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Microbial community functioning 
during plant litter decomposition
Simon A. Schroeter1, Damien Eveillard2, Samuel Chaffron2, Johanna Zoppi2,3, Bernd Kampe4, 
Patrick Lohmann5, Nico Jehmlich5, Martin von Bergen5, Carlos Sanchez‑Arcos6,7, 
Georg Pohnert6, Martin Taubert8, Kirsten Küsel8,9 & Gerd Gleixner1*

Microbial life in soil is fueled by dissolved organic matter (DOM) that leaches from the litter layer. It is 
well known that decomposer communities adapt to the available litter source, but it remains unclear if 
they functionally compete or synergistically address different litter types. Therefore, we decomposed 
beech, oak, pine and grass litter from two geologically distinct sites in a lab‑scale decomposition 
experiment. We performed a correlative network analysis on the results of direct infusion HR‑MS DOM 
analysis and cross‑validated functional predictions from 16S rRNA gene amplicon sequencing and with 
DOM and metaproteomic analyses. Here we show that many functions are redundantly distributed 
within decomposer communities and that their relative expression is rapidly optimized to address 
litter‑specific properties. However, community changes are likely forced by antagonistic mechanisms 
as we identified several natural antibiotics in DOM. As a consequence, the decomposer community 
is specializing towards the litter source and the state of decomposition (community divergence) 
but showing similar litter metabolomes (metabolome convergence). Our multi‑omics‑based results 
highlight that DOM not only fuels microbial life, but it additionally holds meta‑metabolomic 
information on the functioning of ecosystems.

The importance of dissolved organic matter (DOM) leaching from the litter layer for terrestrial carbon cycling is 
 unequivocal1–4. However, the role of DOM goes beyond its function as a readily-available substrate for decom-
poser communities, and its role as a microbial meta-metabolome that contains signatures of ecosystem function-
ing is less  explored5. The latter function has been suggested following rapid structural adaptations of decomposers 
during early-stage litter decomposition, when the substrate composition changes fast as  well6. On the local scale, 
this leads to litter-specific decomposer community  profiles7–9. On the landscape scale, however, environmental 
factors like  pH10,11 and soil  geochemistry12 at the litterfall location are suggested as major drivers of microbial 
community structure.

How changes in substrate composition and environmental factors enforce functional adaptation of microbial 
communities has yet to be determined. Recently, it has been suggested that competition could be a major facilita-
tor of both structural change and functional adaptation within topsoil microbial communities on a global  scale13. 
Mechanisms of attack and defense, that happen on a molecular level between various actors across kingdoms, are 
being unraveled at unprecedented levels of  detail14,15. Recent studies suggest a vast potential of soil microorgan-
isms for the biosynthesis of antibiotics and targeted  toxins15,16. As these substances are secreted, DOM could be 
an ideal medium to trace active competition functions on a community level and their relationship to changing 
substrates and  environments4,17–19.

In this study, we report on a litter decomposition experiment focusing on rapid functional adaptations of 
microbial decomposer communities to their substrate within the first weeks of litter  decomposition20. The poten-
tial adaptation is assessed via combined analyses of litter leachates (DOM HR-MS, metabolome LC–MS) and 
community profiles (16S rRNA, metaproteome). We hypothesize that at the early stage of litter decomposition, 
the native decomposer communities (a) are already well adapted to the litter’s properties and (b) rapidly further 
optimize their functions to address changes in substrate composition as decomposition progresses. Furthermore, 
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we hypothesize that the progression and mode (synergistic or antagonistic) of community-level functional 
adaptation are well recorded in the molecular composition of DOM. We test our hypotheses on three major 
vegetation types: broadleaf forest, evergreen forest and grassland. We account for site-specific factors that could 
affect the leaf metabolome and decomposer communities by sampling the same vegetation on two sites with 
distinctly different soil properties and  pH21. Our laboratory setup excludes the possibility for hostile colonization 
of the litter by soil microorganisms, allowing us to attribute observed changes in community composition and 
functioning to adaptations within decomposer communities that natively live on the litter.

