
HAL Id: hal-03781901
https://hal.science/hal-03781901v1

Preprint submitted on 16 Nov 2022 (v1), last revised 7 Sep 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Disentangling temporal associations in marine microbial
networks

Ina Maria Deutschmann, Anders Krabberød, Francisco Latorre, Erwan
Delage, Cèlia Marrasé, Vanessa Balagué, Josep Gasol, Ramon Massana,

Damien Eveillard, Samuel Chaffron, et al.

To cite this version:
Ina Maria Deutschmann, Anders Krabberød, Francisco Latorre, Erwan Delage, Cèlia Marrasé, et al..
Disentangling temporal associations in marine microbial networks. 2022. �hal-03781901v1�

https://hal.science/hal-03781901v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Deutschmann et al. Deutschmann et al. 
 

1 

 

Disentangling temporal associations in marine microbial 1 

networks 2 

 3 

Ina Maria Deutschmann1* (ina.m.deutschmann@gmail.com), Anders K. Krabberød2 4 

(a.k.krabberod@ibv.uio.no),  Francisco Latorre1 (latorre@icm.csic.es), Erwan Delage3,4 5 

(erwan.delage@univ-nantes.fr), Cèlia Marrasé (celia@icm.csic.es), Vanessa Balagué1 6 

(vbalague@icm.csic.es), Josep M. Gasol1 (pepgasol@icm.csic.es), Ramon Massana1 7 

(ramonm@icm.csic.es), Damien Eveillard3,4 (damien.eveillard@univ-nantes.fr), Samuel Chaffron3,4 8 

(samuel.chaffron@univ-nantes.fr), Ramiro Logares1* (ramiro.logares@icm.csic.es) 9 
 10 
 11 
1Institute of Marine Sciences, CSIC, Passeig Marítim de la Barceloneta, 37-49, 08003, 12 

Barcelona, Spain. 13 
2Department of Biosciences/Section for Genetics and Evolutionary Biology (EVOGENE), 14 

University of Oslo, p.b. 1066 Blindern, N-0316, Oslo, Norway. 15 
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ABSTRACT 36 

Background 37 

Microbial interactions are fundamental for Earth’s ecosystem functioning and 38 

biogeochemical cycling. Nevertheless, they are challenging to identify and remain barely 39 

known. Omics-based censuses are helpful in predicting microbial interactions through the 40 

statistical inference of single (static) association networks. Yet, microbial interactions are 41 

dynamic and we have limited knowledge of how they change over time. Here we investigate 42 

the dynamics of microbial associations in a 10-year marine time series in the Mediterranean 43 

Sea using an approach inferring a time-resolved (temporal) network from a single static 44 

network. 45 

 46 

Results 47 

A single static network including microbial eukaryotes and bacteria was built using 48 

metabarcoding data derived from 120 monthly samples. For the decade, we aimed to identify 49 

persistent, seasonal, and temporary microbial associations by determining a temporal 50 

network that captures the interactome of each individual sample. We found that the temporal 51 

network appears to follow an annual cycle, collapsing and reassembling when transiting 52 

between colder and warmer waters. We observed higher association repeatability in colder 53 

than in warmer months. Only 16 associations could be validated using observations reported 54 

in literature, underlining our knowledge gap in marine microbial ecological interactions. 55 

 56 

Conclusions 57 

Our results indicate that marine microbial associations follow recurrent temporal dynamics 58 

in temperate zones, which need to be accounted for to better understand the functioning of 59 
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the ocean microbiome. The constructed marine temporal network may serve as a resource for 60 

testing season-specific microbial interaction hypotheses. The applied approach can be 61 

transferred to microbiome studies in other ecosystems. 62 

 63 

Keywords: association network; temporal network; time series; microbial interactions; 64 

microorganisms; ocean; plankton 65 

 66 

INTRODUCTION 67 

Microorganisms are the most abundant life forms on Earth, being fundamental for global 68 

ecosystem functioning [1–3]. The total number of microorganisms on the planet is estimated 69 

to be ≈ 1012 species [4] and ≈ 1030 cells [5, 6]. In particular, microorganisms dominate the 70 

largest biome, the ocean, which harbors ≈ 1029 microbial cells [6] accounting for ~70% of 71 

the total marine biomass [7, 8].  72 

Microbial communities are highly dynamic and their composition is determined 73 

through a combination of ecological processes: selection, dispersal, drift, and speciation [9]. 74 

Selection is a prominent community structuring force exerted via multiple abiotic and biotic 75 

factors [10, 11]. Several studies have addressed the role of abiotic factors in structuring 76 

microbial communities. For example, temperature is one of the main factors exerting 77 

selection in the ocean microbiome over spatiotemporal scales [12–15]. Biotic factors can also 78 

strongly affect microbial communities [16]. However, a mechanistic understanding of how 79 

they affect community structure is currently lacking, as the diversity of microbial interactions 80 

is barely known [3, 17]. 81 

The vast microbial diversity and the fact that most microorganisms are still uncultured 82 
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[18, 19] make it impossible to experimentally test all potential interactions between pairs of 83 

microbes. However, omics-technologies allow estimating microbial relative abundances over 84 

spatiotemporal scales, which permits determining statistical associations between taxa. These 85 

associations can be summarized as a network with nodes representing microorganisms and 86 

edges representing potential interactions [20, 21]. 87 

As microorganisms are highly interconnected [21], association networks provide a 88 

general overview of the entire microbial system and have been tremendously valuable for 89 

generating novel hypotheses about putative interactions. In particular, time series have 90 

allowed identifying potential ecological interactions among marine microorganisms [22–28]. 91 

