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A Dynamic Grid-based Q-learning for Noise Covariance Adaptation in
EKF and its Application in Navigation

Xiang Dai', Hassen Fourati! and Christophe Prieur

Abstract—The process and measurement noise covari-
ance matrices significantly impact the Extended Kalman Fil-
ter (EKF) performance and are often hand-tuned in prac-
tice, which usually entails a tedious task. Q-learning, a well-
known method in reinforcement learning, has been applied
recently to better adapt the noise covariance matrices for
the EKF, thanks to its simplicity and capability in handling
uncertain environments. Typically, some heuristics are involved
in designing the Q-learning-based EKF (QLEKF), such as
tuning grid size and covariance matrices values of each state,
which inevitably degrades the estimation performance when the
heuristics are not suitable. We propose a dynamic grid-based Q-
learning EKF (DG-QLEKEF) to overcome that drawback, which
brings two novelties, an updated e¢-greedy algorithm and a
dynamic grid strategy. The proposed algorithm and strategy can
thoroughly exploit arbitrary search scope and find appropriate
values of noise covariance matrices. The effectiveness of DG-
QLEKEF, applied in navigation for attitude and bias estimation,
is validated through the Monte Carlo method and real flight
data from an unmanned aerial vehicle. The DG-QLEKEF leads
to much more improved state estimation than the QLEKF and
traditional EKF.

I. INTRODUCTION

The Kalman filter (KF) is known to be optimal in mini-
mizing the estimated error covariance [1], and in separating
stochastic noises from real signals given sensors measure-
ments for linear systems [2]. For systems with nonlinear
dynamic models, the EKF linearizes dynamics and output
functions at the current state estimate to propagate predictor-
corrector functions of KF. To date, the EKF has been exten-
sively used in state estimation under noisy data and applied to
engineering domains, e.g., navigation [3], robotics, computer
vision [4], and electrical power systems [5]. It is well known
that the process and measurement noise covariance matrices
significantly impact the EKF performance. In the absence of
exact statistical knowledge on noises, assigning them with
appropriate values often requires a tedious task. In practice,
the noise covariance matrices are commonly hand-tuned in
the EKF through trials and errors or defined by empirical
rules, which can sometimes be time-consuming or results in
barely satisfactory performance.

As one of the most important reinforcement learning meth-
ods, Q-learning [6] has drawn increasing interest in adapting
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the noise covariance matrices of EKF [7], [8], for its model-
free algorithm, low computation demand, and capability in
achieving optimality in Markov decision processes [9]. In
our previous work [10], a Q-learning-based EKF (QLEKF)
is proposed to autonomously adapt the values of process
and measurement noise covariance matrices in the attitude
estimation of a rigid body. Though improvement is revealed
in estimation errors compared to the traditional EKF using
hand-tuned noise covariance matrices, the design of QLEKF
involves certain amounts of heuristics and a rule of thumb.

This paper proposes a dynamic grid-based Q-learning EKF
(DG-QLEKF) to address the deficiencies mentioned above
in QLEKF. To begin with, we propose an updated e-greedy
algorithm that enables unbiased exploration of state-action
space and non-worse state convergence w.r.t. the reference
state. Next, we propose the dynamic 3-by-3 grid determined
by the dynamic center and ratio, where the center tracks the
best-found noise covariance matrices, and the ratio defines
the searching scope. In the continuation, we introduce the
absolute accumulative innovation term as the criterion to
quantify the performance of each process and measurement
covariance matrices pair.

The main contributions of the paper are threefold. First,
we propose an updated e-greedy algorithm suited for opti-
mal value searching in the Q-learning context. Second, we
propose an efficient dynamic grid strategy for Q-learning
with adaptable update characteristics that save the effort in
defining the grid. Third, we propose an easy-to-implement
and quick-responsive Q-learning algorithm that can adapt the
noise covariance matrices of the EKF for large scope and
with fine precision.