Methods
Sampling sites. Senescent beech (Fagus sylvatica) and oak leaves (Fraxinus excelsior), pine needles (Pinus 
sylvestris) and grassland litter were sampled on the AquaDiva research site in the Hainich national park (Thur-
ingia, Germany) and the Linde research station of the Zwillenberg Tietz foundation near Märkisch Luch 
(Brandenburg, Germany) (Supplementary Fig. S1). The plant litter sampling in Hainich was carried out with 
permission of the Hainich national park administration and in Linde with permission of the Zwillenberg Tietz 
foundation as the landowner. The Hainich site features near-neutral soil water (pH 6), whereas in the Linde site 
the soil water is more acidic (pH 4.9). The differences in pH arise due to carbonate buffering in the Hainich soil, 
which developed on a bedrock of marine carbonate sediments from the Triassic  era22. In contrast, the Linde soil 
developed on siliciclastic material from the Weichselian Glaciation during the Pleistocene. Thus, our site replica-
tion covers a wide range of the natural pH-related variability in soil microbial community  composition12, which 
has been suggested to affect the secondary metabolite profile of the plant.

Sampling procedure. The plant litter was collected in October 2017 at both sites as soon as the start of 
litterfall was observed. Tree litter was collected from the forest floor at single-species stands in respective radii 
of ~ 50 m to account for very local variability in both forests. Grassland sites held a diverse community of grass 
and herb species, but only the dominant grass species were sampled. The sampling of both sites was completed 
within two consecutive days to achieve similarly minimal exposure of the litter to soil microbial communities. 
Care was taken to pick up only recently fallen litter from the top of the litter layer. After sampling, the material 
was transported to the lab and immediately dried at 40 °C for 72 h. As we cannot exclude that transport and dry-
ing might have reduced the potential for site-specific processes to occur, we checked the 16S taxonomic profiles 
of the litter both wet, directly from the forest, and after drying. They are summarized as dots Fig. 1c and their 
close proximity indicates that transport and drying were only minor contributors to the overall variability.

Experimental setup. The dried plant litter was coarsely cut and separately mixed with pre-combusted 
(500 °C/5 h) acid-washed sand at a ratio of 3 g plant material per 100 g final mixture to allow proper through 
flow of water. The sand and plant material mixtures were placed inside 250 mL filter holders (Nalgene, Thermo 
Fisher Scientific, Waltham, MA, USA) above a GF/D (2.7 µm) and a GF/F (0.7 µm) glass fiber filter. Both filters 
were pre-combusted (500 °C/5 h) and the plastic filter holders were pre-autoclaved (121 °C/20 min). Sand and 

Figure 1.  (a) Conceptual overview of the study design. (b) PCA of the LC–MS metabolome results indicates 
chemical convergence. (c) PCA of the 16S rRNA gene barcoding data indicates divergence and litter-specific 
community evolution. (d) PCA of the HR-MS data reveals a divergence between the tree-derived DOM, yet 
convergence between the beech and grass-derived DOM after ~ 8 days.
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litter mixtures were set up in triplicate, resulting in 24 parallel decomposition setups (four plant litter types from 
two sampling sites replicated three times). We set up three blanks containing only sand with no plant material, 
which were treated and sampled equally, showing no measurable TOC release or pH effect. The sand and lit-
ter mixtures were wetted with ultrapure water and checked daily for continuous wetness. After 2, 4, 8, 15 and 
22 days, 100 mL of ultrapure water was added to leach DOM from the litter. During this time, prolonged periods 
of stagnant water were avoided by accelerating through flow using a soft vacuum of ~500 mbar for a maximum 
of five minutes. Immediately after the last leachate sampling, the sand and litter mixtures were sampled destruc-
tively into sterile falcon tubes for microbial community analysis.

DOM extraction and direct‑injection HR‑MS analysis. DOM was extracted from the leachate sam-
ples using a common solid-phase extraction protocol over 1 g PPL  resin23. For direct-injection HR-MS analysis, 
the concentration of the extracts was adjusted to exactly 20 mg C/L in a 1:1 water and methanol solvent mixture. 
100 µL of DOM extract were directly injected into a continuous flow of 20 µL/min water and methanol (1:1) 
using an autosampler (Thermo Fisher Scientific). Measurements were carried out on an Orbitrap Elite mass 
spectrometer (Thermo Fisher Scientific) with a mass resolution of 240,000 m/m. Electrospray ionization (ESI) 
was run in negative ionization mode with and ESI needle voltage of 2.65 kV. 100 scans of m/z 175–1000 were 
acquired per sample with detailed settings and sum formula assignment as previously described  in19,24. Only 
masses with a signal/noise ratio (S/N) > 4 were analyzed further. Masses that were detected in blanks were not 
considered for further analysis.

