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Abstract

Aggregating a dataset, then injecting some noise, is a simple and common way to
release differentially private data. However, aggregated data -even without noise- is not an
appropriate input for machine learning classifiers. In this work, we show how a new model,
similar to a logistic regression, may be learned from aggregated data only by approximating
the unobserved feature distribution with a maximum entropy hypothesis. The resulting
model is a Markov Random Field (MRF), and we detail how to apply, modify and scale a
MRF training algorithm to our setting. Finally we present empirical evidence on several
public datasets that the model learned this way can achieve performances comparable to
those of a logistic model trained with the full unaggregated data.

Keywords: aggregated data, differential privacy, Markov random field, logistic regression,
ad click prediction

1. Introduction

1.1 Learning from aggregated data

A recent societal trend is to provide user with more privacy protection, and this leads
to rethinking how user data are collected and shared to offer meaningful and provable
privacy guarantees. One popular and simple way to provide these guarantees is to aggregate
the dataset, discarding the individual records early in the data processing. The resulting
aggregated dataset is made of a list of contingency tables, counting examples of the original
record-level dataset along several projections. As an example, Table 1 shows a toy dataset
made of individual records, and Table 2 contains the ”aggregated data” computed from this
toy dataset by projecting on each pair of features1.

1. A good reason to aggregate the data is that it is easy to make aggregated data differentially private, by
adding some Laplace or Gaussian noise (Dwork et al., 2014) . The resulting noisy aggregated data may
then be shared or published without damaging the privacy of the users.
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There is however a strong limitation to the usefulness of aggregated data: The vast
majority of high performance machine learning algorithms from logistic regression to deep
learning require access to disaggregate data (Table 1.) and cannot be trained from aggregate
data (Table 2.).

One notable exception is the “Naive Bayes classifier” (Lewis, 1998) , which requires only
aggregated data. Specifically, it requires, for each feature, one contingency table aggregating
on this feature and the label. Naive Bayes heavily relies on an independence assumption
between the features of the dataset, and is known for often providing poor quality models
on real world datasets.We notice also that the aggregated data of Table 2 allows to learn
about the correlations between pairs of features, and this information is lost in the Naive
Bayes model.

To summarize briefly this method, it consists on retrieving the distribution of maximal
entropy among these which would in expectation produce the observed aggregated data; and
on predicting with the conditional distribution of the label inferred from this distribution.
This method may be understood as a generalization of Naive Bayes, but takes into account
all the observed correlations between features. The quality of the obtained model depends
on the set of available contingency tables, and we focused in our experiments in the case
when there is one contingency table for each pair of feature, as in Table 2. The case when
aggregated data are noisy was kept outside of the scope of this paper.

Paper outline The problem and notations are defined in section 2. We then detail
our solution in 3 , discuss its limitations and how to scale it in section 4, and present our
experimental results in section 5. Finally section 6 reviews some related works.

1.2 Online advertising, Chrome Privacy Sandbox the Criteo-AdKdd challenge

Our main motivation in the development of this method comes from the changes happening
in the online advertising with the introduction of Google Chrome Privacy Sandbox (privacy-
sandbox).

The online advertising industry currently heavily relies on user data to train machine
learning (ML) models predicting the probability that an ad is clicked, as a function of the
ad’s features. These models are used to price an ad display opportunity, and to bid in real
time on these opportunities. The Privacy Sandbox would however restrict how advertisers
can access to these user data. In particular in the FLEDGE (Kleber, 2021) proposal from
Chrome, the advertisers would still be able to compute their bids as a function of many
of the features they use today, but they would not be able to collect an individual record

Table 1: Toy example dataset

Feature 1 Feature 2 Feature 3 label

Example 1 ”1” B a 1
Example 2 ”2” A b 1
Example 3 ”1” B b 0
Example 4 ”2” B a 1
Example 5 ”1” A b 0
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Table 2: Example of aggregated data

Feature 1 Feature 2 Examples count Sum(label)
”1” A 1 0
”1” B 1 1
”2” A 1 1
”2” B 2 1

Feature 1 Feature 3 Examples count Sum(label)
”1” a 1 1
”1” b 2 0
”2” a 1 0
”2” b 1 1

Feature 2 Feature 3 Examples count Sum(label)
A b 2 1
B a 2 2
B b 1 0

training set 2. Instead, Chrome would provide an ”aggregation API”, from which advertisers
would recover noisy aggregated data similar to these of Table 2. But this means that new
algorithms able to learn directly from these aggregated data would be required.

Criteo Ad-Kdd challenge Because learning a bidding model in this setting is a serious
challenge for the advertising industry, Criteo proposed in 2021 a public competition where
the goal was to learn a model from aggregated data (Diemert et al., 2022). We try to
tackle a similar problem as the one from the competition, except that in the AdKKD’s
competition, a small amount of disaggregate examples were also provided and largely used
by the top-performing solutions. Here we focus on a solution which does not require any
disaggregate sample.

2. Problem formalization

Let X a feature vector made of D categorical features, each with M modalities: X ∈ X :=
{1...M}D. Let Y ∈ {0, 1} a binary label, and π an unknown joined distribution on X,Y .
Let (xi, yi)i∈1...n a dataset of n iid samples of this distribution.

From this dataset is computed a list of contingency tables, counting the displays and
labels projected on subsets of the feature vector, as in the example of Table 2. Formally,
we may define these tables as follow: let φ be a finite set of K “projections” φk : X −→
{0, 1} for k ∈ [1..K]. We may think of each function φk as one row in a contingency table:
an example x is either counted ( when φk(x) = 1 ) or not ( when φk(x) = 0 ) in this row.
We then define, for x ∈ X , the binary vector:

φ(x) := (φk(x)){φk∈φ} ∈ {0, 1}
K .

2. This would be achieved by letting the advertiser upload their bidding model on the browser, where user
data would be stored. This model would be applied used by the browser itself to compute a bid, and
the advertiser would thus never observe directly the inputs of the model.
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We also define the aggregated data as the two vectors3:

d :=
∑
i

φ(xi),

c :=
∑
i

φ(xi) · yi.

