sources [25]. In contrast to undirected functional connectivity, directed effective connectivity 
(EC) describes the influence that one region of the brain exerts on another. The two most 
commonly employed methods to analyse the directed influences within the whole brain 
network are Dynamic Causal Modelling (DCM) [26] and Granger-Causality Modelling 
(GCM) [15, 27]. DCM is based on a statistical technique to highlight how well a model fits 
the data. In similar approach, structural equation modeling (SEM) [28] comports a model 
where parameters are connection strengths or path coefficients between different regions of 
interest. DCM and SEM were shown to provide similar results [29]. Because these two fixed 
models imply that regions of interest need to be predefined, the possibly unexpected 
involvement of brain areas or connections between areas will not be taken into account in 
uncovering the pattern of connections. While DCM and SEM are model driven methods 
based on assumptions between intrinsic and extrinsic linked areas, the advantage of GCM is 
that it does not require any a priori information, as it completely relies on the multivariate 
auto-regressive (MVAR) modelling of the recorded brain signals [30]. Due to their 
assumption-free nature, GCM based methods are complementary to DCM [31]. The first 
studies addressing directed connectivity have adapted Granger’s formalism [32,33], 
considering that some form of causality from a time series x(n) onto another time series y(n) 
may be at play, if knowledge of x(n)’s past behaviour proves helpful in predicting y(n). The 
two time-domain methods derived from Granger causality, the conditional Granger causality 
(CGC) and partial Granger causality (PGC) [34], are particularly suitable for signals with 
very low signal to noise ratio. However, in biological time series, and notably in brain 
analysis, need is to deal with unmeasured latent variables and environmental (exogenous) 
inputs. For some signals, like local field potential signals, PGC has been proven more 
successful than CGC, notably in controlling for a third time series that could falsely cause 
connection between two series of interest [35]. However, CGC and PGC provide causality 
information only in the time domain [36]. 

Aside from time domain causality methods, frequency-domain causality methods are able 
to look at causality at a particular frequency. Frequency-domain causality measures are also 
tolerant of wide ranges of noise. The directed transfer function (DTF) can quantify causality 
between different time series, but is unable to differentiate between direct and indirect 
connections [37] (where the connection x to y could be mediated by z). Therefore, two new 
developments of DTF methods were proposed, namely the directed DTF [38] and, recently, 
the non-normalized DTF, which overcomes the drawbacks of DTF and allows discrimination 
between the direct and indirect connections [39]. Similar to DTF, partial directed coherence 
(PDC) is based on the Fourier transformation of the MVAR coefficient. Unlike DTF, PDC 
can differentiate between direct and indirect connections and is currently the most widely 
used method in biomedical signals. Its major shortcoming, however, is that any additional 
source affects the strength of already present sources, due to the fact that normalisation in the 
equation of PDC is done with respect to the sources [40]. Yet, the generalised partial directed 
coherence can accommodate differences in the individual variances of the subjected time 
signals [41]. The re-normalised partial directed coherence allows overcoming the limitation 



related to the addition of the source without requiring any frequency dependent significance 
level [42]. 

Directional information provided by the aforementioned methods offers the potential for 
mapping directed influences between regions of the brain. However, different studies 
applying such analyses to fNIRS data [43–45] have implicitly considered that patterns of 
connectivity were stationary within the scanning period: indeed, analysing the global 
(average) connectivity pattern over a relatively long time session conceals its temporal 
evolution during the task. Though intermittence between functional integration and 
segregation in the brain leads to the idea that information flows between two brain areas are 
highly dynamic. Recent studies have shown that brain connectivity also evolves over time in 
a resting state, as it may do in continuous tasks [46,47]. Such dynamic brain organisation is 
actually a key property of any complex system that shows high adaptive capacities [48], and 
time-frequency analyses can provide insight into it. 