The rest of the paper is organized as follows. Section II
formulates the state-space dynamic functions for nonlinear
systems and introduces the traditional EKF. Section III
recalls some preliminaries on the Q-learning and QLEKF.
Section IV details the dynamic grid strategy and the updated
e-greedy algorithm, followed by the overall DG-QLEKF.
Monte Carlo simulations are performed in Section V to
estimate the attitude of a rigid body and sensor biases using
the DG-QLEKF. Conclusion and future works are given in
Section VI.

II. STATE-SPACE REPRESENTATION AND
EKF-BASED ESTIMATION ALGORITHM

In this section, we formulate the dynamic functions of
the nonlinear system and introduce the traditional EKF to
estimate the observable states.



A. System formulation

We consider a discrete Markov model to describe a
nonlinear system, with two dynamic functions as follows

11 = f(xr) + wi, (D
yr = g(xk) + v, (2)

where f(-) and g(-) are process and measurement dynamic
functions, respectively, and are assumed to be continuously
differentiable, xj, is the system state to be estimated, yy is
the system measurable output, wy and vy are the process
and measurement noises, respectively.

We assume that the process and measurement noises are
independent Gaussian with zero mean, which means for
Y i,7 = 0,1,2,..., we have Elw;] = 0, E[v;] = 0,
Elw,wl] = Q, Ev;v]] = R, ]E[wiva] = 0, for i #
j: Elwiw]] = 0 and E[v;v]] = 0, where Q and R
are the process and measurement noises covariance matrix,
respectively.

B. The traditional extended Kalman filter

For nonlinear systems expressed by (1) and (2), the EKF
used for state estimation is summarized in Alg. 1.

Algorithm 1 Traditional EKF

Input &, Pyjk, Yr, Q, R

Zi 1)k = [ (T, 0)

A = (&)

Pijp = AP AL +Q

Cri1= %(imuk)

K11 = Pk CL o (Crp1 P Oy + R)
Yr+1 = Yk+1 — 9(&r11)5, 0)

iik+1|k+1 = ik—&-l\k + KkJrl:ngrl

Pi1jer1 = Pryajp = Kit1Crp1 Py
Output Ty 1511, Pry1jk+1, Yr+1
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ITIT. THE Q-LEARNING-BASED APPROACH FOR
NOISE COVARIANCE ADAPTATION

In this section, the Q-learning basics and their combination
with the EKF are introduced, and then our previous work
[10] on Q-learning-based adaptation is recalled.

A. Preliminaries on Q-learning

Q-learning is a reinforcement learning method that max-
imizes the long-term reward in a multi-state environment.
That environment typically consists of discrete state-action
pairs, each assigned with a scalar called Q-value. In Q-
learning, the agent attempts to obtain an optimal sequential
actions decision by maximizing the Q-value of each state-
action pair, called exploitation. Visiting the non-exploited
state-action space by the agent is called exploration. Usually,
exploitation and exploration need to be balanced by an action
strategy. The e-greedy algorithm [11] is adopted in this work
for its implementation simplicity and effectiveness compared
to other exploration methods, e.g., random walk exploration
[12], [13], and Softmax action selection method [14]. In the

e-greedy algorithm, the agent chooses a random action with a
predefined probability of € or picks the action that maximizes
the Q-value with the probability of 1 — e.

Each time after executing an action a, the agent receives
a response from the environment, which is translated to a
reward (RR), showing how good the action is. The cumulative
reward is stored as Q-value

Q(s,a) = (1 —a)Q(s,a) + a[R+~v max Q(s',a)], 3)
a€A(s)

where Q(s,a) € R is the Q-value for the action a in state
s, R € R is the reward gained by executing a in state s, o
is the learning rate, v is the discount factor, and A(s) is the
possible actions set when the agent is at s.

B. Q-learning-based noise covariance adaptation approach

In the Q-learning method, an agent typically moves
among discrete states in a grid. For example, we can set
the noise covariance matrices to M different values for
Q as {QW,..,Q™M)}, and N different values for R as
{RM, ..., RN}, and place them in a M-by-N grid, of
which the element (7,j) stands for the noise covariance
matrices (Q*), RY)). In this way, (Q(”), RY)) are used in
the EKF when the agent is at state (3, j).

