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Abstract

We propose a numerical treatment for the geometric singularity at the polar grid center en-
countered in the application of the isoparametric bi-cubic Hemite Bézier finite element method.
The treatment applies a set of new basis functions at the polar grid center in the numerical
algorithm where the new basis functions are simply the linear transformations of the original
basis functions. The linear transformation comes out naturally by analyzing the interpolation
formula at the polar grid center. The proposed polar treatment enforces the C1 regularity in
the physical space and preserves the order of the accuracy of the interpolation. The treatment
is applied in the nonlinear MHD code JOREK. With the help of a range of numerical tests, it
is demonstrated that the polar treatment improves the stability and accuracy of the numerical
approximation near the polar grid center. The polar treatment presented can be applied to the
grid center of circular or non-circular polar grids and is also applicable for the bi-cubic Hermite
finite element method.
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1 Introduction

When governing equations are expressed in the cylindrical or spherical coordinate systems, for
efficiency, their numerical approximations may also be based on the symmetries in the coordi-
nate systems. It is advantageous to formulate the numerical approximations on the grids that
are aligned with the coordinate symmetries. Such an alignment is often achieved through a
geometrical transformation that maps a parametric domain onto a physical space. For cylindri-
cal or spherical coordinate system, a geometric transformation inevitably produces geometrical
singularities, even when there is no reason for governing equations to be singular, and leads to
difficulties in the development of consistent and accurate numerical approximations. Therefore
particular attention must be paid to the numerical approximation in the vicinity of the geomet-
rical singularities. A typical situation that encounters a geometric singularity is the polar grids.
For the cylindrical symmetry, the geometric singularity is expressed in terms of the limit of the
function 1/r when the radial distance (r) tends to zero. Numerical approximations in this limit
may create numerical instabilities at the polar grid center that can pollute the numerical solution
and adversely affect the stability of a numerical algorithm.

Depending upon the numerical methods and physical applications, many strategies to handle
the numerical difficulties at the geometric center of the polar grids are available in the literature.
In the context of finite difference methods, Griffin et al. [2] use the L’Hôpital rule on the terms
with 1/r, Mohseni and Colonius [3] use the geometric transformation to avoid the point at r = 0,
Constantinescu and Lele [4] derive a new set of equations at the polar axis using series expansion,
Prochnow et al. [5] use staggered grids to avoid the point of singularity and in [6] parity conditions
for flow equations in the azimuthal Fourier modes are derived. In the context of pseudo-spectral
approximations, Huang and Sloan [7] develop pole conditions based on the solution smoothness,
while Serre and Pulicani [8] use a strategy based on the change of variables to remove the
polar singularity. In the context of spectral methods, Mercader et al. [9] use parity of Fourier
modes in the numerical scheme such that no additional treatment for the polar singularity is
needed while the stable and accurate formulation is obtained at the same time. In the context
of finite volume methods, Asaithambi and Mahesh [10] merge the cells on the polar grid center
to improve the stability conditions. In the context of finite element methods, Olson et al. [11]
present a few strategies to treat the singularities encountered in finite element applications in
general. Most of the numerical treatments cited above are achieved in the framework of spectral
methods and mainly applied to the simulations of incompressible turbulent flows [12]. Some of the
treatments may not preserve the stability of the associated numerical methods and the clustering
of the grid points in the radial direction at the grid center may be required to improve the
accuracy of the method. Olson et al. in [11] state that In both the finite difference and the finite
element methods, local refinement is often employed near the singularity to achieve reasonable
accuracy. However, the accuracy achieved and the rate of convergence are generally not uniform
nor satisfactory. In the isogeometric analysis (IGA) framework, techniques to construct polar
splines basis functions that are Ck smooth everywhere, including geometrically singular polar
points, have been developed [13, 14]. Smoothness constraints at singular polar points are enforced
via an extraction operator Ēk that takes a linear combination of underlying basis functions at
the polar center. The smooth polar spline framework developed in [13, 14] has been applied to
solve the ideal magneto-hydrodynamics (MHD) eigenvalue problem for axisymmetric equilibria
[15] that lead to a continuous description of eigenfunctions across the polar grid center.

