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A Dynamic Grid-based Q-learning for Noise Covariance Adaptation in EKF and its Application in Navigation

The process and measurement noise covariance matrices significantly impact the Extended Kalman Filter (EKF) performance and are often hand-tuned in practice, which usually entails a tedious task. Q-learning, a wellknown method in reinforcement learning, has been applied recently to better adapt the noise covariance matrices for the EKF, thanks to its simplicity and capability in handling uncertain environments. Typically, some heuristics are involved in designing the Q-learning-based EKF (QLEKF), such as tuning grid size and covariance matrices values of each state, which inevitably degrades the estimation performance when the heuristics are not suitable. We propose a dynamic grid-based Qlearning EKF (DG-QLEKF) to overcome that drawback, which brings two novelties, an updated ϵ-greedy algorithm and a dynamic grid strategy. The proposed algorithm and strategy can thoroughly exploit arbitrary search scope and find appropriate values of noise covariance matrices. The effectiveness of DG-QLEKF, applied in navigation for attitude and bias estimation, is validated through the Monte Carlo method and real flight data from an unmanned aerial vehicle. The DG-QLEKF leads to much more improved state estimation than the QLEKF and traditional EKF.

I. INTRODUCTION

The Kalman filter (KF) is known to be optimal in minimizing the estimated error covariance [START_REF] Welch | An introduction to the Kalman filter[END_REF], and in separating stochastic noises from real signals given sensors measurements for linear systems [START_REF] Brown | Introduction to random signals and applied Kalman filtering : With MATLAB exercises and solutions[END_REF]. For systems with nonlinear dynamic models, the EKF linearizes dynamics and output functions at the current state estimate to propagate predictorcorrector functions of KF. To date, the EKF has been extensively used in state estimation under noisy data and applied to engineering domains, e.g., navigation [START_REF] Zmitri | BiLSTM network-based extended kalman filter for magnetic field gradient aided indoor navigation[END_REF], robotics, computer vision [START_REF] Crassidis | Survey of nonlinear attitude estimation methods[END_REF], and electrical power systems [START_REF] Auger | Industrial applications of the Kalman filter: A review[END_REF]. It is well known that the process and measurement noise covariance matrices significantly impact the EKF performance. In the absence of exact statistical knowledge on noises, assigning them with appropriate values often requires a tedious task. In practice, the noise covariance matrices are commonly hand-tuned in the EKF through trials and errors or defined by empirical rules, which can sometimes be time-consuming or results in barely satisfactory performance.

As one of the most important reinforcement learning methods, Q-learning [START_REF] Watkins | Learning from delayed rewards[END_REF] has drawn increasing interest in adapting the noise covariance matrices of EKF [START_REF] Maoudj | Q-learning-based navigation for mobile robots in continuous and dynamic environments[END_REF], [START_REF] Xiong | Q-learning for noise covariance adaptation in extended KALMAN filter[END_REF], for its modelfree algorithm, low computation demand, and capability in achieving optimality in Markov decision processes [START_REF] Watkins | Q-learning[END_REF]. In our previous work [START_REF] Dai | Q-learning-based noise covariance adaptation in Kalman filter for MARG sensors attitude estimation[END_REF], a Q-learning-based EKF (QLEKF) is proposed to autonomously adapt the values of process and measurement noise covariance matrices in the attitude estimation of a rigid body. Though improvement is revealed in estimation errors compared to the traditional EKF using hand-tuned noise covariance matrices, the design of QLEKF involves certain amounts of heuristics and a rule of thumb.

This paper proposes a dynamic grid-based Q-learning EKF (DG-QLEKF) to address the deficiencies mentioned above in QLEKF. To begin with, we propose an updated ϵ-greedy algorithm that enables unbiased exploration of state-action space and non-worse state convergence w.r.t. the reference state. Next, we propose the dynamic 3-by-3 grid determined by the dynamic center and ratio, where the center tracks the best-found noise covariance matrices, and the ratio defines the searching scope. In the continuation, we introduce the absolute accumulative innovation term as the criterion to quantify the performance of each process and measurement covariance matrices pair.