Here, we proposed to perform EC analyses based on a novel method applied in fNIRS, 
namely time-resolved partial directed coherence (TPDC) [20, 22]. TPDC has been developed 
and applied to EEG, MEG or fMRI signals [49]. This method is based on directed effective 
connectivity to compute a time-frequency analysis established on an MVAR model. Allowing 
the application over time of multiple PDC [50], TPDC makes it possible to account for the 
evolutions over time and frequency bands of the information transfer directed between 
multiple time series, i.e. between regions of interest, for probing diseased [51, 52] or healthy 
brain [18, 49]. 

To fully understand the functioning of the brain and its adaptive capacities, we have to 
take into account its dynamic organisation through the time-frequency evolution of 
connectivity patterns. The purpose of this study was therefore (i) to expose the TPDC method 
on fNIRS signals and (ii) to reveal the ability of the proposed method in assessing the time-
dynamics of brain connectivity during a simple motor task performed by healthy subjects. To 
this end, we first present experimental fNIRS data collection. Second, we develop the TPDC 
computation steps. Third, we show results of this example application of the TPDC effective 
connectivity approach to experimental fNIRS data. 

2. Materials and methods

2.1 Participants

Six healthy volunteers took part in this study (aged 28.6 ± 3.8 years). All participants gave 
written informed consent before participating in the study. All participants were right handed 
according to the Edinburgh Handedness Inventory [53] and reported normal hearing and 
normal or corrected vision. None had any sign of neurological disease, nor reported extensive 
practice in music. All procedures were approved by the local ethics committee and complied 
with the Declaration of Helsinki for human experimentation. 

2.2 Experimental design 

The experiment was conducted in a quiet and dimly-lit room. Participants were seated 
comfortably on an adjustable chair. They were instructed to remain relaxed and to refrain 
from extensive head motion. After positioning fNIRS probes over the head, fNIRS data 
recording was initiated, with a one-minute resting state (quiet baseline) while the subjects’ 
eyes were open. It provides the best possible baseline condition before the experimental task. 
Then, participants were asked to perform a continuous (6 minutes and 40 seconds) tapping 
task, according to a conventional synchronisation-continuation paradigm [54]. During the 
initial synchronisation phase (around 15 seconds), the tapping tempo was prescribed by a PC-
driven auditory metronome delivering 20 signals at a frequency of 1.5 Hz. Once the 
metronome stopped, participants were requested to continue tapping by maintaining the 



prescribed tempo as accurately and regularly as possible for the whole trial duration. Data 
from the last 6 minutes of each trial was submitted for analysis. 

2.3 Data collection 

Changes in HbO and HHb were assessed using two continuous wave multi-channel near 
infrared spectroscopy systems (Oxymon MkIII and Octamon, Artinis Medical Systems, The 
Netherlands) at two wavelengths (Oxymon = 763 and 855nm, Octamon = 742 and 848nm). 
The sampling rate was set at 10 Hz. In the present study, we used 10 transmitters (pulsed 
laser) and 4 receivers (avalanche photodiode), which were coupled through fiber optic cables 
mounted onto a customised head cap. The 16-channel array with a transmitter-receiver 
spacing of 30 mm extended on three regions of interest: PMC, M1 and SMA in both 
hemispheres. In addition, the 2nd 8-channels system (Octamon, inter-probe distance of 35 
mm) covered the dorsolateral (DLPFC) and orbitofrontal (OFC) cortices in both hemispheres.
After positioning the head cap on the vertex location (Cz), a 3D-digitiser (Fastrack,
Polhemus, United States) allowed the collection of the 24 probe positions (x,y,z space). Our
channels have been marked at the start of the task and thus provide time synchronization
between our signals. In the present study, based on the selected 5 regions of interest (M1,
PMC, SMA, OFC and DLPFC), 18 channels were retained for analysis. NFRI function [55]
was used to extract the Montreal Neurological Institute coordinates (MNI). Localisation, MNI
coordinates and Brodmann area (Chris rorden’s MRIcro) correspondences are reported in Fig.
1.

