
HAL Id: hal-03781938
https://hal.science/hal-03781938v1

Submitted on 20 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RQCODE – Towards Object-Oriented Requirements in
the Software Security Domain

Ildar Nigmatullin, Andrey Sadovykh, Nan Messe, Sophie Ebersold,
Jean-Michel Bruel

To cite this version:
Ildar Nigmatullin, Andrey Sadovykh, Nan Messe, Sophie Ebersold, Jean-Michel Bruel. RQCODE –
Towards Object-Oriented Requirements in the Software Security Domain. IEEE International Confer-
ence on Software Testing, Verification and Validation Workshops (ICSTW 2022), Apr 2022, Valencia,
Spain. pp.2-6, �10.1109/ICSTW55395.2022.00015�. �hal-03781938�

https://hal.science/hal-03781938v1
https://hal.archives-ouvertes.fr


RQCODE – Towards Object-Oriented Requirements
in the Software Security Domain

Ildar Nigmatullin
Innopolis University and University of Toulouse

Innopolis, Russia and Toulouse, France
i.nigmatullin@innopolis.ru

Andrey Sadovykh
Innopolis University and Softeam

Innopolis, Russia and Paris, France
a.sadovykh@innopolis.ru

Nan Messe
University of Toulouse – IRIT – CNRS

Toulouse, France
nan.messe@irit.fr

Sophie Ebersold
University of Toulouse – IRIT – CNRS

Toulouse, France
sophie.ebersold@irit.fr

Jean-Michel Bruel
University of Toulouse – IRIT – CNRS

Toulouse, France
jean-michel.bruel@irit.fr

Abstract—For the last 20 years, the number of vulnerabili-
ties has increased near 20 times, according to NIST statistics.
Vulnerabilities expose companies to risks that may seriously
threaten their operations. Therefore, for a long time, it has
been suggested to apply security engineering – the process
of accumulating multiple techniques and practices to ensure
a sufficient level of security and to prevent vulnerabilities in
the early stages of software development, including establishing
security requirements and proper security testing. The informal
nature of security requirements makes it uneasy to maintain
system security, eliminate redundancy and trace requirements
down to verification artifacts such as test cases. To deal with
this problem, Seamless Object-Oriented Requirements (SOORs)
promote incorporating formal requirements representations and
verification means together into requirements classes.

This article is a position paper that discusses opportunities
to implement the Requirements as Code (RQCODE) concepts,
SOORs in Java, applied to the Software Security domain. We
argue that this concept has an elegance and the potential to
raise the attention of developers since it combines a lightweight
formalization of requirements through security tests with seam-
less integration with off-the-shelf development environments,
including modern Continuous Integration/Delivery platforms.
The benefits of this approach are yet to be demonstrated in
further studies in the VeriDevOps project.

Index Terms—Requirements Engineering, Software Security,
Security Testing, STIG, OO Requirements, DevSecOps

I. INTRODUCTION

Software systems are becoming increasingly complex over
time, making quality assurance more difficult [1]. To ensure
software quality that meets a sufficient level of customer
expectations, quality characteristics must be specified, taking
into account the intended use of a software product and
system. Relevant quality characteristics have been proposed
in many quality models, including ISO standards, to evaluate
software products properly. However, the number of threats
increases, and the attacks are more and more various. For
example, they exploit third-party vulnerabilities or profit from
the negligence of system administrators when setting hard-
coded credentials [2].

This paper considers different approaches and practices that
integrate the security aspect into the lifecycle of software
products, such as security testing, DevSecOps, and security
requirements management. Firstly, security testing considered
in this paper relates to the security quality properties as defined
in ISO 25010 standard [3]. Security testing identifies whether
the specified or intended security properties are correctly
implemented [4]. Secondly, we aim at addressing the security
aspect throughout the software’s lifecycle in a continuous
manner. This may relate to the DevSecOps approach, which
focuses on the continuous cycle of addressing new coming
security requirements and threats. Finally, we consider se-
curity requirements management. More precisely, we study
how to make security requirements traceable, testable, and
maintainable. In the current state, developers are unable to
carry out rapid security requirements assessments, especially
in the context of DevSecOps [5].

II. SOFTWARE SECURITY

ISO standard determines the following security properties
as quality attributes [3]:

- Integrity: the property that a system, product or component
prevents unauthorized access to, or modification of, computer
programs or data.

- Non-repudiation: the property that actions or events can
be proven to have taken place so that the events or actions
cannot be repudiated later.