The main contributions of the paper are threefold. First, we propose an updated ϵ-greedy algorithm suited for optimal value searching in the Q-learning context. Second, we propose an efficient dynamic grid strategy for Q-learning with adaptable update characteristics that save the effort in defining the grid. Third, we propose an easy-to-implement and quick-responsive Q-learning algorithm that can adapt the noise covariance matrices of the EKF for large scope and with fine precision.

The rest of the paper is organized as follows. Section II formulates the state-space dynamic functions for nonlinear systems and introduces the traditional EKF. Section III recalls some preliminaries on the Q-learning and QLEKF. Section IV details the dynamic grid strategy and the updated ϵ-greedy algorithm, followed by the overall DG-QLEKF. Monte Carlo simulations are performed in Section V to estimate the attitude of a rigid body and sensor biases using the DG-QLEKF. Conclusion and future works are given in Section VI.

II. STATE-SPACE REPRESENTATION AND EKF-BASED ESTIMATION ALGORITHM

In this section, we formulate the dynamic functions of the nonlinear system and introduce the traditional EKF to estimate the observable states.

A. System formulation

We consider a discrete Markov model to describe a nonlinear system, with two dynamic functions as follows

x k+1 = f (x k ) + w k , y k = g(x k ) + v k , (1) (2) 
where f (•) and g(•) are process and measurement dynamic functions, respectively, and are assumed to be continuously differentiable, x k is the system state to be estimated, y k is the system measurable output, w k and v k are the process and measurement noises, respectively.

We assume that the process and measurement noises are independent Gaussian with zero mean, which means for ∀ i, j = 0, 1, 2, ..., we have

E[w i ] = 0, E[v i ] = 0, E[w i w T i ] = Q, E[v i v T i ] = R, E[w i v T j ] = 0, for i ̸ = j: E[w i w T j ] = 0 and E[v i v T j ] = 0,
where Q and R are the process and measurement noises covariance matrix, respectively.

B. The traditional extended Kalman filter

For nonlinear systems expressed by ( 1) and ( 2), the EKF used for state estimation is summarized in Alg. 1.

Algorithm 1 Traditional EKF 1: Input xk|k , P k|k , y k , Q, R 2: xk+1|k = f ( xk|k , 0) 3: A k = ∂f ∂x ( xk|k ) 4: P k+1|k = A k P k|k A T k + Q 5: C k+1 = ∂g ∂x ( xk+1|k ) 6: K k+1 = P k+1|k C T k+1 (C k+1 P k+1|k C T k+1 + R) -1 7: ỹk+1 = y k+1 -g( xk+1|k , 0) 8: xk+1|k+1 = xk+1|k + K k+1 ỹk+1 9: P k+1|k+1 = P k+1|k -K k+1 C k+1 P k+1|k 10: Output xk+1|k+1 , P k+1|k+1 , ỹk+1 III. THE Q-LEARNING-BASED APPROACH FOR NOISE COVARIANCE ADAPTATION
In this section, the Q-learning basics and their combination with the EKF are introduced, and then our previous work [START_REF] Dai | Q-learning-based noise covariance adaptation in Kalman filter for MARG sensors attitude estimation[END_REF] on Q-learning-based adaptation is recalled.

A. Preliminaries on Q-learning Q-learning is a reinforcement learning method that maximizes the long-term reward in a multi-state environment. That environment typically consists of discrete state-action pairs, each assigned with a scalar called Q-value. In Qlearning, the agent attempts to obtain an optimal sequential actions decision by maximizing the Q-value of each stateaction pair, called exploitation. Visiting the non-exploited state-action space by the agent is called exploration. Usually, exploitation and exploration need to be balanced by an action strategy. The ϵ-greedy algorithm [START_REF] Sutton | Reinforcement learning: An introduction[END_REF] is adopted in this work for its implementation simplicity and effectiveness compared to other exploration methods, e.g., random walk exploration [START_REF] Thrun | Efficient exploration in reinforcement learning[END_REF], [START_REF] Whitehead | A complexity analysis of cooperative mechanisms in reinforcement learning[END_REF], and Softmax action selection method [START_REF] Bridle | Training stochastic model recognition algorithms as networks can lead to maximum mutual information estimation of parameters[END_REF]. In the ϵ-greedy algorithm, the agent chooses a random action with a predefined probability of ϵ or picks the action that maximizes the Q-value with the probability of 1 -ϵ.