In [10], we have proposed the QLEKF that runs three
parallel EKFs at each time step: the traditional EKF, which
sets some initial values of (Q, R) for all time steps and
serves as the benchmark for Q-learning; the learning EKF,
which searches appropriate noise covariance matrices from
the grid by the Q-learning algorithm; and the learned EKF,
which outputs the result of estimation according to the
covariance matrices found by the learning EKF. Please refer
to Alg. 2 in [10] for more details about the QLEKF. As
shown in [10], the QLEKF exhibits the benefit of improving
the EKF state estimation by searching for more appropriate
noise covariance matrices from a predefined set of values.
However, QLEKF contains potential insufficiencies:

1) Heuristics are used to define (Q, R) for the traditional
(reference) EKF, which matters to a great extent to the
QLEKEF estimation performance as it determines the
reward computation.

2) The determination of the grid size and the value of each
(Q™W, RY) is generally heuristic, which is indeed a
key factor for the QLEKF performance.

3) The state estimation produced by the learned EKF
uses the exact sequence {(Q", RU))} visited by
the learning EKF, in which the random actions may
degrade the estimation performance.

IV. THE DYNAMIC GRID-BASED Q-LEARNING
ALGORITHM APPLIED TO THE EKF

To overcome the potential drawbacks of the QLEKF listed
in Subsection III-B, we propose a deterministic way to design
the dynamic grid and an update of the e-greedy algorithm.



A. The dynamic grid and updated e-greedy algorithm

We propose an advanced variant of the e-greedy algorithm
and the way to build the dynamic grid, shown in Alg. 2. First,
Steps 4-5 enable an unbiased exploration at state s when
its possible actions possess the same Q-value. Otherwise,
if exploitation (Step 7) is enforced in that case, the agent
would choose the first action located in A(s) by default,
which causes a biased exploration. Second, Steps 8-9 ensure
that only the states with positive reward can be chosen to
stay, which guarantees the dominance of noise covariance
matrices visited in Q-learning over their reference values.

Algorithm 2 Updated e-greedy Algorithm

1: a = Updated e-greedy(e, s, A(s), Q(s, a))

2: Input: s, A(s) and Q(s,a)

3: Generate n from uniform distribution n ~ U(0,1)

4: if n < eor Vay,az € A(s), Q(s,a1) = Q(s,az) then
5:  select a randomly from A(s)
6
7
8
9

: else
a = arg maXgc A(s) Q(S? a)
if a="stay’ and Q(s,’stay’) < 0 then
: select action a randomly from A(s) \ ’stay’
10:  end if

11: end if
Fig. 1: The 3-by-3 dynamic grid of states (process and

measurement noises covariance matrices pairs) and the corre-
sponding possible actions, represented by arrows. The agent
is allowed to ’stay’ at its current state or move to its adjacent
state by executing one action.

In what follows, we propose a dynamic grid strategy
to address the difficulty in determining the grid size and
state values of the QLEKF. Let (Qo, Ry) denote the initial
noise covariance matrices used for the traditional EKF. We
consider that the adaptation of noise covariance matrices
(Q,R) is carried out in a set as C = {(Q,R) | Q =
90Qo, R = 10Ry,0 < g < g0 < 3,0 <r <rg <T},
where ¢ and 7 are the multiplication ratio associated with
Q) and Ry, respectively. The dynamic grid shown in Fig. 1
is created in the following way: i), determine (Q., R.) € C

Q = min{g, ¢}Q., R = max{r, +}R., R = min{7,7} R,
where ¢ > 1 and » > 1 are the multiplication factors
associated with Q. and R, respectively.