We will now focus on the particular case of the singularity at the polar grid center encountered
in the numerical simulation of the magneto-hydrodynamics (MHD) equations for the plasmas
in tokamak modeling. In magnetic fusion devices such as tokamaks, the plasma is expected to
be confined in that device to harness the fusion energy. Unfortunately, the large-scale plasma
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instabilities disturb the plasma confinement and their control is a major challenge in fusion ex-
periments. Understanding the plasma instabilities and developing effective control strategies is
one of the urgent requirements on the path towards feasible fusion power plants [1]. Computa-
tional tools can play a key role in providing an insight into relevant plasma dynamics and help
understand the nature of these instabilities. JOREK [16] is one of the nonlinear MHD codes
that has been developed to simulate the plasma dynamics in magnetic fusion devices and uses
polar grids. Owing to the torus-shaped geometry of a tokamak device, the MHD equations are
written into the cylindrical (or toroidal) coordinate system. In a typical numerical simulation
using JOREK, the MHD instabilities are investigated starting the self-consistent time evolution
of the equations from an equilibrium state that is governed by the so-called Grad-Shafranov equa-
tion [17] (GSE). It is a nonlinear elliptic equation that determines the profiles for the poloidal
magnetic flux surfaces (ψ). The plasma dynamics in tokamaks is strongly constrained by these
flux surfaces and hence it is advantageous to develop numerical strategies that use grids aligned
with these flux surfaces. The grid generators in the code JOREK can construct such flux-aligned
grids in the poloidal plane, the plane orthogonal to the toroidal direction (φ) (see Figure (1a)).
An option to extend the grids to the true physical walls is also available [18]. JOREK uses
C1-finite element approximation in the poloidal plane while Fourier representation in the peri-
odic φ direction to solve mainly nonlinear MHD equations. The code has been extensively used
for tokamak modeling and a wide range of its applications are presented in [1] and references
therein. In the framework of isoparametric analysis, the finite element space in the poloidal plane
is based on a bi-cubic Hermite-Bézier basis function which was originally proposed in [16] as a
necessary developmental step for JOREK. The properties of this finite element space have been
investigated in [19, 20]. Recently the extension to the higher-order Hermite-Bézier polynomials
has been implemented successfully and was shown to reduce the computational costs to reach
the same level of accuracy [21]. The main idea of the approach used in JOREK is to define the
physical domain (poloidal plane) by a nonlinear transformation of a parametric domain which
is decomposed into quadrangular elements. This transformation is constructed from the same
finite element space as the one used for the interpolation of the different variables of the problem:
isoparametric finite element formulation. The resulting grids in the physical space contain the
curved quadrangular elements with C1 regularity, except at some special points that include the
singular polar grid center.

For realistic tokamak geometries, the plasma equilibrium configuration also motivates the
construction of multi-block grids [22]. The plasma equilibrium state contains the critical points,
extrema, or saddle points characterized by ∇ψ = 0, which can be used to decompose the do-
main into concentric, non-overlapping, closed flux surfaces and open, non-overlapping open flux
surfaces (for the details see [23]). A typical example of the plasma equilibrium state is shown in
Figure (1b). A block with closed, concentric flux surfaces leads to a grid that is isomorphic to
a polar grid and has a geometric singularity at its center. Unfortunately, a typical flux-aligned
multi-block grid has at least one block with a polar grid. While a flux-aligned multi-block grid is
a specific case used in JOREK, the use of general polar grids is also a possibility. Until now, for
most of the numerical simulations, quite satisfactory numerical results have been obtained with
a simple treatment of the polar grid singularity which enforces the continuity of the functions at
the symmetry axis [1]. However, this crude treatment locally degrades the numerical properties
of the finite element method (FEM) and may generate numerical instabilities for convection-
dominated flows polluting the entire numerical solution. Unstructured grids that are not aligned
with the flux surfaces avoid the geometrical singularities and offer greater flexibility in terms of
modeling complex geometries, local refinement, etc. However numerical algorithms using such
grids may lead to spurious numerical diffusion and hence higher order approximation is needed.
An approach that avoids singularities and uses hybrid discontinuous Galerkin method based on
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Figure 1: a) Toroidal domain: Ω = Ωξ × Ωφ where Ωξ = (R,Z)T. b) An example of an ideal
MHD equilibrium state on Ωξ governed by GSE with iso-surfaces for the magnetic flux ψ shown.
The point ψ0 marked in red color denotes the location of the magnetic axis and the point ψe
denotes the location of the saddle point in ψ field. Both points are characterized by ∇ψ = 0.
The contour in red color passing through ψe denotes the separatrix. Inside the separatrix, flux
surfaces are closed, while the flux surfaces outside the separatrix intersect with the physical walls.