Each time after executing an action a, the agent receives a response from the environment, which is translated to a reward (R), showing how good the action is. The cumulative reward is stored as Q-value

Q(s, a) = (1 -α)Q(s, a) + α[R + γ max a∈A(s) Q(s ′ , a)], (3) 
where Q(s, a) ∈ R is the Q-value for the action a in state s, R ∈ R is the reward gained by executing a in state s, α is the learning rate, γ is the discount factor, and A(s) is the possible actions set when the agent is at s.

B. Q-learning-based noise covariance adaptation approach

In the Q-learning method, an agent typically moves among discrete states in a grid. For example, we can set the noise covariance matrices to M different values for Q as {Q (1) , ..., Q (M ) }, and N different values for R as {R (1) , ..., R (N ) }, and place them in a M -by-N grid, of which the element (i, j) stands for the noise covariance matrices (Q (i) , R (j) ). In this way, (Q (i) , R (j) ) are used in the EKF when the agent is at state (i, j).

In [START_REF] Dai | Q-learning-based noise covariance adaptation in Kalman filter for MARG sensors attitude estimation[END_REF], we have proposed the QLEKF that runs three parallel EKFs at each time step: the traditional EKF, which sets some initial values of (Q, R) for all time steps and serves as the benchmark for Q-learning; the learning EKF, which searches appropriate noise covariance matrices from the grid by the Q-learning algorithm; and the learned EKF, which outputs the result of estimation according to the covariance matrices found by the learning EKF. Please refer to Alg. 2 in [START_REF] Dai | Q-learning-based noise covariance adaptation in Kalman filter for MARG sensors attitude estimation[END_REF] for more details about the QLEKF. As shown in [START_REF] Dai | Q-learning-based noise covariance adaptation in Kalman filter for MARG sensors attitude estimation[END_REF], the QLEKF exhibits the benefit of improving the EKF state estimation by searching for more appropriate noise covariance matrices from a predefined set of values. However, QLEKF contains potential insufficiencies:

1) Heuristics are used to define (Q, R) for the traditional (reference) EKF, which matters to a great extent to the QLEKF estimation performance as it determines the reward computation.

2) The determination of the grid size and the value of each

(Q (i) , R (j)
) is generally heuristic, which is indeed a key factor for the QLEKF performance.

3) The state estimation produced by the learned EKF uses the exact sequence {(Q (i) , R (j) )} visited by the learning EKF, in which the random actions may degrade the estimation performance.

IV. THE DYNAMIC GRID-BASED Q-LEARNING ALGORITHM APPLIED TO THE EKF

To overcome the potential drawbacks of the QLEKF listed in Subsection III-B, we propose a deterministic way to design the dynamic grid and an update of the ϵ-greedy algorithm.

A. The dynamic grid and updated ϵ-greedy algorithm

We propose an advanced variant of the ϵ-greedy algorithm and the way to build the dynamic grid, shown in Alg. 2. First, Steps 4-5 enable an unbiased exploration at state s when its possible actions possess the same Q-value. Otherwise, if exploitation (Step 7) is enforced in that case, the agent would choose the first action located in A(s) by default, which causes a biased exploration. Second, Steps 8-9 ensure that only the states with positive reward can be chosen to stay, which guarantees the dominance of noise covariance matrices visited in Q-learning over their reference values. In what follows, we propose a dynamic grid strategy to address the difficulty in determining the grid size and state values of the QLEKF. Let (Q 0 , R 0 ) denote the initial noise covariance matrices used for the traditional EKF. We consider that the adaptation of noise covariance matrices

Algorithm 2 Updated ϵ-greedy Algorithm 1: a = Updated ϵ-greedy(ϵ, s, A(s), Q(s, a)) 2: Input: s, A(s) and Q(s, a) 3: Generate n from uniform distribution n ∼ U (0, 1) 4: if n < ϵ or ∀a 1 , a 2 ∈ A(s), Q(s, a 1 ) = Q(s,
(Q, R) is carried out in a set as C = {(Q, R) | Q = q 0 Q 0 , R = r 0 R 0 , 0 < q ≤ q 0 ≤ q, 0 < r ≤ r 0 ≤ r},
where q 0 and r 0 are the multiplication ratio associated with Q 0 and R 0 , respectively. The dynamic grid shown in Fig. 1 is created in the following way: i), determine

(Q c , R c ) ∈ C for the center element; ii), compute Q = max{q, 1 q }Q c , Q = min{q, q}Q c , R = max{r, 1
r }R c , R = min{r, r}R c where q > 1 and r > 1 are the multiplication factors associated with Q c and R c , respectively.