- Accountability: the property of being able to trace ac-
tivities on a system to individuals, who may then be held
responsible for their actions.

- Authenticity: the property that the identity of a subject or
resource can be proved to be the one claimed.

The primary aspect to ensure security as a quality attribute
is to consider it throughout the Software Development Life-
Cycle (SDLC). Regarding SDLC, security aspects can be
analyzed and taken into account in different stages, such
as System Analysis, System Design, Coding, and Testing.
Security is no less important in continuous integration and



continuous development. That is why the DevSecOps approach
ensures security at every stage of the SDLC and helps verify
every commit executed by development teams. Continuous
delivery pipelines are meant to be a paradigm for contributing
to the verification of each commit executed by developers.
Therefore, the integration of automated security checks into
the pipeline allows it to receive warnings at early stages
and continuously monitor undiscovered security vulnerabilities
at previous stages. The integrated approach to continuous
security, scales in consistency with the growth of the business.

The security aspect is suggested to be considered as early
as possible in SDLC to prevent potential damages caused by
undiscovered vulnerabilities [6]. That is why our focus in this
paper is on security requirements. Security requirements can
be positive and functional, explicitly defining the expected
security functionality of a security mechanism; or negative
and non-functional, specifying what the application should not
do [4]. The way of presenting security requirements impacts
their verification. The more requirements are accumulated
(e.g., received by change requests or appeared as ideas),
the more resources are required to ensure their verification,
including the completeness of requirements, their traceability
and consistency from our point of view.

III. SOOR AND RQCODE

In this paper, we suggest using the object-oriented (OO)
approach to make security requirements verification feasible.
The OO paradigm fits large and complex programs that are
actively updated and maintained. It provides features for
easily defining complex objects by composing or augmenting
the behavior of existing objects. These features significantly
improve the reuse of an object by easily allowing it to be
extended beyond its initial applications [7].

In this context, we promote that security requirements can
be presented as an OO class template. The main role of a
Requirement as Code (RQCODE) paradigm is to encapsulate
the verification complexity and make the requirements tem-
plate applicable and reusable across multiple systems. What
remains to the specifier is to find what most closely formalizes
the behavioral pattern implied by the target requirement and
then inherits from it, providing system-specific details through
the OO genericity and abstraction [8].

In Seamless Object-Oriented Requirements (SOOR) [9]
requirements are encapsulated as object-oriented entities. This
helps to decrease the complexity of verification and validation
of requirements, while making requirements applicable and
reusable across multiple systems. In SOORs, requirements are
written as classes. A SOOR takes the form of a class that
inherits from a SOOR template (SOORT), providing system
specific details through the object-oriented (OO) genericity
and abstraction. The example of SOORT in Java will be
provided below, we call this implementation RQCODE.

The initial idea of RQCODE was born in an attempt to
simplify the original SOOR concept by proposing an imple-
mentation in a widely-used programming language – Java.
Moreover, we intend to offer formalization that is commonly

understood by the software engineers by embedding test cases
as enforcement, verification and validation means. We choose
Software Security as an application domain, since it provides
a vast area for experiments with a great variety of existing
standard requirements and verification methods to be applied.
Those security requirements are largely reused from project to
project, which make us believe that the verification methods
can be reused too.

The advantage of SOOR is that it can provide requirements
representation in various forms, starting from a less-formal
representation. In addition, the requirements object can encap-
sulate more formal representation in various formal notations
or a set of test cases with complex behavior. In RQCODE,
we concentrate on requirement representation in the form
of a test case. We argue that this form is more convenient
for developers, while it is sufficiently formal. Applying the
SOORs allows us to focus on verification- and traceability-
oriented specifications that are powerful enough to make
the identified requirements practically reusable, and without
duplicating.

To illustrate the SOOR and RQCODE concepts and how
our approach ensures Security requirements verification, let
us consider the following example of a security requirement
from Windows 10 Security Technical Implementation Guide
(STIG)1. STIG is meant as “a tool to improve the security
of Department of Defense (DoD) information systems”. The
one for Windows ten is to be used in conjunction with
other applicable STIGs, such as ones for Browsers, Antivirus,
and other desktop applications. STIGs describe requirements,
countermeasures and verification means designed to assist
Security Managers, Information Assurance Managers, and
System Administrators with configuring and maintaining se-
curity controls2.