Fig. 1. On the left, fNIRS probes location using BrainNet Viewer [56] with transmitters (in 
red), receivers (in blue) and channels (Ch, in yellow). On the right, mean MNI coordinates and 
Brodmann area (BA) correspondence for each channel, to check to what extent fNIRS signals 
reflect the effect of several cerebral areas (represented in %) due to the spatial resolution of the 
system. 



2.4 fNIRS preprocessing 

First, we extracted raw data (light intensity) from the ARTINIS software (Oxysoft v3.0.95). 
Data was then uploaded using a MATLAB (The MathWorks) in-house script, and converted 
to optical density (OD) [57] defined by: 
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where Φ is the intensity, i is a source position, j  is a detector position, and λ the wavelength 

of light. Next, we applied the moving standard deviation and spline interpolation methods 
[58] (SDThresh = 20, AMPThresh = 0.5, tMotion = 0.5s, tMask = 2s and p = 0.99), and then
wavelet artefact correction [59] (with probability threshold α = 0.1) as recommended [60], to
remove possible motion artefacts. To access HbO and HHb relative concentration changes
(Conc) (expressed in µM) we applied the modified Beer-Lambert Law [61] to the OD data
that included an age-dependent constant differential path length factor (4.99 + 0.067*Age0.814)
[62].

White noise signal is one of the most harmful effects in connectivity analysis and can 
create spurious links, whether false positives or false negatives. As a consequence, we used a 
simple pre-processing step computing the power spectra to ensure the discrimination of noisy 
signals. For that purpose, we obtained the power spectra of each HbO time series (more 
sensitive to physiological noise than HHb) for each channel: detection of a peak value around 
1Hz in the time series reflecting the presence of the heartbeat in the fNIRS signal [63], was 
considered to indicate a good contact between the optode and the scalp. By running this pre-
processing, 2 channels were removed in our 6 subjects, leaving 106 channels (18 channels per 
subject, minus 2 bad channels) to be used for the subsequent TPDC’s analysis. Subsequently, 
a linear detrending was used to remove slow drifts of Conc data, and time series were 
centered to zero mean to satisfy the criteria of second order stationary. Importantly, we did 
not use any filtering on our Conc data before further analysis, as it has been shown that 
filtering could lead to spurious connections [64]. 

2.5 Time-resolved partial directed coherence 

Using time-frequency causality allows for analysis of the temporal dynamics of the causality 
at any particular frequency in focus. The TPDC (Fig. 2) is based on dual-extended Kalman 
filtering [65], and allows time-dependent auto regressive (AR) coefficients to be estimated. In 
general, the signals are analysed with static AR coefficients, meaning that the fitted model 
and the AR coefficients remain the same for the complete length of the signal. For non-linear 
signals like fNIRS, the model should be time varying and the coefficients need to be 
estimated regularly over the course of the time-period. Regularly estimating the coefficients is 
termed as adaptive auto-regressive process. 



Fig. 2. Flow chart of the various steps used for the TPDC analysis. The black arrows and 
rectangles (left side) present the overall process using real fNIRS data. The dotted gray arrows 
and rectangles (right side) display the bootstrapping process undertaken. 

The expression for an adaptive auto-regressive process can be given as follows: 
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where ar(t) are the time-varying MVAR coefficients, p is the model order of time series x(t) 
and η(t) is the zero-mean Gaussian noise process. To sum up, the extended Kalman filter used 
in the TPDC analysis is a predictor-corrector algorithm that estimates states of a process. We 
can model an fNIRS time series using a general non-linear state-space model: 
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where y(k) is the target time series and the aim is to estimate x(k). Since the present purpose is 
to estimate the model parameters related to the non-linear function F, only the process Eq. (2) 
is considered. Both noise processes υ(k) and n(k) are white, zero mean and Gaussian. At each 
time point, previous state estimates and weight estimates are fed to both of the Kalman filters. 
Both predictors are then corrected on the basis of observed data y(k), such that they yield 
current state and weight estimates. By using two Kalman filters working in parallel with one 
another, we can estimate both state and model parameters of the system at each point in the 
time series. After estimating the time-dependent MVAR coefficients, the next step is to use 