We design the 3-by-3 dynamic grid for the following
reasons. First, 3-by-3 is the smallest grid that contains the
noise covariance matrices combinations of reference values
Q., R. and their greater and smaller counterparts: R, R,
Q and Q. Second, it is sufficient for Q-learning to explore
and exploit all directions from the center element. Third,
its all 9 elements can be visited whit a shorter learning
period, compared to larger size grids in [8], [10]. Fourth, by
dynamically updating the ratio 7, ¢ and the central element
(Q., R.), it allows Q-learning to search in an arbitrarily
large scope (by manipulating ¢, r, 7 and ) with an arbitrarily
high precision (by setting r and ¢ close to 1).

for the center element; ii), compute @ = max{g, %}QC,

B. The Dynamic Grid-based Q-learning EKF approach

The DG-QLEKEF is summarized in Alg. 3, in which Step
18 integrates Alg. 4 to update the 3-by-3 dynamic grid.
We emphasize the difference in contrast to the QLEKF in
elaborating the DG-QLEKF. To begin with, we introduce
an absolute metric 7" in Step 11 as the innovation term
norm of the learning EKF, which eliminates the impact of
the innovation term of the reference EKF and reflects the
absolute innovation magnitude of each distinct (Q, R). If
Step 17 in Alg. 3 is satisfied, then we focus on Ty,eqn,
the average T of the state s. as presented in Step 2 of
Alg. 4, because it further mitigates the impact of previous
state estimate i% on 7' and indicates the average innovation
term magnitude when ’stay’ action is executed. If a lower
Tmean appears, we first reset nr, the counter of local state
convergence without finding a lower T},,cqr, to 0, making the
current grid be continually examined enough times before
update. Then if s. corresponds to the non-center element,
we move the center to that element and reset the ratio to
initial values as in Step 6, which generates a new 3-by-3
grid. If no lower T),cqn is oObserved, np is self added by
1 until it reaches the predefined threshold 7,.4¢;,, in Which
case we increase r and ¢. The logic behind this is, first,
multiple times (n.44;0) check after local convergence averts
the non-fully visited situation. Second, every newly found
center is an appropriate values candidate. In turn, from its
near (small ratio) to distant (large ratio) neighbors, its T,ean
should be compared with that of other candidates. Unlike
in the QLEKF, where the traditional (reference) EKF uses
fixed noise covariance matrices, in the DG-QLEKF, each
time (Q., R.) is changed (lower T,,;, is found), it will be
applied to the traditional EKF from the next period learning,
ensuring that the best-found noise covariance matrices are
referred to compute the reward R in Step 10 of Alg. 3. After
the Q-learning has searched throughout the predefined scope
(Step 23 of Alg. 3), the noise covariance matrices (Q., R.)
that produce the lowest average innovation term, are used as
deterministic values of noise covariance matrices to compute
the final state estimation.



Algorithm 3 Dynamic Grid Q-learning Extended Kalman
Filter (DG-QLEKF)

1: Initialize :17:6‘0 = ﬁ”f)\o’ Pglo = Pé\o’ r, 7o, ¢ Ts G, qos
ROs Q()’ ny and Nratio
2R+ 0, T 0, Thocora — 0, Trpin, + 00, k — 0,
R, Ry, Q. Qy, 710, ¢4 qo, n7 <0
Vs € S,a € A(s), Q(s,a) < 0
repeat
a = Updated e-greedy(0.1, s, A(s), Q(s, a))
Execute action a and obtain state s’
for each time step in one period do
[5&;&17 Pl£+1a g12+1] = EKF(i'I;w P1§7
Yy, Q.. R.) {Reference EKF}
9: [ﬁj§€+1?Pé+1ag§c+l] :EKF(:f}gC,P’i,
yL,Q(s"), R(s")) {Learning EKF}
10: R R+ g4l = [[Fhpal
11: T < T+ g}, || {accumulate absolute innovation
term corresponds to (Q(s’), R(s'))}
12: E+—k+1
13:  end for
14 Update Q(s,a) by (3)
15: Trecord & [Trecord, T), s+ 8, R« 0, T + 0
16 By By, Py« Pl
17:  if a state s. appears sufficiently frequent in the latest
n; consecutive states' then
18: Update Q., R., q and r by DGU (Alg. 4)

o S A

19: Trecora <+ O {reset record lists after convergence}
20: select s randomly state from S

21: Vs e S,a € A(s), Q(s,a) 0

22:  end if

23: until ¢ =G, r =7 and ny = Nyario
24: use Q, and R, to compute {&} and {Py}

C. Estimation error bounds of DG-QLEKF

In this subsection, we prove that the mean square of
the state estimation error of DG-QLEKF is exponentially
bounded.