Each coordinate of d (respectively c) is thus the count of examples (respectively the
examples with label 1) on one row of a contingency table. To keep notations compact, we

will also note a the concatenation of vectors c and d i.e. a =

[
c
d

]
.

The vector φ(x) thus encodes the list of rows where example x is counted. In practice,
we first choose a list of contingency tables, and define φ from these tables.

Problem statement Our goal is to learn a model predicting the label Y as a function of
the features X, when the observed data consist only on the vectors c and d of aggregated data.
and the ”granular” training set (xi, yi) from which it was computed cannot be accessed.
Note that the state space X and the encoding φ are assumed to be known, i.e. we know how
the data were aggregated. In other words, and noting A the random variable associated
with the observed aggregated data a, the only information available at learning time is that
we observed the event (A = a).

Aggregation on pairs of features Of course, the quality of the learned model depends
greatly on the list of available contingency tables. For example, in the extreme case when we
would have one table aggregating on all features, we could rebuild the full original dataset,
and could then apply classical ML methods. At the other extreme, if we only have one
table for each feature, aggregating the examples and labels on this feature only, and no
other information on the correlation between features, there is little opportunities to learn
a meaningful model other than Naive Bayes or some simple ensemble of predictors using
one single feature each.

We are thus interested in the intermediate cases, when the tables provide some infor-
mation on the correlations between features of the X vector, but the full dataset cannot
be reconstructed. In practice, we focus in the case when there is one contingency table
counting examples and labels for each pair of features of X.

3. Modelling the joint distribution of features and labels

Recall that classical ML methods, which directly model the conditional distribution P(Y |X =
x), require observing individual samples (x, y) to define a loss and are thus not applicable
here.

Instead, we will directly model the joined distribution on X,Y . Since the aggregated
data A are random variables computed from iid samples of X,Y , this model is able to fully
define the distribution on the random variables A, and may be fitted by trying to maximise
the likelihood of the observed event A = a.

A joined model may also be used to infer the label on a sample x, using the Bayes rule
to retrieve the conditional P(Y |X = x) from the joined model.

3. In the vocabulary of online advertising, d are the counts of Displays and c are the counts of Clicks
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Symbol Meaning

X The space state of feature vectors.
Y ≡ {0, 1} The set of values of the labels

n The number of samples of the dataset
π The unknown distribution on X × Y

(xi, yi)i∈1...N Dataset of independent samples of π
φ Finite family of K binary functions

φk : X −→ {0; 1}
φ(x) The K dimensional binary

vector (φk(x))k∈[1..K]

c and d The observed vectors of aggregated counts
and labels on projections φ

a the concatenation of vectors c and d
C, D, A The random variables associated with c, d, a

Table 3: Notation

3.1 Log linear model

The class of models we propose to use is the class of log-linears models whose sufficient
statistics are exactly the aggregated data.

Formally, let µ, θ ∈ RK two vectors of parameters, and πµ,θ the parametric distribution
on X,Y defined as follow:

πµ,θ(x, y) :=
1

Zµ,θ
exp

(
φ(x) · (µ+ y · θ)

)
, (1)

where Zµ,θ is the normalization constant:

Zµ,θ ≡
∑

x′,y′∈X×Y
exp(φ(x′) · (µ+ y′ · θ)). (2)

Remark 1 This normalisation constant Zµ,θ is a sum on a number of terms exponentially
large in the number of features. It is not reasonable to compute it explicitly, except in a
small ”toy” problems. But as we will see, this is not necessary.

Models such as Equation 1 belong to the class of ”Random Markov Fields“ (MRFs).

Motivations for choosing this parametric model Let us summarize quickly the rea-
sons why we choose this specific family of parametric models.

• The aggregated data are sufficient statistics for this model, making the optimization
problem reasonably tractable. In particular, the objective4 is convex, with a uniquely
defined optimal distribution π∗ .

4. To be more precise, this is the case if we allow the parameters to go to infinity, or if there is no 0 cell
with a count of 0 in the contingency tables. Also note that the model is slightly over-parametrised: the
distribution is unique, not the optimal parameters. In practice we use a regularization, which makes the
loss strictly convex and avoids these complications.
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• This model is just rich enough to fit well the available data: at the optimum, the
expectation of the random variable ”aggregated data” under the model distribution
exactly matches the observed data, i.e. Eπ∗(A = a) 5, and the optimal distribution is
the only one in this class of model verifying this equality.

• The optimal distribution is also the maximum entropy distribution, among the distri-
butions q verifying the previous property Eq(A) = a.

3.2 Conditional distribution of Y knowing X

As mentioned earlier, Bayes rule may be applied to retrieve the conditional distribution
from a joined model:

πµ,θ(Y = 1|X = x) =
πµ,θ(Y = 1, X = x)

πµ,θ(Y = 0, X = x) + πµ,θ(Y = 1, X = x)

= σ(φ(x) · θ) (3)

Here σ is the logistic function. We recognize here the shape of a logistic model, on
features φ(x). In the case when there is one contingency table for each pair of features, this
is exactly a logistic model with a quadratic kernel, which is commonly used to model feature
interactions, and is known as a very strong baseline on online advertising datasets(Chapelle
et al., 2014). The “only” difference between our case and a logistic regression is that we
also have to fit the distribution on X which we did not observe directly. This additional
modelization certainly has a cost, and we thus expect our model to perform less well than
this logistic regression. In the experiments of section 5, we compared the test performances
of our method to these of a logistic regression with the same shape.