For example, previous work characterized ecological links between marine archaea, bacteria, 92 

and eukaryotes [22], including links with viruses [24, 26], also investigating within- and 93 

between ocean-depth relationships [25, 27]. These studies not only identified time-dependent 94 

associations among ecologically important taxa, but also potential synergistic or antagonistic 95 

relationships, as well as possible ‘keystone’ species and potential niches [22, 23]. Moreover, 96 

several studies have reported more associations among microorganisms than between 97 

microorganisms and environmental variables, suggesting the importance of biotic 98 

relationships in structuring microbial community assemblages [22, 28]. 99 

 Previous studies have used temporal microbial abundance data to infer static 100 

networks summarizing all potential associations in space and time. This static abstraction 101 

assumes that the network topology does not change (static) and edges represent persistent 102 

associations assumed as interactions [29]; that is, edges are present throughout time and 103 

space. This assumption cannot represent the reality of most microbial interactions. Thus, a 104 

single static network usually contains persistent, temporary, and recurring (including 105 

seasonal) associations that need to be disentangled. 106 
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Despite the contribution of static networks to our understanding of microbial 107 

interactions in the ocean, it is necessary to incorporate the temporal dimension. Using a time-108 

resolved, i.e., temporal network instead of a single static network would allow investigation 109 

of the dynamic nature of microbial associations and how they change over time, whether the 110 

change is deterministic or stochastic, and how environmental selection influences network 111 

architecture. Addressing these questions is fundamental for a better understanding of the 112 

dynamic interactions that underpin ecosystem function in the ocean. Here, we investigated 113 

marine microbial associations through time by determining a temporal network from a single 114 

static network. 115 

 116 

MATERIALS AND METHODS 117 

The Blanes Bay Microbial Observatory (BBMO) 118 

The BBMO is a coastal oligotrophic site in the North-Western Mediterranean Sea (41◦40′N 119 

2◦48′E) without major natural disturbances and little anthropogenic pressure, except for the 120 

construction of a nearby harbor between 2010 and 2012 [30, 31]. The seasonal cycle is 121 

typical for a temperate coastal system [30], and the main environmental factors influencing 122 

seasonal microbial succession have been well studied and are known [12]. Shortly, the water 123 

column is slightly stratified in summer before it destabilizes and mixes with water from 124 

offshore in late fall, increasing the availability of inorganic nutrients with maximum 125 

concentrations in winter, between November and March. The high amount of nutrients and 126 

increasing light induce phytoplankton blooms, mostly in late winter-early spring. During 127 

summer, inorganic nutrients become limiting, the primary production is minimal, and 128 

dissolved organic carbon accumulates [30]. 129 
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 130 

From sampling to microbial relative abundances 131 

We sampled surface water (≈ 1m depth) monthly from January 2004 to December 2013 to 132 

determine microbial community composition and also measured ten environmental variables, 133 

which were previously described [13, 30]: water temperature (◦C) and salinity (obtained in 134 

situ with a SAIV-AS-SD204 Conductivity-Temperature-Depth probe), day-length (hours of 135 

light), turbidity (Secchi depth in meters), total chlorophyll-a concentration (µg/l, fluorometry 136 

of acetone extracts after 150 ml filtration on GF/F filters [30]), and five inorganic nutrients: 137 

PO4
3−, NH4

+, NO2
−, NO3

− and SiO2 (µM, determined with an Alliance Evolution II 138 

autoanalyzer [32]). 139 

Sampling of microbial communities, DNA extraction, rRNA-gene amplification, 140 

sequencing, and bioinformatic analyses are explained in detail in [28]. In short, 6 L of water 141 

were prefiltered through a 200 µm nylon mesh and subsequently filtered through another 20 142 

µm nylon mesh and separated into nanoplankton (3 – 20 µm) and picoplankton (0.2 – 3 µm) 143 

using a 3 µm and 0.2 µm pore-size polycarbonate and Sterivex filters, respectively. Then, the 144 

DNA was extracted from the filters using a phenol-chloroform protocol [33], which has been 145 

modified for purification with Amicon units (Millipore). We amplified the 18S rRNA genes 146 

(V4 region) with the primers TAReukFWD1 and TAReukREV3 [34], and the 16S rRNA 147 

genes (V4 region) with Bakt 341F [35] and 806RB [36]. Amplicons were sequenced in a 148 

MiSeq platform (2x250bp) at RTL Genomics (Lubbock, Texas). Read quality control, 149 

trimming, and inference of Operational Taxonomic Units (OTUs) delineated as Amplicon 150 

Sequence Variants (ASVs) were done with DADA2 [37], v1.10.1, with the maximum number 151 

of expected errors set to 2 and 4 for the forward and reverse reads, respectively. 152 
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Microbial sequence abundance tables were obtained for each size fraction for both 153 

microbial eukaryotes and prokaryotes. Before merging the tables, we subsampled each table 154 

to the lowest sequencing depth of 4907 reads with the rrarefy function from the Vegan R-155 

package [38], v2.4-2, (see details in [28]). We excluded 29 nanoplankton samples (March 156 

2004, February 2005, May 2010 - July 2012) due to suboptimal amplicon sequencing. In 157 

these samples, abundances were estimated using seasonally aware missing value imputation 158 

by the weighted moving average for time series as implemented in the imputeTS R-package, 159 

v2.8 [39]. These imputed values did not introduce biases in the analyses [28]. 160 

Sequence taxonomy was inferred using the naïve Bayesian classifier method [40] 161 

together with the SILVA database [41], v.132, as implemented in DADA2 [37]. Additionally, 162 

eukaryotic microorganisms were BLASTed [42] against the Protist Ribosomal Reference 163 

(PR2) database [43], v4.10.0. The PR2 classification was used when the taxonomic 164 

assignment from SILVA and PR2 disagreed. We removed ASVs that were identified as 165 

Metazoa, Streptophyta, plastids, mitochondria, and Archaea since the 341F-primer is not 166 

optimal for recovering this domain [44]. Besides, Haptophyta is known to be missed by the 167 

primer TAReukREV3 [45]. 168 

The resulting table contained 2924 ASVs (Table 1A). Next, we removed rare ASVs 169 

keeping ASVs with sequence abundance sums above 100 reads and prevalence above 15% 170 

of the samples, i.e., we considered taxa present in at least 19 months. The resulting table 171 

contained 1782 ASVs (Table 1B). An ASV can appear twice, in the nanoplankton and 172 

picoplankton size fractions. However, an ASV may be detected in both size fractions due to 173 

dislodging cells or particles and filter clogging, which can introduce biases in our analysis. 174 