Metabolic pathway information was gathered from KEGG using their application programming interface at 
https:// www. kegg. jp/ kegg/ rest/ (access date: 2019-11-04)25. 20% of the assigned sum formulae had a match in the 
KEGG database. On average, there were 2.9 structure suggestions per matched sum formula. We summed the 
relative intensities of the sum formulas that matched with KEGG, and grouped them by their respective meta-
bolic pathways. As some sum formulas had multiple matches, only one intensity contribution per sum formula 
was allowed in each pathway group. We note that the annotation of sum formulas in KEGG is prone to contain 
some amount of individual false positive matches due to the inability to differentiate between isomers. However, 
the likelihood of an incorrect pathway assignment decreases as more different sum formulas are assigned to the 
same pathway. In addition, we observed that sum formulas, which had many matches in KEGG, oftentimes were 
assigned multiple times to the same pathway as some isomeric structures have similar biochemical properties. 
This further reduces the likelihood of incorrect pathway assignments being reported.

DOM LC–MS analysis. Metabolic profiles were obtained by injecting 1 µL of each leachate extract (section 
above) on a LC-(Ultimate 3000) Q-Exactive (MS) system (Thermo Fisher Scientific). Separations were achieved 
on a Accucore C18 column (100 × 2.1 mm, 2.6 µm, Thermo Fisher Scientific) by using a mobile phase of A: Water 
(with 0.1% formic acid (FA) and 0.2% acetonitrile), and B: Acetonitrile (with 0.1% FA) as follows: 0–0.2 min 
100% (v/v) A isocratic, 0.2–8 min a gradient to 100% (v/v) B, 8–11 min 100% (v/v) B isocratic, 11.0–12.0 min a 
gradient to 100% (v/v) A, 12.1–14 min 100% (v/v) A isocratic. The flow rate was set to 400 µL/min. Electrospray 
ionization was set to negative ionization mode (spray voltage of 2.5 kV). Full MS acquisition with a resolution 
of 70000 m/m, automatic gain control (AGC target) of 3 ×  106, and a scan range of 100–1500 m/z. Raw data files 
were then converted to mzXML format by using MSConvert (ProteoWizard 3.0). Data were processed with 
XCMS and CAMERA packages under R 3.3.3 environment. Afterward, the peak matrix was filtered by removing 
background ions from negative control samples and features with a relative standard deviation (RSD) of > 20%.

Extraction of DNA. DNA was extracted from the initial plant litter samples (wet from the forest and after 
drying) as well as from the sand-litter-mix after 22 days of incubation. For each sample, 0.5 g of plant litter or 
sand-litter-mix were weighed into a silica beads tube, and 375 µL of 120 mM phosphate buffer (pH 8.0), 125 µL 
of TNC buffer (0.5 M Tris–HCl, 0.1 M NaCl, 10% CTAB (hexadecyltrimethylammonium bromide) pH 8.0), and 
500 µL of PCI (phenol:chloroform:isoamylalcohol 25:24:1, pH 8.0; Roth, Karlsruhe, Germany) were added. Bead 
beating was performed for 30 s at 6.5 m/s in an MP Biomedicals FastPrep-24 (Fisher Scientific, Schwerte, Ger-
many), followed by centrifugation at 13,000×g for 5 min. The supernatant was transferred to a new tube, and the 
extraction from the plant litter or sand-litter-mix was repeated twice as described. The pooled aqueous phases 
were extracted once more with PCI and once with chloroform:isoamylalcohol 24:1 (Roth), followed by an addi-
tion of 1 µL 20 µg/µL glycogen and 1.5 mL polyethylene glycol solution (30% PEG 8000, 1.6 M NaCl) for DNA 
precipitation. Following 2 h of incubation at room temperature, samples were centrifuged at 14,000×g for 90 min 
at 4 °C, DNA pellets were washed with 75% ethanol and centrifuged as above for 20 min, and resuspended in 
100 µL TE buffer (10 mM Tris–HCl, 1 mM EDTA, pH 8.0).

