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F5: A REDUCE Package for Signature-based Gröbner Basis Computation

Introduction

We report on work in progress on an implementation of the F5 algorithm [START_REF] Faugère | A new efficient algorithm for computing Gröbner Bases without reduction to zero (F5)[END_REF] in REDUCE [START_REF] Hearn | REDUCE: A portable general-purpose computer algebra system[END_REF]. In 1965, Buchberger introduced Gröbner Bases, along with an algorithm for their computation [START_REF] Buchberger | Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal[END_REF][START_REF] Buchberger | Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems[END_REF]. The performance of the algorithm depends crucially on the number and efficiency of the necessary polynomial reductions. Heuristic algorithmic optimizations thus typically try to reduce the number of reductions [START_REF] Buchberger | Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems[END_REF]. In 1999, Faugère introduced his algorithm F4 [START_REF] Faugére | A new efficient algorithm for computing Gröbner Bases (F4)[END_REF], which exploits linear algebra techniques to perform reductions simultaneously. In 2002, F5 [START_REF] Faugère | A new efficient algorithm for computing Gröbner Bases without reduction to zero (F5)[END_REF] followed, which initiated the area of signature-based Gröbner basis algorithms. F5 considers module of polynomials, and incrementally operates on the signature of the module element, resembling the Buchberger algorithm. F5 owes its efficiency to the F5 criterion, which avoids many zero reductions. For regular sequences of polynomials, F5 does not do any reduction to zero [START_REF] Faugère | A new efficient algorithm for computing Gröbner Bases without reduction to zero (F5)[END_REF]. Other variants of signature based algorithms, F5C [START_REF] Eder | F5c: A variant of Faugère's F5 with reduced Gröbner Bases[END_REF] and M5GB [START_REF] Hauke | Signature Gröbner Bases. A comprehensive survey and a new algorithmic approach[END_REF], have been proposed that combine fast reduction of F4 with F5 criterion.

REDUCE has historically offered an implementation of Buchberger's Algorithm due to Gebauer and Möller [START_REF] Gebauer | On an installation of Buchberger's algorithm[END_REF]. This dates back to the mid 1980s and received several improvements by various developers until the mid of the 1990s, including optimizations of variable orders [START_REF] Boege | Some examples for solving systems of algebraic equations by calculating Groebner Bases[END_REF], the sugar strategy [START_REF] Giovini | One sugar cube, please" or selection strategies in the Buchberger algorithm[END_REF], and the Gröbner Walk [START_REF] Amrhein | Walking faster[END_REF]. At its time, that implementation was considered state of the art, and, e.g., used as a reference by Becker et al. for their monograph on Gröbner Bases [START_REF] Becker | Gröbner Bases, a Computational Approach to Commutative Algebra[END_REF]. In 1999, Dolzmann et al. forked the Gröbner package within the REDUCE distribution and based their package CGB [START_REF] Hearn | REDUCE User's Manual: Free Version[END_REF]Sect.20.14] for the computation of Comprehensive Gröbner Bases [START_REF] Weispfenning | Comprehensive Gröbner Bases[END_REF] on a simplified core of the existing code base. Around the same time F4 and F5 became popular, and the performance of the REDUCE implementations significantly fell behind other general purpose computer algebra systems. At the end of 2008, REDUCE became open source under a liberal Free-BSD license [START_REF] Hearn | REDUCE: A portable general-purpose computer algebra system[END_REF]. In spite of its age, dating back to the mid 1960s [START_REF] Hearn | REDUCE -A user-oriented system for algebraic simplification[END_REF], REDUCE is still quite popular with a stable and even slightly growing user base. Since its launch at Source Forge in 2008 it had a total of 130k downloads, 13k of them in 2021. It has recently been recognized with the Open Source Excellence award by Source Forge. Development is active with 6k SVN commits since 2008, 650 of them in 2021.

Our goal here is certainly not to compete with highly optimized implementations developed by teams of specialists in the field. Instead, our motivation is primarily a better support of various other REDUCE components that rely on Gröbner Bases:

The above mentioned CGB package for the computation of Comprehensive

Gröbner Bases [START_REF] Weispfenning | Comprehensive Gröbner Bases[END_REF] should be modernized and based on F5. 2. The Redlog package [START_REF] Dolzmann | Redlog: Computer algebra meets computer logic[END_REF] for interpreted first-order logic has a real quantifier elimination procedure based on Comprehensive Gröbner Bases [START_REF] Weispfenning | A new approach to quantifier elimination for real algebra[END_REF]. 3. Simplification of quantifier-free formulas over the reals throughout Redlog partly uses Gröbner Bases [START_REF] Dolzmann | Simplification of quantifier-free formulae over ordered fields[END_REF].