3.3 Maximizing the likelihood of the data

We have seen that a joined model on X,Y assigns a probability πµ,θ(A = a) to the observed
event A = a. We may thus define our training loss as the negative log-likelihood of this
event: 6

µ∗, θ∗ := argminµ,θ − log πµ,θ(A = a) (4)

While we do not know how this problem could be solved for arbitrary classes of models,
for the parametric model of Equation 1 the gradients of log-likelihood have a close formula:

Lemma 2 (Gradient of the log-likelihood)

−∇µ log πµ,θ(A = a) = Eµ,θ(D)− d

−∇θ log πµ,θ(A = a) = Eµ,θ(C)− c
here Eµ,θ(D) and Eµ,θ(C) are the expectation of the aggregated vectors when the n sam-

ples Xi, Yi come from the model πµ,θ.

5. This is a direct consequence of lemma 2
6. To be perfectly exact, this argmin in Equation 4 may be either a set of empty. But in practice, we

add some L2 regularization, which makes the optimization problem strongly convex and the argmin well
defined.
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.

This lemma is a direct consequence of the fact that Equation 1 defines an exponential
family (Koller and Friedman, 2009) whose sufficient statistics are exactly the aggregated
data, and this is our main motivation for choosing this class of models.

The gradient is the same in the fully observed case Another meaningful conse-
quence of the sufficient statistics is that the gradient in lemma 2 is exactly the gradient of
log-likelihood of the full training set :

∇µ log πµ,θ(A = a) = ∇µ log πµ,θ(Xi = xi, Yi = yi i∈1...n),

∇θ log πµ,θ(A = a) = ∇θ log πµ,θ(Xi = xi, Yi = yi i∈1...n),

In other words, it is possible to fit this joined model as well as if we observed the whole
dataset! 7

3.4 Training algorithm

Markov Random Fields such as Equation 1 are not straightforward to train because of the
intractable normalization, but several algorithms have been proposed to overcome this issue.
In particular, the ”Persistent Contrastive Divergence“ (PCD) method (Tieleman, 2008) may
be directly applied to our case, and we used it in our experiments. This method consists
in running a stochastic gradient descent, using a Gibbs sampling algorithm to estimate the
gradient.

Indeed the gradient of lemma 2 is the difference between the aggregated data c and
d, which are directly observed, and the expectation E(C) and E(D) of these aggregated
data according to the current model. These expectations do not depend on any additional
data, but involve an intractable sum on all possible vector x, making an exact gradient
computation infeasible. Instead, a Gibbs sampler is used to draw samples of X and Y from
the model, and the expectations E(C) and E(D) are estimated by Monte Carlo on these
samples. However generating accurate Gibbs samples at each iteration of the gradient may
still be prohibitively costly. The key idea of (Tieleman, 2008) consists in reusing the Gibbs
samples of previous iteration to limit this cost: At iteration t, a Gibbs sampler is initialized
with the samples produced at iteration t−1; and these samples are updated with one single
step of Gibbs sampling. See the pseudo code of the algorithm in appendix C.

3.5 Modifications to the MRF model

We have seen in the previous section that the model we want to fit is a Markov Random
Field, and may be trained with the well-known “Persistent Contrastive Divergence” algo-
rithm. However we found that a few modifications to this algorithm were beneficial. Our
final training algorithm is in appendix C.

The specificity of our problem is that we only care about the quality of the final con-
ditional model P (Y |X = x). Only the parameter θ appears in this formula. This means
we only care about accurately estimating θ. In contrast the µ parameter does not appear

7. However if we had the full dataset, it would be preferable to fit directly a model on P(Y |X = x), instead
of jointly modeling the distribution of X as we do.
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in this conditional distribution, so it is not an issue if our estimate of µ is inaccurate or
strongly over-fitted to the data, so long as θ is not.

Model Regularization The main change is the choice of the regularisation of the model.
In the case of logistic models, it is well known (Chapelle et al., 2014) that a regularization
of the parameters may dramatically increase the performances on the validation set when
the number of parameters is large and inputs are correlated. It is especially the case when
using a second (or larger) order kernel8. Since our model has the same form as a logistic
regression, it most likely would also benefit from the same kind of regularization.

We used L2 regularization in the experiments due to its simplicity, and because it makes
the loss strongly convex. However, we noted that a single regularization parameter was not
performing well. Instead we penalized differently the components µ and θ of the parameters
vector. We thus have two distinct parameters λµ and λθ :

penalty(µ, θ) ≡ λθ · θ2 + λµ · µ2 (5)

We experimented with varying these two parameters (see table 5) and observed that:

• Regularization parameter λθ should be set to a value roughly similar to what would
be used in a ”classical” logistic regression. ( A typical value on a dataset with 20
features and all crossfeatures lies in the range 100 to 1000)

• Regularization parameter λµ is best kept much smaller. While no regularization at
all can lead to numerical issues, a small value (typically 1 or less) is fine, while higher
value may decrease the performances.

Our intuition here is that µ ,which only models the distribution of X, may be allowed to
overfit the data: if we were able to fully overfit the train set and have Pµ(X) = PTrain(X),
then our model would actually become equivalent to a ”classical” logistic regression! While
we do not have enough information on the distribution of the train set to achieve this, but
a lower regularisation on µ keeps us closer from this ideal case.

Gradient rescaling Looking at lemma 2, we observe that the gradient moves the param-
eters of interest θ when the observed label sum c and the expected label sum are different.
There are two possible reasons why they could differ: either because the model Pθ(Y |X = x)
is wrong, and the parameters change should then improve this model, or because the model
on X is wrong, thus producing an incorrect estimate of E(φ(X)). We therefore experi-
mented with a ”rescaled gradient“ formula, which updates the coefficients of θ only where
the ratio of positive numbers is off. Noting d̂ (respectively ĉ) the expectation of D (and C)
estimated from the Gibbs samples (See appendix C for details), we replaced the gradient
on θ by the following formula:

PseudoGradientθ := c− d

d̂
ĉ, (6)

where the quotient and multiplication are coordinate-wise. This ”pseudo gradient” is very
similar to the formula used in (Diemert et al., 2022) by the winners of the AdKdd challenge.

8. i.e. interactions between features.
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Using this formula does not change the optimum of our problem: indeed if the gradient
on µ is 0, then d and d′ are equal, and this pseudo gradient on θ becomes equal to the
true gradient. We observed a significant improvement of the speed of convergence of the
parameter θ when using this pseudo gradient, as shown in figure 2.