We design the 3-by-3 dynamic grid for the following reasons. First, 3-by-3 is the smallest grid that contains the noise covariance matrices combinations of reference values Q c , R c and their greater and smaller counterparts: R, R, Q and Q. Second, it is sufficient for Q-learning to explore and exploit all directions from the center element. Third, its all 9 elements can be visited whit a shorter learning period, compared to larger size grids in [START_REF] Xiong | Q-learning for noise covariance adaptation in extended KALMAN filter[END_REF], [START_REF] Dai | Q-learning-based noise covariance adaptation in Kalman filter for MARG sensors attitude estimation[END_REF]. Fourth, by dynamically updating the ratio r, q and the central element (Q c , R c ), it allows Q-learning to search in an arbitrarily large scope (by manipulating q, r, r and q) with an arbitrarily high precision (by setting r and q close to 1).

B. The Dynamic Grid-based Q-learning EKF approach

The DG-QLEKF is summarized in Alg. 3, in which Step 18 integrates Alg. 4 to update the 3-by-3 dynamic grid. We emphasize the difference in contrast to the QLEKF in elaborating the DG-QLEKF. To begin with, we introduce an absolute metric T in Step 11 as the innovation term norm of the learning EKF, which eliminates the impact of the innovation term of the reference EKF and reflects the absolute innovation magnitude of each distinct (Q, R). If

Step 17 in Alg. 3 is satisfied, then we focus on T mean , the average T of the state s c as presented in Step 2 of Alg. 4, because it further mitigates the impact of previous state estimate xl k on T and indicates the average innovation term magnitude when 'stay' action is executed. If a lower T mean appears, we first reset n T , the counter of local state convergence without finding a lower T mean , to 0, making the current grid be continually examined enough times before update. Then if s c corresponds to the non-center element, we move the center to that element and reset the ratio to initial values as in Step 6, which generates a new 3-by-3 grid. If no lower T mean is observed, n T is self added by 1 until it reaches the predefined threshold n ratio , in which case we increase r and q. The logic behind this is, first, multiple times (n ratio ) check after local convergence averts the non-fully visited situation. Second, every newly found center is an appropriate values candidate. In turn, from its near (small ratio) to distant (large ratio) neighbors, its T mean should be compared with that of other candidates. Unlike in the QLEKF, where the traditional (reference) EKF uses fixed noise covariance matrices, in the DG-QLEKF, each time (Q c , R c ) is changed (lower T min is found), it will be applied to the traditional EKF from the next period learning, ensuring that the best-found noise covariance matrices are referred to compute the reward R in Step 10 of Alg. 3. After the Q-learning has searched throughout the predefined scope (Step 23 of Alg. 3), the noise covariance matrices (Q c , R c ) that produce the lowest average innovation term, are used as deterministic values of noise covariance matrices to compute the final state estimation.

Algorithm 3 Dynamic Grid Q-learning Extended Kalman Filter (DG-QLEKF) 1: Initialize xt 0|0 = xl 0|0 , P t 0|0 = P l 0|0 , r, r 0 , q, r, q, q 0 , R 0 , Q 0 , n l and n ratio 2: R ← 0, T ← 0,

T record ← ∅, T min ← ∞, k ← 0, R c ← R 0 , Q c ← Q 0 , r ← r 0 , q ← q 0 , n T ← 0 3: ∀s ∈ S, a ∈ A(s), Q(s, a) ← 0 4: repeat 5: a = Updated ϵ-greedy(0.1, s, A(s), Q(s, a)) 6:
Execute action a and obtain state s ′

7:

for each time step in one period do 8: end if 23: until q = q, r = r and n T = n ratio 24: use Q c and R c to compute { xk } and {P k }

[ xt k+1 , P t k+1 , ỹt k+1 ] = EKF ( xt k , P t k , y t k , Q c , R c ) {Reference EKF} 9: [ xl k+1 , P l k+1 , ỹl k+1 ] = EKF ( xl k , P l k , y l k , Q(s ′ ), R(s ′ ))
T record ← [T record , T ], s ← s ′ , R ← 0, T ←

C. Estimation error bounds of DG-QLEKF

In this subsection, we prove that the mean square of the state estimation error of DG-QLEKF is exponentially bounded.