We will consider the following Window 10 STIG rule :
- V-63483: The system must be configured to audit Priv-

ilege Use – Sensitive Privilege Use failures. It maintains an
audit trail of system activity logs that can help to identify
configuration errors, troubleshoot service disruptions, analyze
compromises, and detect attacks. The path to configure this
security requirement is the following: Configure the policy
value for Computer Configuration Windows Settings - Security
Settings - Advanced Audit Policy Configuration - System Audit
Policies - Privilege Use - ”Audit Sensitive Privilege Use” with
”Failure” selected.

This example demonstrates the behavior that is implemented
with the Windows commands. The class hierarchy is based on
configuration path for each requirement. We can apply Java
class inheritance paradigm to represent the above requirements
in the following object-oriented way:

Requirement ->
CheckableEnforceableRequirement ->
AuditPolicyRequirement ->

1https://www.stigviewer.com/stig/windows 10/
2https://ncp.nist.gov/checklist/629



PrivilegeUseRequirement ->
SensitivePrivilegeUseRequirement

In Java language syntax to present SOOR the requirements
may look as follows:

abstract class Requirement

This class includes general attributes for storing requirements
in natural language and output them in various representations
such as plain-text or HTML 3. Checking and enforcing are left
as abstract methods to be specified further by class children.
This class below contains the core logic for checking and
enforcing methods.

public abstract class
CheckableEnforceableRequirement extends
Requirement

Here we check Audit policy requirements:

public abstract class AuditPolicyRequirement
extends CheckableEnforceableRequirement

In these classes we define the common behavior for the whole
set of Sensitive Privilege Use requirements.

abstract public class PrivilegeUseRequirement
extends AuditPolicyRequirement

abstract public class
SensitivePrivilegeUseRequirement extends
PrivilegeUseRequirement

With the abstraction hierarchy in place, we can now present
the final, specific version of the requirements specifications:

public class V_63483 extends
SensitivePrivilegeUseRequirement

Moreover, STIG rule V-63483 has the following parameters:

Finding ID: V-63483
Version: WN10-AU-000110
Severity: Medium
STIG: Windows 10 Security Technical

Implementation Guide
Date: 2019-01-04
Check Text: C-64235r1_chk
Fix Text: F-69413r1_fix

So that, these parameters are presented as attributes of the
Java class attributes.

public class V_63483 extends
SensitivePrivilegeUseRequirement {
@Override
protected String getFailure() {

return "enable"; }

3https://github.com/anaumchev/VDO-Patterns/blob/master/src/rqcode/stigs/
win10/V 63463.java

@Override
protected String getInclusionSetting() {

return "Failure"; }

@Override
protected String getSuccess() {

return null; }

@Override
public String checkTextCode() {

return "C-64235r1_chk"; }

@Override
public String date() {

return "2019-01-04"; }

@Override
public String findingID() {

return "V-63483"; }

@Override
public String fixTextCode() {

return "F-69413r1_fix"; }

@Override
public String iAControls() {

return ""; }

@Override
public String ruleID() {

return "SV-77973r1_rule"; }

@Override
public String sTIG() {

return "Windows 10 Security Technical
Implementation Guide";

}

@Override
public String severity() {

return "Medium"; }

@Override
public String version() {

return "WN10-AU-000110"; } }

This class is a simple instantiation of the superclass with
specific parameters that determine particular behavior for
enforcement and verification of V 63483 STIG requirements.
This example of how pattern can verify specific requirement.
By configuring superclass (in our case, class Requirement),
we can simplify verification of children classes by updating
attributes. More STIG rules implemented as Java classes are
stored in GitHub 4.

IV. DISCUSSION

We can highlight the following benefits behind applying
object-oriented principles for requirements description:

- Elimination of redundancy with the generalization and
inheritance.

4https://github.com/anaumchev/VDO-Patterns/tree/master/src/rqcode/
patterns/win10



- Enhancement of maintainability. When we need to update
requirements, we have to configure the corresponding super-
class. Given the example above, one may support only one
implementation of the SensitivePrivilegeUseRequirement class
instead of two, which makes it simpler for maintenance, reuse.

- Extensibility improvement: we can for instance create
new requirements for Privilege Use events by extending the
PrivilegeUseRequirement class and all the natural language
description templates and core checking and enforcing logic
would be already implemented.

- Combination of several representations of a requirement
and OO logic in one source: it is possible to add represen-
tations in other formal notations such as Linear Temporal
Logic (LTL) and Timed Computation Tree Logic (TCTL) for
further formal verification of requirements. LTL plays the role
of baseline for requirements specification representation via
RQCODE. A LTL formula which represents the possible path
of an event can be presented in RQCODE via Java code or in
the form of test cases.