Preconditioning and fast weights We reduced the variance of the gradient by marginal-
izing out Y in our Monte Carlo estimator of Eµ,θ(C) (i.e. replacing the sampled Y by the
expectation on Y ). Our implementation also used a preconditioning of the gradient, mul-
tiplying the descent direction by the inverse diagonal of the Hessian. (see appendix C
)

Finally, following the idea of (Tieleman and Hinton, 2009), we experimented with using
a larger learning rate for µ than for θ. This also significantly reduced the training time on
large models, compared to the ‘best’ common step size (see figure 3).

4. Discussion on the proposed model

4.1 Maximum entropy distribution

The model is rich enough to “fit” the aggregated data A direct corollary of lemma 2
is that the expectation of the aggregated data under the optimal (unregularized) distribution
πµ∗,θ∗ is equal to the observed aggregated data:

Eµ∗,θ∗(D) = d

Eµ∗,θ∗(C) = c.

i.e. the model is thus able to “perfectly fit” all the observations.
However, πµ∗,θ∗ is not the only distribution on X,Y to have this property. So why should

we pick this specific distribution (and so the model of Equation 1) instead of another one?
One possible answer here is to apply the maximal entropy principle which advises to select
the distribution with the maximum entropy, among the distributions compatible with our
data.

If we define S the set of distributions q verifying Eq(D) = d and Eq(C) = c, then it
is known since Boltzmann that the shape of the distribution of maximal entropy in S is
log-linear in the constraints (Jaynes, 2003). In other words it is exactly the distribution
πµ∗,θ∗ .

A generalization of Naive Bayes It should be noted that in the case when there is
only one contingency table per feature (i.e. for each feature, one query “select nb examples,
nb positives, feature, grouped by feature” for each feature in 1 . . . D), the model of Equation
1 may be factorized, and becomes equivalent to the well known Naive Bayes model. This
should not be a surprise: the “max entropy” property we noted above is generalization of
the conditional independence hypothesis of the Naive Bayes model.

4.2 Limitation of the proposed solution

One caveat to our method is that there is no guarantees on the performances: it may
perform poorly if the true distribution of the data is very different from the max entropy
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distribution, in other words when there are some important correlations between triplets
(or more) features, unobserved in the available pairwise tables9.

Example of distribution where the pairwise model under-performs Here is an
example of a distribution of 3 binary features X1, X2, X3 and a label Y where the pairwise
MRF would perform poorly:

Let X1 and X2 two independent Bernoulli variables each of parameter 0.5, and X3 :=
X1 xor X2. Let P(Y = 1|X = x) := 0.25 + 0.5 · x3

It is clear that a logistic regression trained with enough samples should be easily able
to approximate this distribution on Y |X.

However, we may note here that X3 is also a Bernoulli(0.5) variable, and X1, X2, X3

are pair-wise independent (i.e. X1 ⊥ X3 and, X2 ⊥ X3). The pairwise aggregation tables
are thus not able to distinguish this distribution from the distribution where X1, X2, X3 are
jointly independent variables. Actually, it can be checked that the pairwise MRF becomes
here equivalent to the Naive Bayes model on features X3 and U := X1 xor X2

10. Its
outcome predictions (with infinitely many samples) may be computed: ŷ = 0.9 when x3 = 1
, and ŷ = 0.1 when x3 = 0, which do not match the true data.

Robustness on actual datasets Being aware of possible data distributions such as the
example above, we were not really expecting our algorithm to perform consistently well
on real datasets. However, when experimenting with various datasets, we did not find low
dimensional cases where it performed significantly worse than a logistic.

4.3 Scaling to large datasets

One important question for the usability of the model we propose is how it scales to large
datasets, such as those used in online advertising.

Scaling in number of features In all our experiments, we used one contingency table
for each pair of features. Obviously both the size of the aggregated data and the cost of one
iteration of training are thus quadratic in the number of features. This mean our method
would be difficult to apply to datasets with a large number of features. In our experiments,
we obtained rather good results on datasets with up to 19 features, working with still larger
datasets would likely require some engineering to limit the number of features and was not
investigated in this work.

Scaling with the number of samples of the dataset Once the aggregated data are
computed, and the meta parameters of the algorithm defined, the training time of our
algorithm does not depend on the number of samples in the aggregated data. However,
when this number is increased, it may be beneficial to increase the number of Gibbs samples
used internally, and we end up having a longer training time on larger datasets. Indeed,
our algorithm finds a fixed point where the observed sufficient statistics are equal to the
expected sufficient statistics under the estimated parameters. It is an important observation
that both of these quantities are noisy. The observed sufficient statistics are noisy due to

9. Arguably this would be a limitation to any method observing only the aggregated data, which does not
contain enough information to reconstruct the full distribution.

10. By noting that the aggregation tables are compatible with the distribution where X3 ⊥ U |Y , X1 ⊥
(X3, U, Y ) and X2 := UxorX1
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the finite data set size. The estimate of the expected sufficient statistics is also noisy due
to the finite number of Gibbs samples. Except for collecting more data it is not possible
to decrease the noise in the sufficient statistics, in contrast the number of Gibbs samples
is limited only by the computational budget. In practice there is little benefit in drawing
many more Gibbs samples than observed data points as the finite data set size dominates
the uncertainty in the estimated parameters. As an example, we used only 10k samples on
the adult and Bank marketing datasets, and 1M on the larger Criteo-AdKDD dataset.
(see section 5 )

Scaling with the number of modalities per feature Let M the maximum number of
modalities of one feature of X. The aggregation table on a pair of features is of size O(M2),
and so is the number of weights in the associated “crossfeature” of the model. When M
is large ( for example, in the challenge dataset M > 105 ). In this case O(M2) become a
significant scalability issue. Several options exists to get round this problem:

Cross features hashing One common way to avoid high dimensional data is the use of
the “hashing trick”.(Weinberger et al., 2009) Formally, this is achieved by choosing the size
H ∈ N of the hashing space, and a hash projection matrix H ∈ MK,H({0, 1}) containing
exactly one randomly placed 1 in each row. We then define the hashed encoding of a vector
x as φH(x) := H ·φ(x) , and the hashed aggregated data as the aggregation with the hashed
encoding: dH :=

∑
i
φH(xi) and cH :=

∑
i
yi · φH(xi). Likewise, the model learning from the

hashed aggregated data may be redefined by replacing φ(x) by φH(x) in Equation 1 and
3. We note here that the conditional model P(Y = 1|X = x) := σ(φH(x) · µs) we obtain
exactly matches the shape of a classical logistic with the “hashing trick”. 11 The hashing
trick is a well known compromise between performances and scalability when training a
large scale logistic model; our hope was that it would work as well in our setting.