those coefficients for the calculation of causality within the time series. By calculating the 
time-dependent MVAR coefficients at each time point, PDC, based on the principle of 
Granger causality can be computed. Then, the Fourier transform of these coefficients and 
PDC can be calculated using the formula: 
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where Aij(λ) is the i,j – th element of A(λ) . Then the PDC values follow normalisation 
properties such as: 
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By calculating PDC at each time point, multiple matrices corresponding to the time-frequency 
causality from two time series are obtained. All possible connections between channels (n = 
18) were analysed and resulted in 306 connections for each subject. In fNIRS time series, the
frequency band of interest is [0.009-0.08] because it reflects the neurovascular coupling
frequency band [1,2]. We thus extracted this mean frequency band of interest for each
connection.

2.6 Statistical analysis 

The stationarity of the time series was tested using an augmented Dickey-Fuller test in which 
it is defined if the absolute solution of the so-called characteristic equation is greater than 
unity [66]. Since the PDC’s measures have a non-linear relation to the time series data from 
which they are derived, testing for significance can be difficult to perform. To deal with this 
issue, after the TPDC values had been estimated, the significance level was calculated from 
the applied data using a bootstrapping method [37]. In short, the original time series of length 
(n) is divided into (k) smaller non-overlapping windows of length υ (n = kυ) (we used
parameters k = 12, v = 30 seconds). The order of these windows is randomly shuffled to form
a bootstrap sample of the original time series. Then, the MVAR model is fitted to the shuffled
time series, and the TPDC value can be estimated. The process is repeated 1,000 times. The
TPDC value for each of these 1,000 random permutations is estimated and the 95th percentile
TPDC value is taken as the significance level. This process is performed separately for each
subject. The resulting value is retained as the significance threshold value for all connections.
The significance of the causal measures evaluated from the actual data can be assessed on this
basis. In this study the open source Matlab package autoregressive fit (ARFIT) [67], which
allows for modelling and analysing multivariate time series, was used for estimating the AR
coefficients from the spatially filtered source signals.

We extracted the mean and standard deviation (std) of TPDC values during the finger-
tapping task (6 minutes) to compare the connectivity strength and variability for each 
connections. Then we calculated the Shannon entropy (E) of the TPDC time series (wentropy 
Matlab function), to assess the diversity, or uncertainty of each connection’s strengths. 

For all variables (mean, std and E) we checked the normality of the data using the 
Shapiro-Wilk test. A one-way ANOVA was then performed (Statistica 7.1) to compare 
among connections (n = 14 after Bootstrapping) (p = 0.05). In case of a significant difference, 
we performed post-hoc Bonferroni correction. 

3. Results

The result of the TPDC analysis is a time-frequency matrix for each connection reflecting the 
strength of the information exchange. We extracted our frequency band of interest and 



averaged the matrix in the frequency space to obtain a single time series reflecting the time 
evolution for each connection (Fig. 3). 

Fig. 3. Example of time-frequency plots generated by TPDC analysis during 60 seconds of the 
finger-tapping task for 2 connections (From M1L to PMCL and PMCR to PMCL. a) Time 
frequency plot for the whole frequency band (5 Hertz). X-axis represents time in seconds. Y-
axis the frequency in Hertz. Color bars represent the normalised (0 to 1) coherence of the 
connectivity extracted from TPDC results (blue close to zero connection and yellow close to 1 
representing strong connection). b) Time frequency plot for the frequency band of interest 
[0.009 to 0.08 Hz]. c) Mean of the frequency band of interest. Y-axis represents strength of 
connection. This example shows higher connectivity strength from M1L to PMCL compared to 
PMCR to PMCL. 