According to Alg. 1, (1) and (2) can be expanded at &y,
Zj41)k using Taylor approximation as

Tpp1 =f(Tr) + Ap(xp — Tn) + wi + O(Tr, 1), )
Y1 =9(@py1x) + Cr(Trr1 — Trgn) + vrt
Y(Xpr1, Tpti|k)s &)

where ¢(-) and () are nonlinear functions to offset the
linearization error of f(-) and g(-), respectively.

Let the state estimation error is defined by T = xy — Ty.
Combining Step 2, 7, 8 of Alg. 1, (4) and (5), we have

ZTp1 = (I — Kp11Crq1) ArZy + 7 + Sk, (6)

'In this case, we consider maX,es acA(s) @(s;a) = Q(sc, stay’) is
practically satisfied, e.g. the state trajectory is locally converged to s.. To
balance the efficiency and accuracy, The condition that s. appears at least 8
times in the least 10 consecutive states is adopted for simulations in Section
V.

Algorithm 4 Dynamic Grid Update (DGU)

1: Input: s., Trecords ¢» 7> Tmin, 7 and the current 3-by-3
grid
2: Tinean < mean value of T corresponding to s. over the
latest n; elements of T}.ccorg
3: if Threan < Tinin {better innovation found for converged
state} then
. nrp < 0 {reset no-new-better counter}
5. if s, # (2,2) {new center is found} then
Q.. R. < noise covariance matrices values in the
current 3-by-3 grid corresponding to s,
T < T0, ¢ < qo {reset the ratio}
Tmin — Tmean
. end if
10: else
11: ny < ny+1
12: if np = Nratio then

13: increase r and ¢ {current grid is well exploited,
expand search scope}

14:  end if

15: end if

where 7y = (I — Kpt1Cii1)o(xr, ) —

Kypn(®pyn, @qp)s sk = (I — Kpp1Crpr)wy, —

K 1V541.

Theorem 1: Consider a nonlinear stochastic
system given by (1), (2). If there are real numbers
a,a,¢,¢p,0,q¢,q,r, 7, a1, as, a3 > 0, such that for every
k > 0 we have

a < ||Agl| <a,c <||Ck]| < T ||| < o, (7)
pl <P, <pl,{I1<Q.<TIrI<R.<7I, (8
¢ (@n, 1) < vzl @], )

[(@hs1, Zrgr )| < os]|Ek] |, (10

then we can design a ey > 0 provided that ||Zo|| < €
such that the estimation error xj, of DG-QLEKF represented
by Alg. 3 is bounded in mean square and bounded with
probability one.

V. NUMERICAL SIMULATIONS WITH REAL DATA

We consider the framework of navigation systems and
focus on the problem of attitude/bias estimation using mag-
netic, angular rate, and gravity (MARG) sensors. The pro-
posed estimation approach is evaluated with 50 Monte Carlo
simulations using real flight data from Euroc database [15].

A. Dynamic model formulation for attitude and bias

We build up the dynamic model for a rigid body moving
in space. Let B denote the body frame and N denote
the navigation frame. First, we introduce the dynamic of
attitude as ¢ = $§2(w)q, where q = [qo, q1, g2, g3]" is the
quaternion that describes the attitude with ||q|| = 1, of which
Qo is the scalar part and q1, g2, g3 compose the vector part,



w = [wy,wy,w;]T € R? is the true angular velocity of B
w.r.t. N expressed in N, and

Clwx]| w 0 —w. wy
Qw) = T , lwx ]| =] w, 0 —wy
it 0 —w w 0
Y T

Second, C&(q) € R3*3 is the rotation matrix from N to B
expressed in B using quaternion elements [16], Cf/ (q) =

2¢2 — 1+ 2¢?