Hashing and high cardinality correlated features We obtained good results with the
hashing trick on the Criteo-Attribution dataset (see section 5 ), but disappointing results
on the Criteo-AdKdd challenge data. After a careful investigation, we realised that this
dataset contains some very strongly correlated features with high cardinality. The hashed
aggregated data does not contain all the information about these correlations, and we
observed a significant degradation in the P (Y |X) model when including these features.

Features pre-encoding Instead of hashing the crossfeatures, another option is to pre-
process the data to directly encode each single large cardinality feature to a more reasonable
number of modalities M ′ . By ”reasonable” here, we mean that the crossfeatures built on
the encoded feature, which are thus of size M ′2, should be kept small enough to easily fit
in memory, and a typical value could be M ′ = 1000. On the Criteo-AdKDD dataset, we
thus used target encodings 12 which are a simple way to significantly reduce the number of
modalities of large features without degrading too much the final performances.

11. We can retrieve the more standard definition in this context by defining hash(k) as the index of the 1
on the k-th row of the matrix H, it is straightforward to check that our definition of the hashing trick
matches the more common formula σ(

∑
k θhash(k(x))); the formulation we use allows us to also define

the hashed aggregated data.
12. i.e., we computed on a held out set the number of occurrences and the average CTR of each modality,

and encoded the raw modalities by discretizing together their count of occurrences and their CTR.

11



Training time and parallelization Training a large scale MRF using the proposed
algorithm is slow. In our experiences it is typically around 100 time slower than training a
logistic model having access to the full dataset. The main bottleneck is the Gibbs sampling
step we have to perform on each sample between each gradient iteration. But fortunately,
this is done independently on each Gibbs sample, which allows to easily parallelize this part
of the computation. We thus used a pyspark implementation to run our experiments. The
results on the largest Criteo-AdKDD dataset required a spark session of 200 machines and
a few hours to train with 1M Gibbs samples for 500 iterations.

5. Experiments

5.1 Datasets

We ran our experiments in 4 public datasets:

• Criteo-Attribution is an advertising dataset released by Criteo, with examples de-
scribing a display and with predicted a ”click” label. It contains 16M examples with
11 categorical features.13

• Adult dataset (Dua and Graff, 2017) is a dataset used to predict whether a given
adult makes more than $50,000 a year. It contains 48842 examples (train:32561 ,
test:16281) with 14 features.

• Bank marketing dataset (Dua and Graff, 2017; Moro et al., 2014) contains 41188
examples with 20 features describing marketing campaigns of a banking institution,
its label is 1 on clients who will subscribe.

• Criteo-AdKdd challenge (Diemert et al., 2022) is the largest dataset we used. The
train set contains 80M samples, with 19 features each.

5.2 Baselines and skylines

On each dataset, we compared the performances of several models:

• MRF is the model presented in this work, learned only from aggregated data.

• NB is the Naive Bayes baseline

• B2f is a logistic regression using only two features, and an interaction between these
features. We trained one such model for each pair of features, and reported the one
with the best test score. Note that all these models could be trained directly from
the pairwise aggregated data.

• Logistic is a classical logistic regression with exactly the same shape (Equation 3) as
the MRF, but trained with the whole non - aggregated dataset. It is expected to
perform better than the MRF because it is not constraint to use only the aggregated
data.

13. https://ailab.criteo.com/criteo-attribution-modeling-bidding-dataset/
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While logistic regression is not the state of the art and might get outperformed by
more complicated models, it is still a very solid model, which was still widely used in the
advertising industry only a few years ago. Retrieving performances similar to a logistic
regression on a large scale aggregated dataset seems both challenging enough, and good
enough for practical applications. We thus did not compare to more advanced classical ML
methods such as Deep Learning, which would not be applicable to the aggregated dataset
anyway.

Reported metric We reported the normalized log-likelihood of the P (Y |X = x) model,
computed on a test set:

NLLH ≡ LogLikelihood(Prediction(X), Y )

Entropy(Y )
− 1

. Note that is it simply an affine transformation of the usual log-likelihood, which we find
slightly easier to compare between datasets. A higher score a better.

Preprocessing We picked these datasets because they mostly contained categorical fea-
tures. The few continuous features were discretised by computing deciles, and then treated
as categorical.

Preprocessing on the Criteo-AdKdd challenge dataset This dataset is available
in two versions: the noisy pre-aggregated data which were available to the challengers, and
the full un-aggregated which was published with (Diemert et al., 2022). We found that our
method was not performing well with the pre-aggregated data. As explained in section 4.3 ,
the main issue was the presence of large cardinality, strongly correlated features. Inclusion
of these features in the model was degrading its performances, and the best MRF result
reported in table 4 was obtain by removing these features. The results obtained with the
pre-aggregated data and raw features are reported under Criteo-AdKdd, (raw).

With the release of the whole dataset, the problem above can be avoided by computing
some target encodings and aggregating on these target encodings. We used 4M kept out
lines to precompute these encodings, reducing the cardinality of each encoded feature below
1000, aggregated the remaining dataset and trained on the resulting aggregated data. We
also re-trained the logistic ”skyline“ with the same encoded features. The results of these
tests are reported under Criteo-AdKdd, (target encoded).