To reduce these biases, and as done previously [28], we divided the abundance sum of the 175 
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larger by the smaller size fraction for each ASV appearing in both size fractions and set the 176 

picoplankton abundances to zero if the ratio exceeded 2. Likewise, we set the nanoplankton 177 

abundances to zero if the ratio was below 0.5. This operation removed two eukaryotic ASVs 178 

and 41 bacterial ASVs from the nanoplankton, and 30 bacterial ASVs from the picoplankton 179 

(Table 1C). The resulting abundance table was used for network inference. 180 

 181 

From sequence abundances to the single static network  182 

First, we constructed a preliminary network using the tool eLSA [46, 47], as done in [28, 48], 183 

including default normalization and z-score transformation, using median and median absolute 184 

deviation. Although we are aware of time-delayed interactions, we considered our 1-month 185 

sampling interval too large for inferring time-delayed associations with a solid ecological 186 

basis, and focused on contemporary interactions between co-occurring microorganisms. 187 

Using 2000 iterations, we estimated p-values with a mixed approach that performs a random 188 

permutation test of a co-occurrence if the comparison's theoretical p-values are below 0.05. 189 

The Bonferroni false discovery rate (q) was calculated based on the p-values using the 190 

p.adjust function from the stats R-package [49]. We used the 0.001 significance threshold for 191 

the p and q values, as suggested in other studies [20]. We refrained from using an association 192 

strength threshold since it may not be appropriate to differentiate between true interactions 193 

and environmentally-driven associations [48]. Furthermore, changing thresholds have been 194 

shown to lead to different network properties [50]. The preliminary network contained 754 195 

nodes and 29820 edges (24458, 82% positive, and 5362, 18% negative). 196 

Second, for environmentally-driven edge detection, we applied EnDED [48], 197 

combining the methods Interaction Information (with a 0.05 significance threshold and 198 

10000 iterations) and Data Processing Inequality. We inserted artificial edges connecting 199 
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each node to each environmental parameter. We identified and removed 3315 (11.12%) 200 

edges that were environmentally driven; 26505 edges (23405, 88.3% positive, and 3100, 201 

11.7% negative) remained (Supplementary Tables 3 and 4). 202 

Third, we determined the Jaccard index, 𝐽, for each microorganisms pair associated 203 

through an edge, in order to remove associations between microorganisms that have a low 204 

co-occurrence. Let 𝑆𝑖  be the set of samples in which both microorganisms are present 205 

(sequence abundance above zero), and 𝑆𝑢  be the set of samples in which one or both 206 

microorganisms are present. Then, we can calculate the Jaccard index as the fraction of 207 

samples in which both appear (intersection) from the number of samples in which at least 208 

one appears (union): 𝐽 = 𝑆𝑖/𝑆𝑢. We chose 𝐽 > 0.5 as in previous work [48], which removed 209 

9879 edges and kept 16626 edges (16481, 99.1% positive and 145, 0.9% negative). We 210 

removed isolated nodes, i.e., nodes without an associated partner in the network. The number 211 

and fraction of retained reads are listed in Table 1. The resulting network is our single static 212 

network. 213 

 214 

From the single static network to the temporal network 215 

We determined the temporal network comprising 120 sample-specific (monthly) 216 

subnetworks through the three conditions indicated below and visualized in Figure 1. The 217 

subnetworks are derived from the single static network and contain a node subset and an edge 218 

subset of the static network. Let e be an association between microorganisms A and B, with 219 

association duration d = (t1, t2), i.e., the association starts at time point t1 and ends at t2. Then, 220 

considering month m, the association e is present in the monthly subnetwork Nm, if 221 

1) e is an association in the single static network, 222 
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2) the microorganisms A and B are present within month m, and 223 

3) m is within the duration of association, i.e., t1 ≤ m ≤ t2. 224 

With the 2nd condition, we assumed that an association was present in a month if both 225 

microorganisms were present, i.e., the microbial abundances were non-zero for that month. 226 

However, we cannot assume that microbial co-occurrence is a sufficient condition for a 227 

microbial interaction because different mechanisms influence species and interactions, and 228 

the environmental filtering of species and interactions can differ [51]. Using only the species 229 

occurrence assumption would increase association prevalence. To lower this bias, we also 230 

required that the association was present in the static network, 1st condition, and within the 231 

association duration, 3rd condition, both inferred by eLSA [46, 47]. Lastly, we removed 232 

isolated nodes from each monthly subnetwork.  233 

 234 

Network analysis 235 

We computed global network metrics to characterize the single static network and each 236 

monthly subnetwork using the igraph R-package [52]. Some metrics tend to be more 237 

correlated than others implying redundancy between them, grouping them into four groups 238 

[53]. Thus, we selected one metric from each group: edge density, average path length, 239 

transitivity, and assortativity based on node degree. In addition, we also computed the 240 

average strength of positive associations between microorganisms using the mean, and 241 

assortativity based on the nominal classification of nodes into bacteria and eukaryotes. 242 

Assortativity (bacteria vs. eukaryotes) is positive if bacteria tend to connect with bacteria and 243 

eukaryotes tend to connect with eukaryotes. It is negative if bacteria tend to connect to 244 

eukaryotes and vice versa. We also quantified associations by calculating their prevalence as 245 
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the fraction of monthly subnetworks in which the association was present for all ten years 246 

(recurrence), and monthly. We visualized highly prevalent associations with the circlize R-247 

package [54]. We tested our hypotheses of environmental factors influencing network 248 

topology by calculating the Spearman correlations between global network metrics and 249 

environmental data. We used Holm’s multiple test correction to adjust p-values [55], with the 250 

function corr.test in the psych R-package [56]. We used Gephi [57], v.0.9.2, and the 251 