2 (Q1Q2 - QOQB)
2 (q1q3 + 9042)

2(q193 — 90q2)
2 (q2q3 + q0q1)
2q§ -1+ 2q§

2(q1q2 + 90q3)
2q3 -1+ Qq%
2 (q2q3 — qoq1)

Then, the output of MARG sensors can be modeled” by
W =w+ b9 +v9,
a=C"q)g+ b® + v°,
m = C?(q)h +b™" +v™,

(1)

where w™ € R3 is the measured angular velocity, m € R3
is the measured Earth’s magnetic field in B w.r.t. N, @ € R3
is the measured acceleration in B w.rt. N, g € R3 is the
gravity vector, h € R? is the Earth’s magnetic field in A/,
b9,b%,b™ € R? are the bias of gyroscope, accelerometer
and magnetometer, respectively, and v9, v, v™ € R? are
assumed to be uncorrelated Gaussian noises of these sensors
with zero mean and covariance matrices 3, = UgIg, .=
0213 and ¥, = 02 I3, where I3 denotes the identity matrix
of dimension 3.

Next, we consider the state vector to be estimated as
xi = [qu; b]; bi; b)), After discretization, the state tran-
sition equation is formulated as xy11 = f(xr) + wi =
blkdiag(Q, B, I3, I3)[qk; by; b; bi'] + [wi; wi; wi; wi],
where Q, = I3+ 3Q(wi" —b])T, is the quaternion dynamic
matrix [10], [17], and the gyroscope bias bj is represented
by a discrete Gaussian-Markov process, in which B =
(1 — B~Y)T.Is is derived from by = —B7'b) + wy with 3
being the time constant of bias variation, and T, = tx4+1 —tx
denotes the sampling interval, b and b}' are modeled as
standard random walk, and w}, w], w{ and w} form the
process noise, assumed to be uncorrelated Gaussian with zero
mean and covariance matrices 34, = o, I3, B9, = o, I3,
¢ = o5, 3 and X7} = o7, Is. As such, the process
noise covariance matrix is diagonal and is represented by
Q = blkdiag(Y, Y, T4, T7).

Subsequently, the measurement model is constructed
by grouping measurements of accelerometer and mag-
netometer: yr = [|ap;mg] = glmg) + vy =
blkdiag(C2(qx), C%(qyx))[g; h]+[v{; vi]. Finally, the mea-
surement noise covariance matrix is diagonal and is repre-
sented by R = blkdiag(XZ?, X7 ).

m
B. Monte Carlo numerical simulations

We use the ground truth of b9, b® and ¢ from Euroc
database [15]. And @ye is used to solve out the w. The

’In the simulation, we consider that the rigid body is just rotating on
itself and its center of mass is not moving; thus the body linear acceleration
expressed in N is zero.
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Fig. 2: Mean quaternion error (refer to Table I for the
computation) among the traditional EKF, QLEKF, and DG-
QLEKEF after convergence of 50 Monte Carlo simulations

magnetometer bias ground truth is time-invariant as b™ =
[5, 5, 5] mGauss. The sampling rate of the MARG sensors is
set to 100 Hz, g = [0,0,9.81] m/s?, h = [0.23,0.01,0.41]
Gauss. For the initialization of each Monte Carlo simulation,
we select go = [0.5,0.5,0.5,0.5]7, b = [2.2,2,2] mrad/s,
bg = [0.1,0.1,0.1] m/s?, by* = [0.1,0.1,0.1] Gauss, Py =
1013, r and g take values sequentially from the list {2, 4, 8},
r=gq= 1073, 7 = q = 103, nygrio = 5, Ow,q = 1074,
0wy = 1073 radls, 00 = 1072 m/s?, oy, = 1074
Gauss, 0,4 = 2 X 1072 m/s?, Opm = 2 X 10~3 Gauss,
5 = 100, Qo = blkdiag(10_8I4, 10_6_[37 10_4I3, 10_813),
Ry = blkdlag(4 X 10_413,4 X 10_613), and (Qo,Ro) is
used in the traditional EKF. In terms of QLEKF, M = N =
5, {QS)} and {R,(g )} are set as a geometric progression
with a ratio of 10 and Q® = Q,, R® = Ry. The
Q-learning search starts at the grid (Q(®), R(®). For each
Monte Carlo simulation, we run 360 periods and 100 time
steps for each iteration. The learning rate, discount factor
and random action selection probability are fixed to o = 0.1,
v = 0.9 and € = 0.1, respectively.