All the time series were deemed stationary, as we did not detect any unit root. A total of 
14 connections (at the whole group level) out of 306 survived the data-driven surrogate (p < 
0.05). The whole surviving network with the directed connections is shown in Fig. 4. 12 of 14 
connections were normally distributed for the mean and 13 of 14 for std and E. Of the 
significant connections, four were unidirectional connections and five were bi-directional. 
The unidirectional connections, namely M1L to PMCL, PMCL to DLPFCL, PMCL to PFCL and 
SMAL to M1L, were intra-hemispheric and located on the contralateral side to the tapping 



finger (right hand). The bi-directional connections were all inter-hemispheric between 
DLPFCL - DLPFCR, OFCL - OFCR, PMCL - PMCR, SMAL - SMAR and M1L - M1R. 

Fig. 4. Whole surviving connections after bootstrapping analysis (n = 14). In blue, bi-
directional connections (inter-hemispheric) and in red uni-directional connections located only 
in the contralateral hemisphere. 

The ANOVA revealed significant differences in mean TPDC values between connections 
M1L to PMCL and PMCR to PMCL, compared to OFCL to OFCR, and PMCR to PMCL 
compared to bi-directional OFC and PFC connections (Fig. 5). 

Fig. 5. Average of the TPDC results with Box-plot, individual values and brain representation. 
Box-plot reflects median, quartile and dots of individuals values for each subject. X-axis 
represents connections. Y-axis is the mean TPDC value. Stars indicate Anova statistical 
significance at p = 0.05. On the right, representation of statistical significance on brain surfaces 
(differences are represented between red and blue connections). 

For the std and the Entropy of TPDC values, the analysis showed a statistical difference 
between PMCR to PMCL, M1R to M1L and M1L to PMCL compared to bi-directional OFC and 
PFC connections and between M1L to M1R compare to OFCL to OFCR (Fig. 6(a)-6(c)). 



Fig. 6. Standard deviation and entropy of the TPDC results with Box-plot, individual values 
and brain representation. Box-plots in a) and b) reflect median, quartile and dots of individuals 
values for each subject. X-axis represents connections. Stars indicate Anova statistical 
significance at p = 0.05. a) STD TPDC. b) Entropy TPDC. c) Representation for both STD and 
Entropy of statistical significance on brain surfaces (differences are represented between red 
and blue connections). 

4. Discussion

In the present study we focused on the mathematical approach to a time-frequency effective 
connectivity analysis applied to experimental fNIRS signals. In contrast to other methods 
currently used in the neuroimaging literature to assess brain network connectivity, the 
proposed TPDC method provides important insight into the dynamics of connectivity in both 



the time and frequency domains. Based on an MVAR coefficient assessed by a dual-extended 
Kalman filtering, this analysis can be used in a number of biological time series (e.g. EEG, 
MEG, fMRI and fNIRS) to assess the dynamic evolution at rest, for experimental block 
design as well as during prolonged cognitive and/or motor task performance. Here, we 
applied this method on real fNIRS data from bi-hemispheric DLPFC, OFC, PMC, SMA and 
M1 areas (18 channels) during a simple continuous finger-tapping task. 

After correcting or disregarding noisy fNIRS signals, we applied TPDC analysis onto the 
time series of HbO concentration signals and extracted the dynamic effective connectivity and 
its temporal evolution on our frequency band of interest (i.e., neurovascular coupling [0.009 
to 0.08 Hz] [1,2]). The significance testing of our possible 306 connections was performed at 
the end of the processing using a bootstrapping method: 14 connections survived after 
running the dedicated analyses. The advantage of the TPDC compared to other connectivity 
methods proposed in the literature is its ability to assess not only the mean connectivity 
during the whole time series but also its dynamics, which is of major interest for a better 
understanding of the brain’s dynamic functional (re)organisation. 