Fruchterman Reingold Layout [58] for network visualizations. 252 

 253 

Test of network construction tool 254 

We have used eLSA to estimate the duration of an association, which we used as the third 255 

condition (m is within the duration of association, i.e., t1 ≤ m ≤ t2) to infer the sample-specific 256 

subnetworks. Other methods may perform better on compositional data such as ours [59] 257 

(although this is not necessarily the case; see [60]). Therefore we tested another network 258 

construction approach (FlashWeave [61]) for comparative purposes. FlashWeave performed 259 

better than eLSA in some benchmark tests run by other authors, while eLSA performed better 260 

than FlashWeave in other tests [61]. FlashWeave can handle sparse datasets taking zeros into 261 

account and avoiding spurious correlations between ASVs that share many zeros. However, 262 

it neglects the temporal variation. To control data compositionality [59], we applied a 263 

centered-log-ratio transformation separately to the bacterial and eukaryotic read abundance 264 

tables before merging them. Then, we inferred a network using FlashWeave [61], selecting 265 

the options “heterogeneous” and “sensitive”. We have run analyses including the 266 

environmental data (10 variables; see above). The resulting network had 932 nodes and 1440 267 

edges. Next, we determined a temporal network using conditions 1) and 2) but not 3) since 268 
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the temporal duration is not estimated by FlashWeave. FlashWeave results are used hereafter 269 

to compare against eLSA, although eLSA is kept as the main network construction tool in 270 

our work, given that it allows determination of the duration of the associations and there is 271 

no evidence suggesting a poor performance of this tool. Thus, unless specified otherwise, we 272 

refer to the static and temporal network determined by eLSA. 273 

 274 

Cyanobacteria 275 

Our dataset contained 19 cyanobacterial ASVs, which all appeared in the nano-, and nine in 276 

the picoplankton. We blasted the sequences against the Cyanorak database [62], v.2. against 277 

the nucleotide database containing all Synechococcus and Prochlorococcus RNAs with the 278 

option -evalue 1.0e-5. We found 2812 sequences comprising 95 different ecotypes 279 

(considering name, clade and subclade), with 93.84-100% identity. A total of 11 BBMO 280 

ASVs obtained 63 hits with 100% identity, and within these 63 reference sequences there 281 

were 34 different ecotypes. Most matching sequences were found for Synechococcus ASV_1. 282 

While Synechococcus ASV_5 had only two 100% hits, they did not 100% match ASV_1 283 

(Supplementary Table 5). Finding Synechococcus in both size fractions was against 284 

expectations, as this genus is part of the pico-plankton. Yet, they have been observed in 285 

fractions above 3 µm at BBMO [63].  Recovering Synechococcus ASVs from the 286 

nanoplankton may be due to cell aggregation, particle attachment, clogging of filters, or being 287 

prey to larger microorganisms. Synechococcus could be also picked up in the 3 µm filters 288 

during cell division.  289 

 290 

Validated associations 291 
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As a general rule, the validation of associations tends to be limited as both true interactions 292 

and microorganisms that do not interact with each other are poorly known. As done in [48], 293 

we determined true genus-genus interactions as those known in the literature, which are 294 

compiled within the Protist Interaction Database, PIDA [17]. On October 15th 2019, PIDA 295 

contained 2448 interactions. Although our dataset contains protists and bacteria, we could 296 

not evaluate interactions between them through PIDA. The ambiguity in taxonomic 297 

classification and the large number of edges challenged the validation. We validated 298 

associations between microbial eukaryotes via exact string matching as done previously [48]. 299 

 300 

RESULTS 301 

Extracting a temporal network from a single static association network 302 

From ten years of monthly samples from the Blanes Bay Microbial Observatory (BBMO) in 303 

the Mediterranean Sea [30], we computed sequence abundances for 488 bacteria and 1005 304 

microbial eukaryotes from two organismal size-fractions: picoplankton (0.2 – 3 µm) and 305 

nanoplankton (3 – 20 µm). We removed Archaea since they are not very abundant in the 306 

BBMO surface and primers were not optimal to quantify them. We inferred Amplicon 307 

Sequence Variants (ASVs) using the 16S and 18S rRNA-gene. After filtering the initial ASV 308 

table for sequence abundance and shared taxa among size fractions, we kept 285 and 417 309 

bacterial and 526 and 481 eukaryotic ASVs in the pico- and nanoplankton size fractions, 310 

respectively. We found 214 bacterial ASVs that appeared in both size fractions, but only two 311 

eukaryotic ASVs: a Cryothecomonas (Cercozoa) and a dinoflagellate (Alveolate). 312 

 We used 1709 ASVs to infer a preliminary association network with the tool eLSA 313 

[46, 47]. Next, we removed environmentally-driven edges with EnDED [48]. We only 314 
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considered edges involving partners that co-occurred more than half of the times together 315 

than alone (see Methods and Figure 1A-B). Our filtering strategy removed a higher fraction 316 

of negative than positive edges (see Methods and Supplementary Table 1). The resulting 317 

network is our single static network connecting 709 nodes via 16626 edges (16481 edges, 318 

99.1%, positive and 145, 0.9% negative). 319 

Next, we developed an approach to determine a temporal network. Building upon the 320 

single static network, we determined 120 sample-specific (monthly) subnetworks (see 321 

Methods for details). These monthly subnetworks represent the 120 months of the time series 322 

and together comprise the temporal network. Each monthly subnetwork contains a subset of 323 

the nodes and a subset of the edges of the single static network. We used the ASV abundances 324 

indicating the presence (ASV abundance > 0) or absence (ASV abundance = 0) as well as the 325 

estimated start and duration of associations inferred with the network construction tool eLSA 326 

[46, 47] for determining which nodes and edges are present each month (Figure 1, see 327 

Methods).  328 

 329 

The single static network metrics differed from most monthly subnetworks 330 

Since each monthly subnetwork was derived from the single static network, they were 331 

smaller, containing between 141 (August 2005) and 571 (January 2012) nodes, median ≈354 332 

(Figure 2A), and between 560 (April 2006) to 15704 (January 2012) edges, median ≈6052 333 