As a side note, we also tried to compute the target encoding directly from the pre-
aggregated data released with the challenge, and to re-aggregate these data. It did not
work well, for several reasons: first there is an over-fitting issue when the same data are
used to compute the encodings and for training. Second, when re-aggregating, we were
summing lots of instances of the privacy preserving noise (a Gaussian of std=17) together.
While this noise is low enough to have a small impact when using directly the raw features,
(see the experiments in (Diemert et al., 2022)) the variance of the summed noises was
considerably larger, and it became an issue.

Reproducibility All the datasets we used are public, and our code and notebooks are
available on our github.
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Table 4: NLLH test for different models and several datasets
Different NLLH test
datasets Logistic MRF Naive Bayes B2f

Criteo-Attribution 0.091 0.086 0.053 0.048
Bank marketing 0.427 0.421 0.189 0.318

Adult 0.421 0.416 0.213 0.297
Criteo-AdKdd, (raw) 0.311 0.265 0.17514 0.139

Criteo-AdKdd, target encodings 0.303 0.285 0.19114 0.168

Table 5: Effect of parameters λµ and λθ on NLLH (Bank marketing dataset)

λµ = 1 λµ = 4 λµ = 16 λµ = 64

λθ = 1 0.338 0.322 0.264 0.174
λθ = 4 0.405 0.405 0.389 0.337
λθ = 16 0.416 0.415 0.406 0.382
λθ = 64 0.421 0.420 0.419 0.406

5.3 Results

Table 4 summarizes the test normalised log-likelihood obtained on each dataset. On all
datasets, the MRF consistently outperforms the simple baselines. More strikingly, its per-
formances are comparable to the logistic on Bank marketing and Adult, and only slightly
below on Criteo-Attribution. The performance gap with the logistic is more noticeable on
Criteo-AdKdd. We already discussed earlier why it under-performs on Criteo-AdKdd raw,
and recomputing the aggregation on target encodings brought a fair improvement. We also
note that on this dataset the logistic trained with the raw features (line Criteo-AdKdd raw)
is better than the logistic trained with target-encoded features. While this is not really
surprising (the target encodings lose part of the information), it means that the ”skyline“
is lower with these encodings, and finding a better way to define these encodings could
therefore be a lead to further improve the MRF.

Regularization on µ and θ Table 5 shows how the change of the two regularisation
parameters defined in Equation 5 impacts the performances on test data, on the Bank
marketing dataset. It can be observed that while some regularization on θ is important to
get good results, the regularization on µ is better kept at a much lower level.

Performances VS number of Gibbs samples Figure 1 shows the test performance
on datasets: Bank marketing and adult as a function of number of Gibbs samples used to
estimate the expected gradient.

Usefulness of the rescaling trick Figure 2 shows the test performance on the Adult
dataset as a function of number of training iteration, with either the correct gradient of
Equation 2 or the ”rescaled“ gradient of Equation 6. Clearly the ”rescaled“ gradient is
converging faster in this case, which is typical of what we observed.

14. without early stopping it does completely diverge
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Figure 1: Effect of number of Gibbs samples

Figure 2: Effect of the gradient rescaling on the Adult dataset

Different step sizes on µ and θ Figure 3 shows that a higher stepsize on µ than on θ
was highly beneficial on the challenge dataset. It should be noted that increasing both step
sizes to the 0.05 value used on µ lead the model to diverge.

Searching for instances of distributions where the MRF fails We noted in section
4.2 that the MRF may under-perform on some distributions with only 3 features and a label.
We wonder if we would find such distributions in our data. On the dataset of the AdKdd
challenge, we selected the 12 features with less than 100 modalities, and tested each triplet
of these features. For each triplet, we trained a logistic and a MRF with these three features,
and compared the performances on the test set. We also trained a Naive Bayes with the
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Figure 3: Effect of using different step sizes on Criteo-AdKdd (with target encodings)
dataset

same features. These results are displayed on figure 4: the MRF was able to almost match
the logistic on all 220 tested triplets (The maximum difference was smaller than 0.001)

Figure 4: Comparing MRF and logistic on 220 triplets of features
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6. Related work

Differential privacy and learning private models Differential privacy (Dwork et al.,
2006) is a mathematical definition of privacy, which relies on randomizing the publicly
shared data to obtain provable users protection.

Various methods to make a machine learning model differential private have been pro-
posed, including result perturbation, objective perturbation (Chaudhuri et al., 2011), and
injecting noise to the gradient during the learning procedure(Abadi et al., 2016). One short-
coming of these methods however is that they may be practically difficult to apply if the goal
is to let a third party learn a model on the private data. (That would require a mechanism
to allow the third party query the noisy gradients of its own model, thus splitting the ML
infrastructure between both actors.)

A much simpler way to release data with differential privacy consists of sharing aggre-
gated data (typically counts as in listing 2) with some additive noise(Dwork et al., 2006).
Adding iid noise from a Laplace distribution provides (ε, 0) privacy, while iid Gaussian noise
provides (ε, δ) differential privacy.

Ecological inference Learning about individual-level outcomes from aggregated data
has been known historically as the ecological inference problem.(King et al., 2004; Freedman,
1999) But the proposed methods were typically applied to very low dimensionality problems,
and it is unclear how they would scale to large modern datasets.

Generative and discriminative models A discriminative model approximates the con-
ditional distribution P(Y = y|X = x) of a label Y as a function of the feature vector x.
Learning such model is the focus of supervised learning. A generative model instead approx-
imates the joined distribution on P(X,Y ) of the variables of interest. While it is possible
to use a generative model to predict P(Y = y|X = x) with the Bayes rule, these models
usually perform less well than discriminative models optimized for this specific task. The-
oretical properties of the two approaches are compared in (Ng and Jordan, 2002; Efron,
1975). Hybrid approaches have also been proposed, e.g. (Lasserre et al., 2006).