According to Alg. 1, ( 1) and ( 2) can be expanded at xk xk+1|k using Taylor approximation as [START_REF] Auger | Industrial applications of the Kalman filter: A review[END_REF] where ϕ(•) and ψ(•) are nonlinear functions to offset the linearization error of f (•) and g(•), respectively.

x k+1 =f ( xk ) + A k (x k -xk ) + w k + ϕ(x k , xk ), y k+1 =g( xk+1|k ) + C k (x k+1 -xk+1|k ) + v k + ψ(x k+1 , xk+1|k ), (4) 
Let the state estimation error is defined by xk = x k -xk . Combining Step 2, 7, 8 of Alg. 1, (4) and ( 5), we have

xk+1 = (I -K k+1 C k+1 )A k xk + r k + s k , (6) 
1 In this case, we consider max s∈S,a∈A(s) Q(s, a) = Q(sc, 'stay') is practically satisfied, e.g. the state trajectory is locally converged to sc. To balance the efficiency and accuracy, The condition that sc appears at least 8 times in the least 10 consecutive states is adopted for simulations in Section V.

Algorithm 4 Dynamic Grid Update (DGU) 1: Input: s c , T record , q, r, T min , n l and the current 3-by-3 grid 2: T mean ← mean value of T corresponding to s c over the latest n l elements of T record 3: if T mean < T min {better innovation found for converged state} then r ← r 0 , q ← q 0 {reset the ratio} 8:

T min ← T mean 9:

end if 10: else 11:

n T ← n T + 1 12:
if n T = n ratio then 13: increase r and q {current grid is well exploited, expand search scope} 14:

end if 15: end if where r k = (I -K k+1 C k+1 )ϕ(x k , xk ) - K k+1 ψ(x k+1 , xk+1|k ), s k = (I -K k+1 C k+1 )w k - K k+1 v k+1 .
Theorem 1: Consider a nonlinear stochastic system given by (1), [START_REF] Brown | Introduction to random signals and applied Kalman filtering : With MATLAB exercises and solutions[END_REF]. If there are real numbers a, a, c, c, p, p, q ′ , q ′ , r ′ , r ′ , α 1 , α 2 , α 3 > 0, such that for every k ≥ 0 we have

a ≤ ||A k || ≤ a, c ≤ ||C k || ≤ c, || xk || ≤ α 1 , pI ≤ P k ≤ pI, q ′ I ≤ Q c ≤ q ′ I, r ′ I ≤ R c ≤ r ′ I, ||ϕ(x k , xk )|| ≤ α 2 || xk || 2 , ||ψ(x k+1 , xk+1|k )|| ≤ α 3 || xk || 2 , (7) (8) (9) (10) 
then we can design a ϵ 0 > 0 provided that || x0 || ≤ ϵ 0 such that the estimation error xk of DG-QLEKF represented by Alg. 3 is bounded in mean square and bounded with probability one.

V. NUMERICAL SIMULATIONS WITH REAL DATA

We consider the framework of navigation systems and focus on the problem of attitude/bias estimation using magnetic, angular rate, and gravity (MARG) sensors. The proposed estimation approach is evaluated with 50 Monte Carlo simulations using real flight data from Euroc database [START_REF] Burri | The EuRoC micro aerial vehicle datasets[END_REF].

A. Dynamic model formulation for attitude and bias

We build up the dynamic model for a rigid body moving in space. Let B denote the body frame and N denote the navigation frame. First, we introduce the dynamic of attitude as q = 1 2 Ω(ω)q, where q = [q 0 , q 1 , q 2 , q 3 ] T is the quaternion that describes the attitude with ∥q∥ = 1, of which q 0 is the scalar part and q 1 , q 2 , q 3 compose the vector part, ω = [ω x , ω y , ω z ] T ∈ R 3 is the true angular velocity of B w.r.t. N expressed in N , and

Ω(ω) = -⌊ω×⌋ ω -ω T 0 , ⌊ω×⌋ =   0 -ω z ω y ω z 0 -ω x -ω y ω x 0   .
Second, C B N (q) ∈ R 3×3 is the rotation matrix from N to B expressed in B using quaternion elements [START_REF] Kuipers | Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace, and Virtual Reality[END_REF],