(Figure 2B). For further characterization, we computed six global network metrics (Figure 334 

2C and Methods). The results indicated that the single static network differed from most 335 

monthly subnetworks and it also differed from the average. In general, the single static 336 

network was less connected (edge density) and more clustered (transitivity) with higher 337 
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distances between nodes (average path length) and stronger associations (average positive 338 

association score) than most monthly subnetworks (Figure 2C). In addition, the single static 339 

network was usually more assortative according to the node degree but less assortative 340 

according to the domain (bacteria vs. eukaryote) than most monthly subnetworks (Figure 341 

2C). High assortativity indicates that nodes tend to connect to nodes of a similar degree and 342 

domain. 343 

 344 

Monthly subnetworks display seasonal behavior with yearly periodicity 345 

Over the analyzed decade, the network became more connected and clustered in colder 346 

months, with stronger associations and shorter distances between nodes (Figure 2C, 347 

Supplementary Figures 1 and 2). Most global network metrics indicated seasonal behavior 348 

with yearly periodicity (Figure 2C). For instance, edge density, average positive association 349 

score, and transitivity were highest at the beginning and end of each year, while average 350 

path length and assortativity (bacteria vs. eukaryotes) were highest in the middle of each 351 

year. Assortativity (degree), in contrast to other metrics, usually had two peaks per year 352 

corresponding to April-May, and November (Figure 2C). Some metrics (number of nodes 353 

and edges, and average path length) presented similar seasonal behavior with yearly 354 

periodicity in the temporal network determined from the single static FlashWeave network 355 

(Supplementary Figure 3). However, edge density and transitivity displayed patterns 356 

contrary to those observed in the temporal network determined from the stingle static eLSA 357 

network. 358 

We found mainly temperature and day length, and to a lesser extent nutrient 359 

concentrations (mainly SiO2, NO3
− and NO2

−, less PO4
3−), and total chlorophyll-a 360 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2022. ; https://doi.org/10.1101/2021.07.13.452187doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.13.452187
http://creativecommons.org/licenses/by-nc-nd/4.0/


Deutschmann et al. Deutschmann et al. 
 

16 

 

concentration to affect network topologies as indicated by correlation analyses 361 

(Supplementary Figure 2). For example, edge density was highest and temperature lowest in 362 

January-March. Then, edge density dropped as temperature increased. April-June displayed 363 

edge densities slightly above or similar to those in the warmest months July-September, while 364 

October-December had similar or slightly lower edge densities than the coldest months 365 

January-March. Edge density vs. hours of light (day length) indicated a yearly recurrent 366 

circular pattern for September-April (Supplementary Figure 1). Yet, May-August were not 367 

part of the circular pattern. May-August had the highest day length and their corresponding 368 

networks low edge density (Supplementary Figure 1). 369 

Next, we quantified how many edges were preserved (kept), lost, and gained (new) 370 

in consecutive months. We found the highest loss of edges in April, pointing to a network 371 

collapse. The overall number of edges (preserved and gained) was lowest during April-372 

September and increased towards the end of each year (Figure 2B). The number of 373 

associations changed over time in a yearly recurring pattern with few associations being 374 

preserved when transitioning from colder to warmer waters. We observed a steep network 375 

change when transiting from colder to warmer months, reflecting a large reorganization. In 376 

turn, the network change from warmer to colder months was less abrupt. Thus, network 377 

change between cold and warm waters was not symmetrical over the studied decade at 378 

BBMO.  379 

We defined summer and winter as in [28] and compared both seasons between 380 

consecutive years in terms of preserved, gained, and lost associations and ASVs. We 381 

observed higher repeatability in edges (Supplementary Figure 4) and ASVs (results not 382 

shown) in colder than in warmer months, indicating higher predictability during low-383 

temperature seasons. 384 
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 385 

Potential core associations 386 

A single static network can comprise permanent, seasonal, and temporary associations. By 387 

comparing monthly subnetworks, we identified edges that remain (preserved), appear 388 

(gained), or disappear (lost) over time (Figure 2B). Intuitively, we would classify permanent 389 

associations through 100% recurrence. However, no association fulfilled the 100% criteria. 390 

Most associations had a low recurrence, with three-quarters of the associations present in no 391 

more than 38% (total 46) of the monthly subnetworks. The average association prevalence 392 

was similar across taxonomic ranks (Supplementary Figure 5). Considering the 100 most 393 

prevalent associations, which appeared in 71.7-98.3% (total 86-118) of the monthly 394 

subnetworks, 87 were associations among bacteria (Supplementary Table 2).  395 

Although the temporal recurrence of associations over the ten years was low, we 396 

found high recurrence in corresponding months from different years. We quantified the 397 

fraction of subnetworks in which each association appeared (Supplementary Figure 6). We 398 

observed the highest prevalence from December to March, and the lowest prevalence from 399 

June to August (Supplementary Figure 6). For each month, we taxonomically characterized 400 

prevalent associations appearing in at least nine out of the ten monthly subnetworks (e.g., 9 401 

out of 10 Januarys; Figure 3). We found a larger number of prevalent associations in colder 402 

waters compared to warmer waters, with Alphaproteobacteria dominating these associations, 403 

especially in April and May (Figure 3). The Alphaproteobacteria ASVs featuring highly 404 

prevalent associations belonged to Pelagibacter ubique (SAR11 Clades Ia & II), 405 

Rhodobacteraceae, Amylibacter, Puniceispirillales (SAR116), Ascidiaceihabitans, 406 

Planktomarina, Parvibaculales (OCS116), and Kiloniella. Between April and May, we 407 
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noticed a large increase in the fraction of associations including Cyanobacteria or 408 

Bacteroidetes as association partners. While Cyanobacteria associations were a small fraction 409 

during November-April, they had a dominant role from May-October along with 410 

Bacteroidetes and Alphaproteobacteria associations (Figure 3). Overall, this underlines the dynamic 411 

nature of associations over the year, pointing to recurring annual associations that may be essential for 412 

ecosystem function. 413 

 414 

Dynamic associations within main taxonomic groups: the case of Cyanobacteria  415 