Partially observed datasets Learning a model in settings where the dataset is not fully
observed has been the focus of multiple recent works, such as “Multiple Instance Learning”
(Zhou, 2004) or “Multiple Instance Regression” (Ray and Page, 2001), or (Zhang et al.,
2020). Closer from our work, the winners of the Ad-Kdd challenge leverage the fact that a
logistic model may be learned using only the aggregated labels and non aggregated unlabelled
samples (Diemert et al., 2022). In (Whitaker et al., 2021), the authors study the case when
the features X are continuous, and aggregated tables on discretizations of these features
are available. The method they propose assumes that the features X follows a multivariate
Gaussian distribution, whose parameters are retrieved from the available tables. From this
model on X and the aggregations, they can learn a simple logistic model σ(x.θ). This
however only allows to learn rather simple models, with up to 20 learnt coefficients in the
experiments they present. 15

15. In contrast, the class of models we use is much richer, with typically thousands to millions of parameters,
allowing a much better fit in the large data setting.
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Markov Random Fields Markov Random Fields (MRF) (Koller and Friedman, 2009;
Kuleshov and Ermon) are probabilistic models on a set of variables (X1, ...Xn), which may
be factorized as a product of parametric positive functions on subsets of the full vector of
features(X1, ...Xn). They naturally appears as maximum entropy distributions under some
constraints on the expectation of some random variables, and have thus been long studied.
While they form an exponential family and have sufficient statistics(Koller and Friedman,
2009), training a MRF is often not easy, because the exact gradient is usually intractable.
Many algorithms have been proposed to avoid this issue, either based on sampling such
as Persistent Contrastive Divergence (Hinton, 2002; Tieleman, 2008; Tieleman and Hinton,
2009; Salakhutdinov, 2009), or based on other approximations such as pseudo likelihood or
variational methods (Ackley et al., 1985; Della Pietra et al., 1997; McKenna et al., 2019;
Murray and Ghahramani, 2012; Grelaud et al., 2009).

Collective Graphical Models The idea that aggregated data are the sufficient statistics
of a well chosen MRF, which may be learned from these aggregated data only, have already
been explored in the ”collective graphical model“ literature (Sheldon and Dietterich, 2011;
McKenna et al., 2019; Bernstein et al., 2017). The main difference with our work is that
they focus on learning a model on the full set of variables, while we are only interested in
learning correctly the conditional distribution P(Y = y|X = x) on one specific component
Y .

7. Conclusions

The empirical results we have obtained on various datasets show that the method proposed
in this work can be effective on real data distributions, and is typically able to retrieve the
performances of a logistic on small to medium datasets, provided aggregations on all pairs
of features are available. On the large Criteo-AdKdd dataset, there is still a noticeable
lag between the performance of our method and these of a logistic regression trained with
access to the whole dataset. Despite these lower performances, we believe that our method
would be the most promising way to learn a model in FLEDGE through the aggregation
API. Whether this is sufficient to sustain a viable targeted ad ecosystem relying only on
aggregated data is beyond the scope of this work, as many other factors will also limit
further the performances, and learning a model in this context is only one among many
technical complications.

Several points have not been addressed here and could be the topic of future work:
first, in all our experiments, we relied on held out unaggregated data to choose the meta-
parameters of our method and assess the final quality of the model, and methods or heuris-
tics to evaluate the quality of the model without relying on such data would be needed.
Finally, we did not explore in this article the case of noisy aggregated data, and more work
would be needed to efficiently adapt our method to these cases.
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Appendix A. Details on the experiments

Training logistic skylines All logistic models were trained with 200 iterations of L-
BFGS. The regularization parameter was benched on a log 2 scale, and we kept only the
best model on the validation set. Our Naive Bayes implementation also includes a L2
regularization that we benched in the same way. 16

All logistic models were trained long enough to observe convergence of their results. The
only important meta-parameter was the L2 regularisation. We did a grid search for this
parameter, and reported only the best result.

Training the MRFs MRFs have several important meta-parameters, and choosing them
carefully matters. After a bit of experimentation, we applied the following heuristics:

• Set the stepsizes to 1
K , where K is the number of aggregation tables. Alternatively,

increase the stepsize on µ to 5 time this value. (We obtained the fastest convergence
this way, but it might be sometimes instable. )

• Increase the number of Gibbs samples up to 10% of the number of samples in the true
data, if possible. (On the AdKDD challenge, the reported results used ”only“ 1M
samples. We tried increasing further but it did not seem to improve our results.

• Keep the regularization on µ low. A value of 1 was enough to prevent numerical
instability, and increasing it was only harmful.

• Train as long as possible. On the challenge dataset, obtaining the best results required
either 250 iterations while using the increased µ stepsize, or running for more than
1000 iterations (with the default stepsizes above).

• We used a grid search for the regularization on θ. The best value is typically the same
magnitude as the best regularization for a logistic.

Training Naive Bayes Noting that our method is a generalization of Naive Bayes, we
used the same code and method to train the Naive Bayes models. However, we noted that
on most datasets, the performances of Naive Bayes increase at the beginning of the training,
quickly reach a maximum and then degrade quickly degrade to worse (in log loss) than a
constant model. We thus used early stopping and reported the best test value during the
training. (This means that the true performances of a NB model would be in practice worse
than what we report, unless a very good stopping heuristic is found.)

16. Our implementation of Naive Bayes was using a L2-regularized logistic regression per for each variable.
The parameter was of those logistics was the same, and chosen to get best test performances on the
Naive Bayes, not on the individual logistics.
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Appendix B. Proof of lemma 2

The main ingredient in this proof is the observation that the gradient of the likelihood of
the full un-aggregated dataset (Xi, Yi)i∈1...n depends only on the aggregated data A.

Let us for now assume that the dataset is fully observed (ie, not aggregated.) We could
then compute the log-likelihood of the full dataset according to the model. It is defined as:

L(µ, θ, {(xi, yi)}i∈1...n) ≡
∑
i∈1...n

log
(
πµ,θ(xi, yi)

)
.