Amplicon sequencing of bacterial 16S rRNA genes. A polymerase chain reaction targeting the V3 to 
V5 region of bacterial 16S rRNA genes was performed using primer pair Bact_341F/Bact_805R and HotStarTaq 
Mastermix (Qiagen, Hilden, Germany) as previously  described26,27. Purification of amplicons was done using 
NucleoSpin Gel & PCR Clean-Up Kit (Macherey–Nagel, Düren, Germany). Libraries for amplicon sequencing 
were prepared using the NEBNext Ultra DNA Library Prep Kit for Illumina (New England Biolabs, Frankfurt, 
Germany) following the manufacturer’s instructions. They were purified using AMPure XP beads (Beckman 
Coulter, Krefeld, Germany). Amplicon sequencing was carried out using a MiSeq Illumina platform (Illumina, 
Eindhoven, The Netherlands) with v3 chemistry. Analysis of raw sequence data was performed in mothur (v. 
1.39) following the mothur standard operating procedures as previously  described28–30. Sequences were binned 
to OTUs with a 3% identity cutoff, and OTUs were classified using the SILVA reference database release SSU 
 13231.

https://www.kegg.jp/kegg/rest/
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Metaproteomics. Protein extraction and sample preparation for LC–MS/MS measurements were per-
formed according to previously published  protocols32. In brief, the proteins were prepared by SDS–polyacryla-
mide gel electrophoresis (SDS-PAGE) for sample decontamination and in-gel digested with 0.5  µg trypsin 
(Sigma-Aldrich, St. Louis, USA), overnight. The extracted peptides were desalted using ZipTip filter (Thermo 
Fisher Scientific) following the manufacturer’s instructions and analyzed using liquid chromatography (HPLC, 
Ultimate 3000 RSLCnano, Dionex/Thermo Fisher Scientific, Idstein, Germany) coupled via a TriVersa Nano-
Mate (Advion, Ltd., Harlow, UK) source in LC chip coupling mode with a Q Exactive HF mass spectrometer 
(Thermo Fisher Scientific). The samples were measured according to the settings outlined in Starke et al.33. The 
acquired raw data were searched by Sequest HT in Proteome Discoverer v2.1 (Thermo Fisher Scientific) against 
an in-silico protein database containing all bacteria (>  106 sequences), downloaded 2017 from Uniprot. We con-
sidered only proteins with a false-discovery rate of < 1%.

Data analysis. Principal components analysis and visualizations were performed in R3.634 using packages 
 vegan35, and  ggplot236. Weighted correlation network analysis (WGCNA) was performed on the HR-MS DOM 
data using an interactive web application available at https:// shiny- bird. univ- nantes. fr/ app/ Mibio mics37. In the 
WGCNA, we used Pearson correlation to build the similarity matrix between all combinations of sum formulas 
in our data set. A signed adjacency matrix (A) was created as Ai,j = (0.5 ∗ (1+ cor))p with cor as the Pearson 
correlation value and p = 9 to achieve a scale-free topology. Negative correlations result in low adjacencies. Hier-
archical clustering of the node dissimilarities identified subnetworks, called modules in WGCNA. The WGCNA 
dissimilarity matrix was scaled into a three-dimensional representation via classical multidimensional scaling 
and visualized with R package  rgl38.

Results
Litter and decomposer community evolution. A principal component analysis (PCA) of our litter 
metabolome (LC–MS) revealed major initial differences between the broadleaf and coniferous litter as well as 
the grassland litter (Fig. 1a,b). Over the 22 days of decomposition, the metabolome composition of all three 
tree litter types converged towards the grassland litter, which showed little temporal evolution after 8 days. The 
PCA did not reveal significant differences between the two sampling sites. Our data show that (i) the metabo-
lome is initially litter-specific, rather than site-specific, (ii) the tree litter metabolome changes stronger than the 
grassland litter over the 22 days of incubation and (iii) metabolome converges rapidly, reaching high similarity 
already after 22 days. The rapid convergence suggests that the initial differences between the litter metabolomes 
are rapidly being addressed and removed by the respective decomposer communities.

Amplicon sequencing of bacterial 16S rRNA genes on DNA showed distinct differences between the com-
munity structures on the litter types before and after the 22-day incubation (Fig. 1c). This indicated high litter-
specificity throughout the decomposition process. Again, there was only minor variability related to the sampling 
sites. In contrast to the convergence of the litter metabolome profiles (Fig. 1b), the compositions of the bacterial 
communities diverged (Fig. 1c). A pairwise Euclidean distance matrix of the 16S data showed that during over 
22 days of decomposition, the dissimilarity between the communities on the four litter types increased by ~ 6% 
(Supplementary Table S1). Our data show a divergent development of litter-specific bacterial communities during 
early-stage decomposition, suggesting increasing substrate-dependent specialization.