Our results indicated that associations are dynamic within specific taxonomic groups. 416 

Therefore, we investigated their behavior in Cyanobacteria given the importance of this 417 

group as primary producers in the ocean. We found 661 associations for Synechococcus, 418 

Prochlorococcus, and Cyanobium ASVs (Figure 4 and Supplementary Figure 7). Most 419 

associations between cyanobacterial ASVs were positive (63 of 65), and only a 420 

Synechococcus (referred to as bn_ASV_5) was negatively associated (association score -0.5) 421 

with other Synechococcus (bn_ASV_1 and bn_ASV_25), which, in turn, were positively 422 

associated (association score 0.8). While bn_ASV_5 appeared mainly in colder months, the 423 

other two appeared mainly in warmer months (Supplementary Figure 7). All Cyanobacteria 424 

had more associations with other bacteria (in total 433) than with eukaryotes (in total 163). 425 

Within the temporal network, the fraction of Cyanobacteria associations was highest 426 

in April-October (Figure 4A), which are the months with the largest cyanobacterial 427 

abundances (Supplementary Figure 7), and the fewest edges in the entire temporal network 428 

(Figure 2B), for example, in the year 2011 (Figure 4B). We found that cyanobacterial ASVs, 429 

although being evolutionarily related, behaved differently in terms of the number of 430 

associations over time, and association partners (Supplementary Figure 7). For example, 431 
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Synechococcus bn_ASV_5 had fewer partners than bn_ASV_1 according to numbers of 432 

associations, but more according to taxonomic variety (Supplementary Figure 7). Only a tiny 433 

fraction of Prochlorococcus (e.g. bp_ASV_18) association partners were other 434 

Cyanobacteria, which contrasted with Synechococcus and Cyanobium (Supplementary 435 

Figure 7). Moreover, we observed that Cyanobium (bn_ASV_20) connected to one 436 

Deltaproteobacteria (SAR324) ASV during the first eight years, but the association 437 

disappeared in the last two years. In particular, the inferred association duration was 101 438 

months, starting in March 2004 and ending in July 2012. After summer 2012, the 439 

Deltaproteobacteria ASV was not detected except a few reads in November and December 440 

2012 and 2013. This Cyanobacteria example may also illustrate the dynamics of associations 441 

within other main taxonomic groups. 442 

 443 

Validating associations using known ecological interactions 444 

We checked how many potential interactions could be validated using a database of observed 445 

ecological interactions (PIDA; [17]). In total, 16 associations (out of 16626) in the temporal 446 

network were validated by PIDA (Supplementary Table 6). These 16 associations describe 447 

six unique interactions between seven taxa (at the genus-level). For instance, the reoccurring 448 

association between a diatom from genus Thalassiosira and a Flavobacteriia starts mainly 449 

around October and often ends around March (Supplementary Figure 8). In contrast, the 450 

reoccurring association between a dinoflagellate from genus Gyrodinium and one from 451 

Heterocapsa appears for a shorter time and during the summer months (Supplementary 452 

Figure 8). 453 

 454 
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DISCUSSION 455 

Previous work identified yearly recurrence of microbial community composition at the 456 

BBMO [13, 28, 64], and similarly at the nearby Bay of Banyuls [14], both in the North-West 457 

Mediterranean Sea and in other temperate sites around the world [12, 65]. We focused here 458 

in the connectivity of microorganisms and how they organize themselves from a network 459 

perspective.  In general, the measured global network metrics (edge density, transitivity, and 460 

average path length) are within the range reported in previous studies [22–25, 66–68] (Table 461 

2). Contrary to early studies reporting biological networks generally being disassortative 462 

(negative assortativity based on degree) [69], our single static network and the monthly 463 

subnetworks were assortative. Microorganisms had more and stronger connections and a 464 

tighter clustering in colder than in warmer waters. To some extent, this might reflect species 465 

richness, which has been shown for the resident microorganisms to increase during the colder 466 

months at BBMO using the same dataset [28]. However, the exact effect of richness on 467 

ecological interactions among microorganisms needs further analysis. Seasonal bacterial 468 

freshwater networks [67] also showed higher clustering in fall and winter than in spring and 469 

summer, but, in contrast to our results, networks were most extensive in summer and smallest 470 

in winter. In agreement with our results, Chaffron et al. [68] reported higher association 471 

strength, edge density, and transitivity in cold polar regions compared to other warmer 472 

regions of the global ocean. Colder waters in the Mediterranean Sea are milder than polar 473 

waters. However, together, these results suggest that either microorganisms interact more in 474 

colder environments, or that their recurrence is higher due to higher environmental selection 475 

exerted by low temperatures. Additionally, limited resources (mainly nutrients) in summer 476 

or in the tropical and subtropical open ocean may prevent the establishment of several 477 

microbial interactions. In any case, temperature is likely not the only driver of network 478 
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architecture [68]. 479 

The effects of environmental variables on network metrics are unclear [70], yet, our 480 

approach allowed us to identify potential environmental drivers of network architecture. 481 

Correlation analyses pointed to variables that have been found to influence microbial 482 

abundances in the ocean. For instance, our results indicated that temperature and day length, 483 

key variables driving microbial assemblages in seasonal time series [12–14], and to a lesser 484 

extent inorganic nutrients, were the main factors influencing global network metrics. It also 485 

agrees with earlier works indicating that phosphorus and nitrogen are the primary limiting 486 

nutrients in the Western Mediterranean Sea [71, 72]. Altogether, our correlation analysis is a 487 

step forward towards elucidating the effects of environmental variables on network metrics. 488 

However, we did not consider several other variables that could affect network architecture 489 