- OO analysis enabled: one can run OO analysis methods
to conduct evaluation of the requirements’ specification. For
example, with a class coupling and depth of inheritance, one
can argue about the maintainability and complexity of the re-
quirements’ specification. Improved traceability: The ultimate
race in the Requirements Engineering domain is the ability to
verify and validate various properties while keeping trace to
the source requirements. The proposed approach helps to dras-
tically simplify the traceability, since the verification/validation
means are incorporated within the requirement specification.

- Integration with Dev tools: one of the major barriers for
adoption is availability and integration with the development
environments. Each development project selects a particular
set of IDEs, configuration management, continuous integration
tools and the requirements engineering approaches have to
cope with the constraints of those environments. Instead,
RQCODE seamlessly integrates with the most common en-
vironments, since requirements classes are of the same nature
as other source code development artifacts. To illustrate,
the configuration management tools, versioning, continuous
integration, automated verification and deployment tools for
Java will be directly applicable to requirements as code.

- Integration with Dev processes: the modern development
process heavily relies on management tools such as GitHub,
GitLab and others that naturally focus on source code with
issue tracking, tasks planning and tracking, automated notifi-
cations, etc. The current concept of requirements management
will seamlessly integrate with development processes.

- Integration with Quality Assurance process: below we
discuss the relationship between RQCODE and Test Driven
Development (TDD). First we specify that we consider TDD
as an advanced technique consisting in using automated unit
tests to drive software design and force dependencies decou-
pling [10]. RQCODE and TDD have common characteris-
tics: they both can be started before code implementation
based on requirements’ specification. Our work resembles
TDD approach as we also suggest test cases as requirements.

However, in contrast to TDD, we do not impose any process
and we concentrate on reuse of requirements, what we believe
is more applicable for security properties. The principles of
RQCODE guarantee the reduction of code duplication and the
simplification of code maintenance, on the contrary, the main
drawback of TDD is that the test cases duplicate the amount
of code to be written and maintained.

The goal of the thesis work briefly outlined in this paper
will be to explore the applicability of the object-oriented
requirements for the security requirements domain. We have
identified the following challenges for the work:

- Software Engineering standards such as ISO 25010 [3]
define several categories of security quality attributes. Will
SOOR be effective for specifying each of those categories?

- While the SOOR concepts have been explored for a
while, it is still under exploration even for the functional
requirements.

- Security requirements are particular since they may be
functional and non-functional, positive and negative. Will
SOOR be equally effective for all those types of requirements?

- Many security standards and guidelines are expressed on
a very high level (maybe an example from IEC 62443 [11]
without clear instructions for possible verification means.

- Security testing is a vast domain, as outlined in [4]. We
need to assess the ability of SOOR and RQCODE in particular
to accommodate this variety of verification means.

- The applicability should be analyzed through industrial
case studies, since the practice is one of the best measures of
validity in Software Engineering. Will SOOR be effective in
case studies from the VeriDevOps project [12]?

V. RELATED WORK

The proposed work touches upon several related topics
that we plan to analyze and extend. Firstly, our work has
to take advantage of the best practices outlined by [13] and
[14]. Secondly, the work has considered existing methods for
requirements formalization as described in [15]. The proposed
research deals with requirements modeling with OOP concepts
and representation of requirements in several notations at
once. This is addressed by the important work in [16], [17],
[18]. The requirements traceability improvements proposed by
RQCODE have to be analyzed regarding [19], [20]. Finally,
the work at [21] set the basis for our work.

VI. CONCLUSION

In this positional paper, we outlined a topic of Requirements
as Code (RQCODE) as an implementation of Seamless Object-
Oriented Requirements (SOORs) for Software Security do-
main. For the future work, we propose to explore the applica-
bility of SOOR to Software Security domain by systematically
analysing the security properties categories and implementing
standard requirements in RQCODE. The results will be as-
sessed in application to case studies in the VeriDevOps project.

ACKNOWLEDGMENT

This work has received funding from Horizon 2020 program under
the grant agreement No. 957212 – VeriDevOps project.



REFERENCES

[1] B. Boehm, “A view of 20th and 21st century software engineering,”
in Proceedings of the 28th international conference on Software
engineering, ser. ICSE ’06. New York, NY, USA: Association for
Computing Machinery, May 2006, pp. 12–29. [Online]. Available:
https://doi.org/10.1145/1134285.1134288

[2] B. Mburano and W. Si, “Evaluation of web vulnerability scanners based
on OWASP benchmark,” in 2018 26th International Conference on
Systems Engineering (ICSEng), 2018, pp. 1–6.