Direct infusion HR-MS analysis of DOM revealed a high initial similarity between the samples of oak, pine 
and beech litter (Fig. 1d). From there, the composition of the tree-derived DOM diverged until day 8. The 
grassland DOM did not share the initial similarity with the tree-derived DOM, but it converged with the beech 
signal after ~ 8 days of decomposition. From day 8 to 22 we observed that the paths of temporal change of all 
litter types were close to parallel in the PCA, suggesting they might undergo similar transformation processes.

The metabolome and 16S data were dominantly converging and diverging, respectively, but the HR-MS DOM 
data contained both converging and diverging trends. This suggests that DOM contains information on both the 
litter metabolome and the decomposer communities. This advocates for a more detailed visualization with the 
aim of assigning the individual molecular components of DOM to their most likely sources.

Weighted molecular network of DOM. A weighted correlation network analysis (WGCNA) of our 
HR-MS DOM data produced a weighted graph composed of 6999 nodes (Fig. 2a). Therein, each node represents 
a distinct molecular component, which is described by a sum formula and its relative abundance in the 120 
HR-MS spectra. The topological position of two nodes within the network reflects the similarity of the individual 
molecules’ relative abundances, meaning: the closer two nodes plot together, the higher the similarity between 
the relative abundance patterns of the underlying molecules during the litter decomposition experiment.

The three-dimensional shape of the total network is tetrahedron-like, suggesting 4 potential end member 
components within the DOM composition. These 4 compositional end members could potentially correspond 
to the 4 litter types, but also to the 4 temporal stages after the initial sampling. To identify whether the input litter 
types and the temporal evolution shaped the network structure, we analyzed the contribution of each sample 
to subsections of the network, so-called network modules (Fig. 2b). In the WGCNA, the module eigenvalues 
depict these contributions.

The yellow network module represented the initial conditions for the tree species beech, oak and pine. This 
suggests that at the initial stage of decomposition, the DOM leaching from the 3 tree species was highly similar, 
but was distinct from the grassland DOM. Seven of the ten network modules had major contributions from 
one litter type only (in Fig. 2b beech: black and brown, oak: blue, grass: magenta and turquoise, pine: green and 
red). In many of these modules, the eigenvalues of their respective litter types were increasing along the time 

https://shiny-bird.univ-nantes.fr/app/Mibiomics
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series. We conclude that that following an initial similarity, litter-specific molecular patterns were forming and 
consolidating within the composition of DOM.

In addition, the WGCNA identified two modules (pink and purple) that indicate partial convergence. The 
pink module captures mixed contributions from the beech, grass and pine litter that increase with time. The 
purple module shows a highly similar pattern, but for beech, grass and oak litter. Within the whole network, 
these two convergence modules filled the topological space between the modules that were highly litter-specific 

Figure 2.  (a) Weighted correlation network analysis (WGCNA) of a combination of 6999 molecular entities 
in DOM scaled into three dimensions. (b) Contributions of the DOM samples to the network modules. The 
samples are grouped by litter type. Each bar summarizes three biological replicates. A lighter shade identifies 
bars representing samples from the Linde forest; a darker shade samples from the Hainich forest. (c) Summary 
graph indicating simultaneous divergence and convergence during litter decomposition.



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:7451  | https://doi.org/10.1038/s41598-022-11485-1

www.nature.com/scientificreports/

and located in the edges of the tetrahedron (Fig. 2c). The WGCNA revealed that divergence and convergence 
occur simultaneously in DOM during early-stage litter decomposition. This suggests that common and litter-
specific decomposition functions are simultaneously being employed by the decomposer community, and that 
their metabolic expression is recorded by distinct sets of molecules within DOM. Furthermore, our findings 
open the question of why the sampling site was not an important factor in shaping the DOM composition in 
our experiment. We hypothesize that decomposer communities optimize their functional expression towards 
the litter type irrespective of their taxonomic structure, which is commonly observed to vary with pH and geo-
chemistry between  sites12.