C B N (q) =   2q 2 0 -1 + 2q 2 1
2 (q 1 q 2 + q 0 q 3 ) 2 (q 1 q 3 -q 0 q 2 ) 2 (q 1 q 2 -q 0 q 3 ) 2q 2 0 -1 + 2q 2 2 2 (q 2 q 3 + q 0 q 1 ) 2 (q 1 q 3 + q 0 q 2 ) 2 (q 2 q 3 -q 0 q 1 ) 2q

2 0 -1 + 2q 2 3   .
Then, the output of MARG sensors can be modeled 2 by

     ω m = ω + b g + v g , a = C b n (q)g + b a + v a , m = C b n (q)h + b m + v m , (11) 
where ω m ∈ R Next, we consider the state vector to be estimated as

x k = [q k ; b g k ; b a k ; b m k ].
After discretization, the state transition equation is formulated as

x k+1 = f (x k ) + w k = blkdiag(Ω k , B, I 3 , I 3 )[q k ; b g k ; b a k ; b m k ] + [w q k ; w g k ; w a k ; w m k ],
where Ω k = I 3 + 1 2 Ω(ω m k -b g k )T e is the quaternion dynamic matrix [START_REF] Dai | Q-learning-based noise covariance adaptation in Kalman filter for MARG sensors attitude estimation[END_REF], [START_REF] Wertz | Spacecraft Attitude Determination and Control[END_REF], and the gyroscope bias b g k is represented by a discrete Gaussian-Markov process, in which B = (1 -β -1 )T e I 3 is derived from ḃg k = -β -1 b g k + w g k with β being the time constant of bias variation, and T e = t k+1 -t k denotes the sampling interval, b a k and b m k are modeled as standard random walk, and w q k , w g k , w a k and w m k form the process noise, assumed to be uncorrelated Gaussian with zero mean and covariance matrices Σ q w = σ 2 w,q I 3 , Σ g w = σ 2 w,g I 3 , Σ a w = σ 2 w,a I 3 and Σ m w = σ 2 w,m I 3 . As such, the process noise covariance matrix is diagonal and is represented by Q = blkdiag(Σ q w , Σ g w , Σ a w , Σ m w ). Subsequently, the measurement model is constructed by grouping measurements of accelerometer and magnetometer:

y k = [a k ; m k ] = g(x k ) + v k = blkdiag(C b n (q k ), C b n (q k ))[g; h]+[v a k ; v m k ].
Finally, the measurement noise covariance matrix is diagonal and is represented by R = blkdiag(Σ v a , Σ v m ).

B. Monte Carlo numerical simulations

We use the ground truth of b g , b a and q true from Euroc database [START_REF] Burri | The EuRoC micro aerial vehicle datasets[END_REF]. And q true is used to solve out the ω. The 2 In the simulation, we consider that the rigid body is just rotating on itself and its center of mass is not moving; thus the body linear acceleration expressed in N is zero. k } are set as a geometric progression with a ratio of 10 and Q (3) = Q 0 , R (3) = R 0 . The Q-learning search starts at the grid (Q (2) , R (2) ). For each Monte Carlo simulation, we run 360 periods and 100 time steps for each iteration. The learning rate, discount factor and random action selection probability are fixed to α = 0.1, γ = 0.9 and ϵ = 0.1, respectively.