(e.g. organic matter). 490 

Our preliminary network (significant associations derived with eLSA) contained 18% 491 

negative edges compared to 0.9% in the single static network (after filtering). Thus, our 492 

filtering strategy removed proportionally more negative edges. Associations may represent 493 

positive or negative interactions, but they can also indicate high niche overlap (positive 494 

association) or divergent niches (negative association) between microorganisms [73]. We 495 

hypothesize that most of the removed negative edges represented associations between 496 

microorganisms from divergent niches, most likely corresponding to colder or warmer 497 

months. 498 

 We found more highly prevalent associations within specific months than when 499 

considering all ten years of data. Furthermore, our results indicate a potentially low number 500 

of core interactions and a vast number of non-core ones. Usually, core microorganisms are 501 

defined based on sequence abundances, as those microorganisms (or taxonomical groups) 502 
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appearing in all samples or habitats being under investigation [74]. Shade & Handelsman 503 

[74] suggested that other parameters, including connectivity, should create a more complex 504 

portrait of the core microbiome and advance our understanding of the role of key 505 

microorganisms and functions within and across ecosystems [74]. Using a temporal network 506 

we identified core associations based on recurrence, which contributes to our understanding 507 

of key interactions underpinning microbial ecosystem functions. Considering associations 508 

within each month, we found more highly-prevalent associations in colder than in warmer 509 

months. Our results indicate microbial connectivity is more repeatable (indicating higher 510 

predictability) in colder than in warmer waters. On the one hand, the microbial community 511 

in colder waters being more recurrent [13] may explain our observations indicating a more 512 

robust connectivity during this period. Alternatively, it may be the stronger connectivity what 513 

leads to more similar communities in colder waters at the BBMO. Last but not least, the 514 

interplay of both species dynamics and interactions may determine community turnover in 515 

the studied ecosystem. From a technical viewpoint, our monthly sampling strategy and/or the 516 

overall single static network may have not been able to detect interactions appearing solely 517 

in summer resulting in smaller monthly subnetworks. For instance, previous work on 518 

freshwater lakes constructed season-specific networks and found more associations in 519 

summer than in winter [67]. 520 

Several network-based analyses have been used to particularly study Cyanobacteria 521 

associations. For example, in the southern Californian coast, Chow et al. [24] identified 44 522 

potential relationships of 12 Cyanobacteria (Prochlorococcus and Synechococcus) with two 523 

potential eukaryote grazers (a ciliate and a dinoflagellate), 39 to other bacteria, and three 524 

between Cyanobacteria, which were all positive. Similarly, all cyanobacterial ASVs in our 525 

study connected primarily to other bacterial ASVs, and featured mainly positive associations. 526 
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Furthermore, Cyanobacteria displayed primarily positive associations with other 527 

microorganisms in a global ocean network [66]. This suggests that other sampling or 528 

computational approaches are needed to detect negative associations involving marine 529 

cyanobacteria. 530 

Identifying different potential association partners for closely related Cyanobacteria 531 

may indicate adaptations to different niches. A recent study found distinct seasonal patterns 532 

for closely related bacterial taxa indicating niche partitioning at the BBMO, including  533 

Synechococcus ASVs [64]. Our approach can complement and further characterize “sub-534 

niches” by providing association partners for different ASVs. Moreover, in contrast to a 535 

single static network, temporal networks allow identifying associated partners in time 536 

(Supplementary Figure 7). An increase in the abundance of a microorganism may promote 537 

the growth of associated partners and a decrease may hinder the growth of partners or cause 538 

predators to prey on other microorganisms. Moreover, given the majority of association 539 

partners being other bacteria, the growth of Cyanobacteria may affect other bacteria and their 540 

growth, which is why it is necessary to identify potential interaction partners [67]. 541 

Our approach allowed us to disentangle in time the associations captured by a single 542 

static network using monthly samples for ten years. Future studies should determine whether 543 

higher sampling frequency (e.g., daily samples during a month) can capture other 544 

associations not present in our networks. Thus, our results should be considered taking into 545 

account the used (monthly) sampling frequency. In addition, certain network metrics may 546 

depend on the tool used to infer the single static network, e.g., edge density, and, therefore, 547 

should be interpreted with care. An additional consideration is that we disregarded local 548 

network patterns by using global network metrics. Future work could use the local-549 

topological metric based on graphlets [75]. Counting the number of graphlets a node is part 550 
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of quantifies their local connection patterns, which allows inferring seasonal microorganisms 551 

through recurring connection patterns in a temporal network.  552 

 553 

CONCLUSION 554 

Incorporating the temporal dimension in microbial association analysis unveiled multiple 555 

patterns that often remain hidden when using single static networks. Investigating a coastal 556 

marine microbial ecosystem over ten years revealed a one-year-periodicity in the network 557 

topology. The temporal network architecture was not stochastic, but displayed a modest 558 

amount of recurrence over time, especially in winter. Future efforts to understand the ocean 559 

microbiome should consider the dynamics of microbial interactions as these are likely 560 

fundamental for ecosystem functioning. 561 
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FIGURE LEGENDS 795 

Figure 1: Estimating a temporal network from a single static network via subnetworks. A) 796 

A complete network would contain all possible associations (edges) between microorganism 797 

(nodes). B) The single static network inferred with the network construction tool eLSA and 798 

the applied filtering strategy considering association significance, the removal of 799 

environmentally-driven associations, and associations whose partners appeared in more 800 

samples together than alone, i.e., Jaccard index being above 0.5. An association having to be 801 

present in the single static network is the first out of the three conditions for an association 802 

to be present in a monthly subnetwork. C) In order to determine monthly subnetworks, we 803 

established two further conditions for each edge. First, both microorganisms need to be 804 

present in the sample taken in the specific month. Second, the month lays within the time 805 

window of the association inferred through the network construction tool. Here, three months 806 

are indicated as an example. D) Example of monthly subnetworks for the three months. The 807 

colored nodes correspond to the abundances depicted in C). 808 

 809 

Figure 2: Global (sub)network metrics. A) Number of ASVs (counting an ASV twice if it 810 

appears in both size fractions) for each of the 120 months of the Blanes Bay Microbial 811 

Observatory time series. There are 1709 ASVs, of which 709 ASVs are connected in the 812 

static network. In black, we show the number of nodes connected in the temporal network, 813 

and in red the number of nodes that are isolated in the temporal network, i.e., they are 814 

connected in the static network and have a sequence abundance above zero for that month 815 