We would in this case fit the model by solving the following optimization problem:

Find µ∗, θ∗ ∈ argminµ,θ − L(µ, θ, {(xi, yi)}i∈1...n). (7)

And we can now compute the gradient of this full likelihood:

Lemma 3 (Gradient of the full log-likelihood)

∇µ − L(µ, θ, (xi, yi)i∈1...n = Eµ,θ(D)− d

∇θ − L(µ, θ, (xi, yi)i∈1...n = Eµ,θ(C)− c,

where Eµ,θ is the expectation of random variable when data are sampled according to the
model πµ,θ.

Proof of this lemma is detailed in the next paragraph. It involves only simple calculus.

Noting that the expectation Eµ,θ(A) does not depend on the dataset, the gradient of the
loss depends on the dataset only through the aggregated data a.

In particular, these gradients are the same for any possible dataset x1, y1, ...xn, yn com-
patible with the observed aggregations a. This means that all the likelihoods (without log)
of all those datasets are equal up to some multiplicative factors (which disappear when
we apply the log and derive). Noting that the likelihood of the event A = a is the sum
of the likelihood of all those individual compatible datasets, its likelihood is also, up to a
multiplicative constant, equal to the likelihood of any compatible individual dataset. As a
consequence:

∇µL(µ, θ, {(xi, yi)}i∈1...n) = ∇µLogπµ,θ(A = a)

∇θL(µ, θ, {(xi, yi)}i∈1...n) = ∇θLogπµ,θ(A = a)

which concludes the proof.

In other words, we just verified that the aggregated data a form a sufficient statistic for
estimating the parameters µ, θ. This was actually expected because we have an exponen-
tial family. This property means that problems 7 and 4 are equivalent for this family of
distributions, which can be solved by gradient descent as well as when the full dataset is
available.
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Proof of lemma 3 Let us derive the log-likelihood with respect to θ:

∂L
∂θ

=
∑
i

∂ log(πµ,θ(xi, yi))

∂θ

=
∑
i

∂φ(xi) · (µ+ yiθ)

∂θ
− n× ∂ log(Z)

∂θ

=
∑
i

yiφ(xi)− n×
∂ log(Z)

∂θ

= c− n× ∂ log(Z)

∂θ

where Z is the normalisation factor Z =
∑
x,y

exp(φ(x) · (µ+ yθ))

Noting that:
∂Z

∂θ
=
∑
x,y

yφ(x) exp(φ(x) · (µ+ yθ))

We get:

n× ∂ log(Z)

∂θ
= n×

∑
x,y

yφ(x) · exp(φ(x) · (µ+ yθ))

Z

= n×
∑
x,y

yφ(x)πµ,θ(x, y)

= Eµ,θ(C)

And thus
∂L
∂θ

= c− Eµ,θ(C)

The case of the derivation with respect to µ is similar, it is thus left to the reader.

Appendix C. Training algorithm

Algorithm 1 details the final training algorithm we used, including all the modifications to
the original Persistent Contrastive Divergence.

Details on the preconditioning We preconditioned the gradient with the inverse of
diagonal Hessian. This may be computed as follow:

∂2Loss

∂2µk
=
∂Eµ,θ(Dk)

∂µk
+ 2 · λµ

= n ·
∂Pµ,θ(Dk = 1)

∂µk
+ 2 · λµ,

(µk is the kth entry of the parameter µ)
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Algorithm 1: Training Algorithm

Input : initial parameter µ and θ,
aggregated data d and c,
n number of samples in the aggregated data
n′ number of Gibbs samples
initial Gibbs samples x̃1...x̃n′

step sizes αµ and αθ
regularisation λµ and λθ
number T of training iterations

Output:
1 repeat T times

// Gibbs step

2 Draw ỹi ∼ πµ,θ(Y |X = x̃i)
3 for each feature d do

4 Replace x̃di by a sample of Pµ,θ(Xd|X−d = x̃−di , Y = ỹi)
5 end

// Monte Carlo estimator of E(D)

6 Set d̂←−
∑
i
φ(x̃i)

// Marginalised Monte Carlo estimator of E(C)
7 Set ĉ←−

∑
i
σ(φ(x̃i) · θ) · φ(x̃i)

// Gradient on µ

8 Set gµ ←−
n

n′
· d̂− d+ 2λµ

// Pseudo Gradient on θ

9 Set gθ ←−
d

d̂
ĉ− c+ 2λθ

// Gradient preconditioning

10 Set dirµ ←−
gµ

d̂+ 2λµ

11 Set dirθ ←−
gθ

ĉ+ 2λθ
// gradient step

12 Set µ←− µ− αµdirµ
13 Set θ ←− θ − αθdirθ
14 end

here, we may note that Pµ,θ(Dk = 1) is a logistic function of parameter µk: Indeed, we note
a ≡ exp(−µk)

∑
x,y
φk(x) exp(φ(x) · µ + yφ(x) · θ)does not depend on µk, and neither does
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b ≡
∑
x,y

(1− φk(x))exp(φ(x) · µ+ yφ(x) · θ) We then have:

Pµ,θ(Dk = 1) =
∑
x,y

φk(x) exp(φ(x) · µ+ yφ(x) · θ) 1

Z

= exp(µk)
a

exp(µk) · a+ b
.

Thus its derivative is:

∂Pµ,θ(Dk = 1)

∂µk
= Pµ,θ(Dk = 1) · (1− Pµ,θ(Dk = 1))

And finally:

∂2Loss

∂2µk
=
∂Eµ,θ(Dk)

∂µk
+ 2 · λµ

= n · Pµ,θ(Dk = 1) · (1− Pµ,θ(Dk = 1)) + 2 · λµ
≈ n · Pµ,θ(Dk = 1) + 2 · λµ
≈ Eµ,θ(Dk) + 2 · λµ

We used this formula, with the same estimator of Eµ,θ(D) as the one already used for
estimating the gradient from the Gibbs samples. The derivation of the diagonal Hessian on
θ is perfectly similar.
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