Table I shows that after the convergence of 50 Monte Carlo simulations, the three EKFs deliver different state estimation performances. Generally, the QLEKF outperforms the traditional EKF, particularly improving the quaternion error by 58.34%. As for the DG-QLEKF, it exhibits a prominent predominance of all statistics compared to both the traditional EKF and QLEKF. In detail, the average improvements in quaternion error, RMSEs of gyroscope bias, accelerometer bias, and magnetometer bias of DG-QLEKF compared to the traditional EKF are 88.93%, 40.60%, 82.39% and 74.62%, while those improvements of DG-QLEKF compared to QLEKF are 73.42%, 29.70%, 75.21%, and 69.22%, respectively. As shown in Fig. 2, the three curves share similar tendencies and fluctuations after convergence. In contrast, the quaternion error of DG-QLEKF is always distinctly lower than the other two EKFs in the whole convergence period. Similar behaviors can be observed from Fig. 3, but with more unstable variations of QLEKF. * For a ground truth unit quaternion qtrue, the quaternion error of its unit estimate q is computed as ∥q -1 true ⊗ qq I ∥, where q I = [1 0 0 0] T is the identity quaternion. In this paper, the Q-learning-based EKF (QLEKF) for state estimation of nonlinear systems was introduced as a premise to address the often-cumbersome tuning of noise covariance matrices in the EKF. To overcome the existing drawbacks of QLEKF resulting from heuristics in designing Q-learning, a dynamic grid-based Q-learning EKF algorithm (DG-QLEKF) has been proposed, which can thoroughly exploit an arbitrary search scope to find appropriate values of noise covariance matrices, leading to excellent state estimation. Through Monte Carlo numerical simulations based on real flight data from an unmanned aerial vehicle, the DG-QLEKF, on average, has revealed much more improvement in attitude and biases estimation after convergence compared to the traditional EKF and QLEKF. Future work on the DG-QLEKF can be undertaken by adapting inter-process and inter-measurement noises covariance matrices.
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 1 Fig.1: The 3-by-3 dynamic grid of states (process and measurement noises covariance matrices pairs) and the corresponding possible actions, represented by arrows. The agent is allowed to 'stay' at its current state or move to its adjacent state by executing one action.
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 45 T ← 0 {reset no-new-better counter} if s c ̸ = (2, 2) {new center is found} then 6: Q c , R c ← noise covariance matrices values in the current 3-by-3 grid corresponding to s c 7:

  3 is the measured angular velocity, m ∈ R 3 is the measured Earth's magnetic field in B w.r.t. N , a ∈ R 3 is the measured acceleration in B w.r.t. N , g ∈ R 3 is the gravity vector, h ∈ R 3 is the Earth's magnetic field in N , b g , b a , b m ∈ R 3 are the bias of gyroscope, accelerometer and magnetometer, respectively, and v g , v a , v m ∈ R 3 are assumed to be uncorrelated Gaussian noises of these sensors with zero mean and covariance matrices Σ g = σ 2 g I 3 , Σ a = σ 2 a I 3 and Σ m = σ 2 m I 3 , where I 3 denotes the identity matrix of dimension 3.

Fig. 2 :

 2 Fig. 2: Mean quaternion error (refer to Table I for the computation) among the traditional EKF, QLEKF, and DG-QLEKF after convergence of 50 Monte Carlo simulations

Fig. 3 :

 3 Fig. 3: Norm of RMSE of gyroscope bias, accelerometer bias, and magnetometer bias among the traditional EKF, QLEKF, and DG-QLEKF after convergence of 50 Monte Carlo simulations
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	5:	select a randomly from A(s)
	6: else	
	7:	a = arg max a∈A(s) Q(s, a)
	8:	if a='stay' and Q(s, 'stay') < 0 then
	9:	select action a randomly from A(s) \ 'stay'
	10:	end if	
	11: end if	
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	16:	xl k+1 ← xt k+1 , P l k+1 ← P t k+1
	17:	

if a state s c appears sufficiently frequent in the latest n l consecutive states 1 then 18: Update Q c , R c , q and r by DGU (Alg. 4) 19: T record ← ∅ {reset record lists after convergence} 20: select s randomly state from S 21: ∀s ∈ S, a ∈ A(s), Q(s, a) ← 0 22:

TABLE I :

 I Mean of 50 Monte Carlo simulations after convergence for quaternion error and Root Mean Square Error (RMSE) of bias of gyroscope, accelerometer, and magnetometer

		Mean of quaternion error* (×10 -3 )	RMSE of gyroscope bias (mrad/s) x-axis y-axis z-axis	RMSE of accelerometer bias (m/s 2 ) x-axis y-axis z-axis	RMSE of magnetometer bias (mGauss) x-axis y-axis z-axis
	Traditional EKF	18.35	1.564	1.534	1.184	0.135	0.183	0.064	6.756	1.744	3.580
	QLEKF	7.644	1.231	1.116	1.133	0.120	0.067	0.048	4.942	1.089	3.963
	DG-QLEKF	2.032	0.760	0.643	1.038	0.043	0.014	0.008	1.816	0.277	1.196
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