The lagged-correlation based effective connectivity methods (e.g. GCM) have been 
extensively used in neuroscience to shed light on directional functional connectivity of the 
brain. Being complementary to DCM, GCM methods are not based on pre-assumption about 
the brain, hence increasing their potential applications in many fields. Studies addressing the 
problem of viability for using GCM on fMRI data claim that this technique is appropriate and 
a robust measure for fMRI [68]. This can also be relevant to fNIRS since this neuroimaging 
technique also reflects hemodynamic changes and relies on the neurovascular coupling in the 
brain [69]. 

Results from the present example application highlight the fluctuations of connectivity 
patterns between distant cortical areas, reflected by high std and Entropy results for some 
specific connections (Fig. 6(a), 6(c) and 6(b)). First, TPDC shows that there was higher 
connection’s strength over the sensorimotor areas than PFC regions. Then we show high 
dynamics in all connections during the motor task revealed by std and E results with higher 
fluctuations in M1L to PMCL, PMCR to PMCL, M1L to M1R compared to the four connections 
over the PFC. We also show a higher entropy of TPDC values in M1L to M1R compared to 
OFCL to OFCR. Within the context of the present study, our results (std and E) suggest that 
the effective connectivity evolves dynamically in time. 

The network of effective connectivity between cortical regions of interest (ROIs), namely 
sensorimotor cortex (SMC), PMC, DLPFC, during a finger tapping task in healthy subjects 
has been presented in earlier studies using MEG or EEG source analysis [18,70]. The GCM 
analysis has also been applied to fNIRS data to determine the effective connectivity between 
cortical ROIs in animal and human [13,71,72] experiments. In the above-mentioned studies, 
simultaneous use of one or two neuroimaging modalities has shown bi-directional or uni-
directional information flow patterns between the SMC, PMC and DLPFC ROIs. Recently, 
by combining fNIRS, EEG and fMRI neuroimaging methods, the effective connectivity of the 
same cortico-cortical sensorimotor networks (SMC, PMC, and DLPFC) during different 
finger movement tasks has been revealed [49]. However, none of the above studies has 
looked into the dynamics of the significant connections during the task, between the three 
ROIs. 

Additionally, in the present study we have also included two more important regions 
involved in motor tasks, the SMA and OFC, assessed in the literature both in activation and 
connectivity studies [4,14]. We were also able to look at the dynamic inter-hemispheric 
connections during a unilateral hand movement task, whose importance has been previously 
shown in such tasks using EEG [73]. Our study highlights a low variability (std and entropy) 
of bi-directional connectivity in the frontal cortex during a simple prolonged motor task. The 
PFC being defined as one key anatomical region involved in cognitive processes [74] leads us 
to conclude that our present task does not seem to require a high implication at the cognitive 



level (low TPDC strength in OFC and DLPFC areas (cf. Fig. 5)). At the sensorimotor level, 
observing high bi-directional connectivity strengths (Fig. 5) between both hemispheres seems 
consistent with the literature: First, it is well known that there are high bi-hemispheric 
functional connections for multiple sensorimotor areas at rest and during a motor task [75,76]. 
Second, our subjects performed a uni-manual motor task, of which the contralateral motor 
network is known to be primarily involved [13]. 

The functional network of cortical ROIs involved in rhythmic and sequential finger 
movements in healthy subjects has been analysed using EEG [77], MEG [70], fMRI [78] and 
fNIRS [79] separately, and the SMC, PMC and DLPFC have been found to be the three core 
regions of the cortical sensorimotor network for movement control [80]. Using TPDC 
method, our present findings allow extending a previous fNIRS study that showed only bi-
directional effective connectivity in the contralateral hemisphere between SMC and PMC 
during performance of a hand motor task [13]. The directions of information flow for 
rhythmic movements in the aforementioned studies have shown that the SMC plays a major 
role in directing voluntary motor tasks [22]. Nevertheless in this previous study, authors 
analysed only the mean of connectivity strength and didn’t take into account the dynamic of 
the network during the task. Since one of the key properties of the brain is the continuous 
juggling between functional integration and segregation, our results emphasise dynamic 
changes over short time windows (Fig. 3(c)) in the configuration of brain connections. 