Predicting decomposer community functioning. Functional predictions based on the 16S rRNA gene 
provide an approximation of the functional profiles of microbial  communities39. Our findings above showed 
that DOM additionally contained information on decomposer communities and their substrates. Correspond-
ingly, central pathways of microbial maintenance such as ‘ABC transporters’, ‘quorum sensing’ and ‘phospho-
transferase system PTS’40–42 are highly covered in our 16S data, but have only very low molecular coverage 
in DOM (Fig. 3 and Supplementary Table S2). In contrast, the pathway ‘phenylpropanoid biosynthesis’, which 

Figure 3.  Map of decomposer community functioning based on average coverages in DOM HR-MS and 
16S rRNA gene amplicon sequencing. Underlined pathway predictions were additionally validated by 
metaproteomics. Pathways highlighted in red indicate competitive metabolism through antibiotics release and 
resistance.
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refers to lignin  precursors43, is highly covered only in DOM, indicating the leaching and residual presence of 
litter-derived molecular components.

We expect that functional interactions between decomposer communities and their litter substrates could 
most likely be found among pathways that have comparable coverage in both DOM and 16S. We find that sev-
eral pathways, which are highly covered both in DOM and 16S, indicate mechanisms of attack and defense. Not 
only did we find high coverages in the overview pathway ‘biosynthesis of antibiotics’, but there were many more 
specific pathways as well. One of the most highly covered pathways, ‘betalain biosynthesis’ refers to a compound 
that has been suggested to enable defense against pathogenic  fungi44. While our current analysis does not cover 
fungal actors, previous investigations suggest that antagonism between bacteria and fungi is likely to occur as a 
result of substrate  competition45. The pathway ‘tetracycline biosynthesis’ refers to a class of antibiotics, that are 
effective against a wide range of Gram-positive and Gram-negative  bacteria46. The pathway ‘phenazine biosyn-
thesis’ hints at microbial defense, as phenazine production in biofilms has been shown to promote antibiotic 
 tolerance47. The complexity of these molecular attack and defense mechanisms is surprisingly high, seeing as the 
pathway ‘clavulanic acid biosynthesis’ indicates the production of a compound, that is not an antibiotic itself, but 
is used to overcome β-lactam resistance in bacteria that secrete β-lactamase48. β-lactamase otherwise inactivates 
many common antibiotics. Our findings suggest that decomposer communities may employ highly sophisticated 
attack and defense mechanisms during the early stages of litter decomposition.

Since rapid community succession during litter decomposition has been previously  shown49,50, we hypothesize 
that the structural changes might be driven by competition, which is molecularly exerted via the secretion of anti-
biotics into DOM. Our 16S rRNA gene data reveal that Proteobacteria were the dominant phyla on all four litter 
types (Supplementary Figs. S2 and S3). However, their relative abundance decreased by ~ 15% on average over the 
22-day incubation, whereas Actinobacteria rose by approximately the same amount. Relative abundances of Act-
inobacteria species have previously been shown to increase during litter decomposition and have been described 
as secondary generalist  decomposers49,51. This suggests that some species within the initially dominant phylum 
of Proteobacteria could be under increasing competitive pressure, giving way to Actinobacteria species, who are 
generally known for their competitive abilities such as the production of a variety of antibiotic  compounds52.

Functional predictions based on the metaproteome supported our hypothesis of active competition between 
the major bacterial phyla in our experiment (Supplementary Table S3). The metaproteome revealed multiple 
defense functions of Proteobacteria and Firmicutes, namely beta-lactam resistance and cationic antimicrobial 
peptide (CAMP)  resistance53. Monobactam and novobiocin biosynthesis could be assigned to Proteobacteria. 
Both are potent  antibiotics54,55 and were predicted by our HR-MS and 16S rRNA gene data as well (Fig. 3). In 
accordance with the decrease in Proteobacteria, the coverage of the monobactam and novobiocin biosynthesis 
pathways in the HR-MS data also decreased over time during our incubation (Supplementary Table S2). This 
finding suggests a distinct effect of competitive metabolism and decomposer community change on the molecular 
composition of DOM in litter leachates.

We find that the coverage of metabolic pathways (proportion of detected molecules and functions relative 
to pathway size) in both HR-MS and 16S was surprisingly similar between the litter types, time points and 
sampling sites. Within the whole decomposition series, the standard deviations of the coverages per pathway 
were only about ± 6% and ± 4% on average for the DOM and 16S data, respectively (Supplementary Table S2). 
This indicates that the early-stage decomposition process of broadleaf, evergreen and grass litter requires many 
of the same functions.