("non-zero"). In dark grey, we show the number of ASVs that are non-zero in a given month 816 

but were not connected in the static and subsequently temporal network. In light grey, we 817 
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show the number of ASVs with zero-abundance in a given month. The sum of connected and 818 

isolated nodes and non-zero ASVs represents each month's richness (i.e., number of ASVs). 819 

B) By comparing the edges of two consecutive months, i.e., two consecutive monthly 820 

subnetworks, we indicate the number of edges that have been lost (red), preserved (black), 821 

and those that are gained (blue), compared to the previous month. C) Six selected global 822 

network metrics for each sample-specific subnetwork of the temporal network. The colored 823 

line indicates the corresponding metric for the static network. 824 

 825 

Figure 3: Associations with a monthly prevalence of at least 90%. Bacteria and eukaryotes 826 

are separated and ordered alphabetically. We provide in parentheses the number of 827 

associations that appeared in at least nine out of ten monthly subnetworks. 828 

 829 

Figure 4: Cyanobacteria associations. A) Fraction of edges in the temporal network 830 

containing at least one Cyanobacteria ASV. B) Location of Cyanobacteria associations in 831 

the temporal network and the single static network. Here we show, as an example, selected 832 

months of year 2011. The number and fraction of cyanobacterial edges and total number of 833 

edges is listed below each monthly subnetwork and the single static network. 834 

  835 
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TABLES 836 
Table 1: Number and fraction of ASVs and reads (total, bacterial and eukaryotic) for the sequence abundance 837 
tables (A, B, and C), the preliminary network with significant edges (D), and the single static network (E) obtained 838 
after removing environmentally-driven edges and edges with association partners appearing more often alone 839 
than with the partner. If an ASV appeared in the nano- and pico-plankton size fractions, it was counted twice. 840 

Count tables ASVs Reads Eukaryote Eukaryotic reads Bacteria Bacterial reads 

A 2 924 2 273 548 1 365 1 121 855 1 559 1 151 693 

B 1 782 2 155 318 1 009 1 057 599 773 1 097 719 

C 1 709 2 062 866 1 007 1 057 263 702 1 005 603 

D 754 1 657 885 306 730 025 448 927 860 

E 709 1 621 959 294 719 558 415 902 401 

       

Fractions ASV Reads Eukaryote Eukaryotic reads Bacteria Bacterial reads 

B/A*100 60.94 94.80 73.92 94.27 49.58 95.31 

C/A*100 58.45 90.73 73.77 94.24 45.03 87.32 

D/C*100 44.12 80.37 30.39 69.05 69.05 92.27 

E/C*100 41.49 78.63 29.20 68.06 59.12 89.74 

A – raw sequence abundance table; B – sequence abundance table without rare ASVs; C –sequence abundance table after size-fraction 841 
filtering; D – preliminary network with significant edges; E – single static network  842 
  843 
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Table 2: Global network metrics of previously described microbial association networks 844 

Location & Depth Edge 
density 

Transitivity Average 
path 

length 

Sampling Domains Notes Reference 

SPOT (Off the 
southern California 

coast); Deep 
chlorophyll maximum. 

0.04 0.26 3.05 Monthly. 
August 2000 - 
March 2004 

Archaea, 
bacteria, and 
eukaryotes 

Edge density for 
microbial network 

including environmental 
factors. Transitivity and 
average path length for 

microbial network. 

[22] 

SPOT; Surface ocean 
and deep chlorophyll 

maximum 

0.14 0.33 1.94 Monthly. 
August 2000 - 
January 2011 

Free-living 
bacteria and 

picoeukaryotes 

Metrics from surface 
layer network. [23] 

SPOT; Surface 0.02 0.24  Monthly. 
March 2008 - 
January 2011 

Free-living 
eukaryotes 

(0.7–20 µm), 
bacteria (0.22–1 
µm) and viruses 

(30 kDa–0.22 
µm) 

 [24] 

SPOT; Five depths 
(5 m - Surface, the 
deep chlorophyll 

maximum layer, 150 m, 
500 m and 890 m - just 

above the sea floor) 

0.04 0.28 2.07 Monthly. 
August 2003 - 
January 2011 

Free-living 
bacteria 

Metrics for 5 m layer 
network. [25] 

52 samples from 
freshwater lakes in 

China; Surface 

(0.023) 
W:0.033, 
Sp:0.032

, 
S:0.036, 
F:0.029 

(0.472) 
W:0.518, 
Sp:0.480, 
S:0.475, 
F:0.573 

(4.84) 
W:2.16, 
Sp:5.03 
S:7.26, 
F:3.04 

Spatial  Bacteria Metrics for (whole 
network) and seasonal 

networks: W: winter, Sp: 
spring, S: summer, and 

F: fall 

[67] 

68 stations from the 
Tara Oceans 

expedition  across 
eight oceanic 

provinces; Surface and 
Deep chlorophyll 

maximum 

0.005, 
0.003, 
0.008 

0.2, 
0.0, 
0.43 

3.05, 
3.02, 
2.56 

Spatial  Organisms from 
seven size 
fractions  

Metrics from surface 
networks including 
eukaryotes only, 
eukaryotes and 

prokaryotes (0.5-5 µm), 
and prokaryotes only 

(0.2-1.6 µm) 

[66] 

115 stations from the 
Tara Oceans 

expedition covering all 
major oceanic 

provinces from pole to 
pole; Surface and deep 
chlorophyll maximum 

0.002 0.036  Spatial  Bacteria, 
archaea, and 

eukaryotes from 
six size 

fractions. 

Metrics represent the 
means of sample-

specific subnetworks. 

[68] 

 845 
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A) all potential associations B) determing single static network (1st condition)

Preliminary network inferred 
through eLSA with significance 

threshold (p and q < 0.001)
Single static network

D) temporal network constituted from monthly subnetworks

Month m3Month m2Month m1

C) determining subnetworks
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