5. Methodological considerations and limitations

5.1 Pre-processing of fNIRS data

Movement artefact is known to be one of the biggest causes of spurious connectivity analysis. 
In this study we used a combined artefact deletion technique (spline interpolation and 
wavelet). While we used this combined pre-processing approach with parameters proposed in 
the literature [58–60], the potential effect of a few undetected artefacts, or the effect of some 
signal transformation due to the correction on causality analysis, remain however to be 
clarified. More generally, discriminating between a ‘good’ and a ‘bad’ channel in the analysis 
of fNIRS time series is still an unsolved methodological issue. While it seems quite easy to 
discriminate between very noisy or not noisy signals, several other characteristics of the 
signal need to be carefully taken into account to determine which fNIRS signals are suitable 
for subsequent analyses. A comprehensive investigation of the different fNIRS pre-processing 
methods, including use of simulated data with multiple levels of noise and real fNIRS data 
from different experiments, probe positions and systems of data collection, would be very 
valuable in the aim of developing a unified procedure to select physiologically relevant 
fNIRS signals. 

5.2 Time partial directed coherence 

Despite the advantages of using TPDC over conventional causality methods, one drawback is 
that the TPDC method is time-consuming, owing to the estimation of MVAR coefficients at 
each time point. This limits its usage depending on the available computational resources and 
is not appropriated for fast diagnosis. It is important to point out the fact that the Granger 
Causality approach was used in this study to measure the brain dynamics inherent to a finger-
tapping task, the interplay between segregation and integration, and we did not study the 
underlying mechanism involved in this particular motor task. Our connectivity results are 
dependant on the targeted cortical areas and need to be considered within the limitation of the 
spatial resolution of fNIRS. 

Due to its poor spatial resolution but relatively high sampling frequency, fNIRS is a 
promising tool to investigate the dynamic connectivity of the cortex, but appears a limited 
tool to realise a mapping of connectivity for the whole brain. Nevertheless, some recent 
studies highlight the importance of these dynamics or fluctuations in the brain more than the 



localisation of the static connectivity between brain areas (mapping). One of the important 
developments needed to improve the TPDC method is to investigate the functional properties 
of these multiple networks with more appropriate tools. Furthermore, we analysed the mean 
of the dynamics during the entire motor task and did not take into account the global network 
properties. A graph analysis approach could be one way to extract the functional properties of 
TPDC results combining each connection in the same time. In addition, to specify which parts 
of the brain are connected to others, graph analysis could help our understanding of the 
functional organisation such as integration, segregation or small world network organisation. 
Nevertheless, few fNIRS studies have investigated this kind of analysis up until now and refer 
to another level of abstraction for the comprehension of the data [81]. 

6. Conclusion

This study proposed TPDC as a new time frequency effective connectivity analysis to be 
applied to fNIRS signals over multiple bi-hemispheric brain areas (M1, PMC, SMA, OFC and 
DLPFC) to investigate the time dynamics of the brain network during a continuous finger-
tapping task. The present contribution allows us to specify the direction of the link between 
two regions of interest: indeed, four connections (SMAL to M1L, M1L to PMCL, PMCL to 
DLPFCL and PMCL to OFCL) have been shown to be unidirectional and five are bi-directional 
connections, information that would typically be concealed using common functional 
undirected connectivity methods like correlation or coherence. Due to its ability to explore the 
temporal dynamics of connectivity, the present application example of TPDC highlights that 
this methods allows going beyond previous analysis in the literature, showing for example 
high Entropy during the task in the sensorimotor network. Such fluctuations constitute one of 
the key properties of a healthy adaptive brain that needs to respond to any upcoming internal 
or external constraints at multiple time scales. Thus, as a first step, it seems essential to better 
understand the basic dynamic organisation of the brain during a given task performance, with 
a view to further relating such fluctuations to the capability to adapt when facing constraints. 
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