Discussion
We found that the qualitative (presence/absence-based) differences in pathway coverage between the litter types, 
time points and sites in our decomposition experiment were marginal. This finding supports a prevalent theory 
in microbial ecology, which suggests high functional redundancy in terrestrial microbial communities, especially 
in the context of organic matter  decomposition56,57. In contrast, our weighted network analysis of DOM, which 
is based on relative abundances, suggests the emergence of highly litter-specific molecular patterns (Fig. 2). This 
finding supports theories of metabolic specialization during  decomposition8,58.

To unify specialization and functional redundancy during litter decomposition, we integrated our molecular 
network and metabolic pathway prediction (Supplementary Table S4). We find that the distribution of the func-
tional metabolites in the network differed sharply between pathways (Fig. 4). Molecules belonging to the pathway 
‘alpha-linolenic acid metabolism’ are almost exclusively found in the green module, whose members have high 
relative abundances in the pine litter. The pathway ‘polycyclic aromatic hydrocarbon degradation’ however, 
shows an opposite pattern, being under-represented in the pine litter modules (green and red). Even though 
we have found previously that the presence/absence-based coverages of both pathways are similar between the 
litter types, their relative expression patterns are highly litter-specific. In this decomposition study the litter was 
coarsely cut and as a result the pine needles were structurally intact (Supplementary Fig. S1). Therefore, the 
metabolization of the needle wax covers, which have been shown to contain alpha-linolenic acid, could have 
required priority in the decomposition process of the pine  litter59. The breakdown of the polymerized aromatic 
hydrocarbons from lignin could, as a result, be delayed during pine needle degradation. Our findings suggest that 
even though the metabolic potential of decomposer communities is functionally redundant from a qualitative 
(presence/absence) perspective, the relative expressions of decomposition functions are optimized towards the 
properties of the immediate substrate.

For decomposer communities it might be less important what has to be done, because many functions have 
to be employed in a similar manner on various litter types and are therefore redundantly distributed. It could be 
more important how much of the respective function has to be performed locally at each point in time and how 
well the respective actors within the decomposer community are able to perform these tasks.
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We did not find a litter-specific association to explain the competitive aspects of the decomposition pro-
cesses. The molecular entities, which were annotated into the pathway ‘biosynthesis of antibiotics’, were spread 
ubiquitously throughout the weighted network graph. This suggests that attack and defense could be universal 
mechanisms among decomposer communities to compete, adapt and optimize for their substrate, supporting 
proposed global patterns of microbial competition in the  topsoil13.

Conclusions
In this investigation, we highlight the potential of integrating heterogeneous data from multi-omics analyses to 
reveal functional interactions between microorganisms and dissolved organic matter (DOM). Our study expands 
on recent advances in understanding how microbial communities adapt to their substrate and how this shapes 
the process of plant litter decomposition. We identify groups of hundreds of molecules in DOM that together 
are highly indicative of individual plant litter types and their stage of decomposition. In the future, refining 
such DOM-based indicator patterns could directly inform about the metabolization and fate of plant-derived 
carbon in soil and contribute to assessments of the function and health of terrestrial ecosystems. Our findings 
suggest that bacteria secrete a variety of natural antibiotics in an effort to compete against other bacteria or fungi 
within the decomposer community. Competitive pressure likely drives constant adaptation and optimization of 
decomposer community functioning.

Data availability
Raw Illumina MiSeq sequencing data have been deposited in the Sequence Read Archive of NCBI under Acces-
sion Numbers SRR11837071–SRR11837111. Raw metabolome data have been deposited in the MetaboLights 
database under accession number MTBLS1885. Raw HR-MS DOM and metaproteome data are available from 
Edmond, the Open Research Data Repository of the Max Planck Society, under https:// doi. org/ 10. 17617/3. 4c.

Received: 13 December 2021; Accepted: 11 April 2022

Figure 4.  Molecular entities, that were annotated into metabolic pathways, are highlighted within the same 
weighted correlation network of DOM. Pathways, that are indicative of the degradation of needle waxes 
(top) and lignin (middle) are highly and little expressed in the pine litter, respectively, suggesting specifically 
optimized degradation strategies. Molecules in the pathway ‘biosynthesis of antibiotics‘ (bottom) are 
ubiquitously distributed.

https://doi.org/10.17617/3.4c
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