Table I shows that after the convergence of 50 Monte Carlo
simulations, the three EKFs deliver different state estima-
tion performances. Generally, the QLEKF outperforms the
traditional EKF, particularly improving the quaternion error
by 58.34%. As for the DG-QLEKEF, it exhibits a prominent
predominance of all statistics compared to both the tradi-
tional EKF and QLEKEF. In detail, the average improvements
in quaternion error, RMSEs of gyroscope bias, accelerome-
ter bias, and magnetometer bias of DG-QLEKF compared
to the traditional EKF are 88.93%, 40.60%, 82.39% and
74.62%, while those improvements of DG-QLEKF compared
to QLEKF are 73.42%, 29.70%, 75.21%, and 69.22%, re-
spectively. As shown in Fig. 2, the three curves share similar
tendencies and fluctuations after convergence. In contrast, the
quaternion error of DG-QLEKEF is always distinctly lower
than the other two EKFs in the whole convergence period.
Similar behaviors can be observed from Fig. 3, but with more
unstable variations of QLEKF.



TABLE I: Mean of 50 Monte Carlo simulations after convergence for quaternion error and Root Mean Square Error (RMSE)

of bias of gyroscope, accelerometer, and magnetometer

. RMSE of gyroscope RMSE of accelerometer RMSE of magnetometer
Mean of quaternion bi . 2 .
_3 ias (mrad/s) bias (m/s<) bias (mGauss)
error* (x107~°) - - - - . - - - .
z-axis | y-axis | z-axis | x-axis | y-axis | z-axis | x-axis | y-axis | z-axis
Traditional EKF 18.35 1.564 1.534 1.184 | 0.135 0.183 0.064 | 6.756 1.744 | 3.580
QLEKF 7.644 1.231 1.116 1.133 0.120 0.067 | 0.048 | 4.942 1.089 | 3.963
DG-QLEKF 2.032 0.760 | 0.643 1.038 | 0.043 0.014 | 0.008 1.816 | 0.277 1.196
* For a ground truth unit quaternion q¢,ye, the quaternion error of its unit estimate g is computed as Hqt_rlu . ®q— qr||, where

qr = [1 00 0]7 is the identity quaternion.
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Fig. 3: Norm of RMSE of gyroscope bias, accelerometer bias, and magnetometer bias among the traditional EKF, QLEKF,
and DG-QLEKEF after convergence of 50 Monte Carlo simulations

VI. CONCLUSIONS

In this paper, the Q-learning-based EKF (QLEKF) for
state estimation of nonlinear systems was introduced as a
premise to address the often-cumbersome tuning of noise
covariance matrices in the EKF. To overcome the existing
drawbacks of QLEKF resulting from heuristics in designing
Q-learning, a dynamic grid-based Q-learning EKF algorithm
(DG-QLEKF) has been proposed, which can thoroughly
exploit an arbitrary search scope to find appropriate values
of noise covariance matrices, leading to excellent state esti-
mation. Through Monte Carlo numerical simulations based
on real flight data from an unmanned aerial vehicle, the DG-
QLEKF, on average, has revealed much more improvement
in attitude and biases estimation after convergence compared
to the traditional EKF and QLEKF. Future work on the DG-
QLEKF can be undertaken by adapting inter-process and
inter-measurement noises covariance matrices.
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