Nevertheless, our computational experiments have been surprisingly promising so far.

Some Implementation Details

We re-use the existing efficient infrastructure to the most possible extent. Specifically the existing REDUCE command torder for the term order is used internally. We have forked the existing distributive polynomials from the dipoly module aiming at using hash tables as described, e.g., for Maple [START_REF] Monagan | Sparse polynomial multiplication and division in Maple 14[END_REF]. We use the position over term order on modules, where we iteratively produce d-Gröbner Bases for d = 0, 1, 2, . . ., successively for each signature index. Input polynomials are inter-reduced before assigning signatures. This slightly reduces the number of critical pairs. The F5 criterion is checked twice, once at the time of pair creation and once more when computing S-polynomials. Computation experiments have confirmed that the extra test at creation pays off. Moreover, since in the non-regular setting signatures of critical pair components may coincide, we introduce an additional check and discard such pairs. Currently, rational numbers are used as coefficients. An implementation of modular arithmetic is under way. Normal form computations are limited to top-reductions, which significantly speeds up the reduction.

Computational Experiments

Our first table compares the numbers of reductions and critical pairs with our F5 package versus the REDUCE package groebner4 [15, Sect. 20.28], which uses Buchberger's algorithm with the common criteria and the sugar strategy [START_REF] Buchberger | Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems[END_REF][START_REF] Giovini | One sugar cube, please" or selection strategies in the Buchberger algorithm[END_REF]: In all cases, the number of reductions performed by F5 remains much lower. Note that F5 considers even more critical pairs, which is common with signature-based algorithms. Our second table compares the timings of our F5 package with four other implementations of Gröbner Bases, where all considered computations use rational coefficients: REDUCE groebner as above; the Maple5 command Basis with method=fgb for F4 and method=buchberger; the Singular6 command groebner, which "heuristically chooses the best algorithm." In comparison to REDUCE groebner, the computation times of REDUCE F5 are better in most cases, which is compatible with the lower numbers of reductions observed in Table 1. At the moment we cannot compete yet with the relevant implementations in Singular and Maple.

We note that at the current development stage, the CSL code for F5 is only byte-compiled. For the final production system the package will be profiled and

Table 1 .

 1 Reductions performed by F5 and groebner

	Systems Regular sequence	F5		groebner	
			critical pairs reductions critical pairs reductions
	Noon-3	yes	77	10	45	28
	Noon-4	yes	618	31	317	99
	Noon-5	yes	3805	81	2252	334
	Katsura-3 yes	23	4	15	18
	Katsura-4 yes	110	11	49	43
	Katsura-5 yes	416	24	147	90
	cyclic-6 no	45	5	30	15
	cyclic-7 no	63	6	42	18
	cyclic-8 no	84	7	56	21

Table 2 .

 2 Benchmark timings given in seconds (if not otherwise stated)

	Systems REDUCE F5 REDUCE groebner Singular groebner	Maple
					buchberger fgb
	Noon-6	0.5 s	1.5 s	0.01 s	10 s 0.25 s
	Noon-7	5.3 s	420 s	0.9 s	78 s 1.3 s
	Noon-8	78 s	507 s	11 s	2, 700 s 8.5 s
	Katsura-6	0.6 s	0.5 s	0.1 s	1.4 s 0.2 s
	Katsura-7	120 s	5 s	1.2 s	13 s 0.4 s
	Katsura-8	> 1 h	89 s	11 s	107 s 1.3 s
	Cyclic-10	0.5 s	2.8 s	< 0.01 s	0.5 s 0.1 s
	Cyclic-11	2.3 s	17.6 s	< 0.01 s	1.4 s 0.2 s
	Cyclic-12	18 s	99 s	0.01 s	4.1 s 0.6 s
	Henrion-5	4.7 s	12.8 s	0.9 s	2.8 s 1.9 s
	Henrion-6	73 s	56 s	4.1 s	35 s 2.1 s
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relevant parts of the code will be migrated to the kernel. Furthermore our polynomial reduction requires some technical improvements. All computations were carried out on an AMD EPYC 7702 Processor (64-Core), running 64-bit Linux.