[3] ISO/IEC 25010:2011, SQuaRE — system and software quality models.
[Online]. Available: https://www.iso.org/cms/render/live/en/sites/isoorg/
contents/data/standard/03/57/35733.html

[4] M. Felderer, M. Büchler, M. Johns, A. D. Brucker, R. Breu, and
A. Pretschner, “Chapter one - security testing: A survey,” in Advances
in Computers, A. Memon, Ed. Elsevier, 2016, vol. 101, pp. 1–51.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0065245815000649

[5] R. N. Rajapakse, M. Zahedi, M. A. Babar, and H. Shen,
“Challenges and solutions when adopting DevSecOps: A systematic
review,” vol. 141, p. 106700, 2022. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0950584921001543

[6] N. Messe, V. Chiprianov, N. Belloir, J. El-Hachem, R. Fleurquin,
and S. Sadou, “Asset-oriented threat modeling,” in TrustCom 2020-
19th IEEE International Conference on Trust, Security and Privacy in
Computing and Communications. IEEE, 2020, pp. 1–11.

[7] M. Vachharajani, N. Vachharajani, and D. I. August, “A comparison of
reuse in object-oriented programming and structural modeling systems,”
p. 5.

[8] K. Ismaeel, A. Naumchev, A. Sadovykh, D. Truscan, E. P. Enoiu,
and C. Seceleanu, “Security requirements as code: Example from
VeriDevOps project,” in 2021 IEEE 29th International Requirements
Engineering Conference Workshops (REW), 2021, pp. 357–363.

[9] A. Naumchev, “Exigences orientées objets dans un cycle de vie continu,”
phdthesis, 2019. [Online]. Available: http://thesesups.ups-tlse.fr/4468/

[10] D. Duka and L. Hribar, “Test Driven Development Method in Software
Development Process,” p. 5.

[11] International Electrotechnical Commission, International Electrotechni-
cal Commission, and Technical Committee 65, Security for industrial
automation and control systems, 2017, OCLC: 1024071994.

[12] A. Sadovykh, G. Widforss, D. Truscan, E. P. Enoiu, W. Mallouli, R. Igle-
sias, A. Bagnto, and O. Hendel, “VeriDevOps: Automated protection and
prevention to meet security requirements in DevOps,” in 2021 Design,
Automation Test in Europe Conference Exhibition (DATE), 2021, pp.
1330–1333, ISSN: 1558-1101.

[13] S. Hansen, N. Berente, and K. Lyytinen, “Requirements in the 21st
century: Current practice and emerging trends,” in Design requirements
engineering: A ten-year perspective. Springer, 2009, pp. 44–87.

[14] S. A. Fricker, R. Grau, and A. Zwingli, “Requirements engineering: best
practice,” in Requirements Engineering for Digital Health. Springer,
2015, pp. 25–46.

[15] J.-M. Bruel, S. Ebersold, F. Galinier, M. Mazzara, A. Naumchev,
and B. Meyer, “The role of formalism in system requirements,”
ACM Comput. Surv., vol. 54, no. 5, may 2021. [Online]. Available:
https://doi.org/10.1145/3448975

[16] I. Jacobson, I. Spence, and K. Bittner, USE-CASE 2.0
The Guide to Succeeding with Use Cases. Alexandria,
Virginia: Ivar Jacobson International SA., Dec. 2011. [Online].
Available: https://www.ivarjacobson.com/sites/default/files/field iji file/
article/use-case 2 0 jan11.pdf

[17] B. Meyer, “Multirequirements,” in Modelling and Quality in Require-
ments Engineering: Essays dedicated to Martin Glinz on the occasion
of his 60th birthday. Verl.-Haus Monsenstein u. Vannerdat, 2013.

[18] F. Galinier, “Seamless development of complex systems: a multirequire-
ments approach,” Ph.D. dissertation, Paul Sabatier University, Toulouse,
France, 2021.

[19] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
“Recovering traceability links between code and documentation,” IEEE
Trans. on Software Engineering, vol. 28, no. 10, pp. 970–983, 2002.

[20] J. Cleland-Huang, “Toward improved traceability of non-functional
requirements,” in Proc. of the 3rd international workshop on Traceability
in emerging forms of software engineering, 2005, pp. 14–19.

[21] A. Naumchev, “Seamless object-oriented requirements,” in 2019 Inter-
national Multi-Conference on Engineering, Computer and Information
Sciences (SIBIRCON), 2019, pp. 0743–0748.