curved elements in the poloidal plane is presented in [24, 25].
In this work, we propose an efficient and accurate approach to overcome numerical difficulties

related to the singularity at the polar grid center for the bicubic Hermite Bézier FEM. The
proposed strategy can be viewed as a change of variables and leads to the enforcing of the
C1 regularity at the axis of symmetry in the physical space directly. The rest of the paper is
organized as follows. We start by briefly recalling the bi-cubic Hermite-Bézier FEM developed
in [16]. Then the singularity at the symmetry axis is investigated as an asymptotic limit of an
annular mesh where the radius of the hole goes to zero. This analysis leads to the reformulation
of the basis functions as a linear combination of the original basis functions. Then the associated
new degrees of freedom are the variables and their gradients in the physical space. We show that
the proposed strategy at the polar grid center preserves the accuracy of the original interpolation
and is straightforward to apply. We note the similarities of the proposed polar treatment with
the one developed in [13]. Finally, we present a range of numerical tests to demonstrate the
improvements due to the proposed polar treatment. In the end, we summarize the implications
of the proposed treatments and conclude by giving some hints for the treatment of the other
singular points that arise in meshes aligned with the flux surfaces.

2 bi-cubic Hermite Bézier FEM

We consider the numerical approximation of a system of time-dependent partial differential
equations (PDEs) using FEM. The physical problem of interest is the plasma flows inside a
tokamak which has cylindrical symmetry. Therefore, the governing equations are written in
the cylindrical coordinate system (R,Z, φ) where φ denotes periodic toroidal direction and the
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poloidal plane is expressed in terms of the coordinates ξ := (R,Z)
T

. The choice of the coordinate
system also allows the use of an efficient Fourier spectral method for the discretization in φ
direction. In any poloidal plane section Ωξ defined by the coordinates ξ the plasma is mostly
confined to the concentric closed magnetic flux surfaces. Since the plasma dynamics is constrained
to these flux surfaces it is useful to device the numerical approximation in Ωξ with the geometrical
grids that are aligned to the magnetic flux iso-surfaces.

g(1)

g(2)

g(3)

g(4)

(a)

v1 = (0, 0) v2 = (1, 0)

v3 = (1, 1)v4 = (0, 1)

ŝ

t̂

(b)

Figure 2: a) A curved element Ωe in the poloidal plane. b) The bi-unit reference element τ̂ .

We focus on the part of the problem associated to the bicubic Hermite Bézier FEM applied
in the poloidal plane and hence we express the strong form of PDE in Ωξ that governs the space-
time evolution of a function w(t, ξ) for t ∈ [0, T ] and ξ in Ω ⊂ R2. The strong form of a PDE is
compactly written in the residual form as:

R (w) = 0 where R (w) :=
∂w

∂t
+ Lw − f (1)

where R represents the residual, L the differential operator and f := f (w, ξ) the source term.
The Galerkin weak form for the above problem can be written as: Find w ∈ [0, T ]×V(Ωξ) such
that for any w∗ ∈ V(Ωξ):

∫
Ωξ

w∗ · R(w) dξ = 0 (2)

where w∗ are test functions in a suitable Hilbert space V . We consider the mapping of a
parametric space ζ to the physical space Ωξ. Let ζ := (s, t)

t
denote the coordinates of a point

in the parametric space, then the mapping is written as:

ξ := ξ (s, t) and inversely ζ := ζ (R,Z) (3)

The parametric domain ζ is decomposed into non-overlapping rectangular elements τ` such

that ζ =

Ne⋃
`=1

τ` where Ne is the total number of elements. The approximated physical space Ωξh

is obtained by the mapping of ζ formulated in a smooth finite element space. In general, this
transformation is applied on a domain with no singularity. In the bicubic Hermite-Bézier FEM
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the isoparametric mapping maps a rectangular element τ` in ζ onto a curved quadrangle Ωe in
Ωξh

(see Figure 2a). On any element τ` a scalar function f(ζ), restricted to τ`, is represented
in terms of the basis functions with four coefficients at each vertex g(v), where v (= 1 to 4)
is the local vertex numbering in any element and g(v) denotes the global vertex number in a
grid. These coefficients are the value of that function, its first order derivatives and the cross
derivative at that vertex:

fg(v),1 = f
(
ζg(v)

)
, fg(v),2 =

∂f

∂s

(
ζg(v)

)
, fg(v),3 =

∂f

∂t

(
ζg(v)

)
, fg(v),4 =

∂2f

∂s∂t

(
ζg(v)

)
The coefficients above are equivalent to those in the Hermite interpolation. The Hermite FEM
is a special case of bicubic Hermite Bézier FEM [16]. Each element τ` is also mapped onto the
bi-unit reference element τ̂(ŝ, t̂) = [0, 1] × [0, 1] (see Figure 2b). The mapping from any τ` to
τ̂ is constructed such that s = s(ŝ) and t = t(t̂) and the coefficients to represent a function

f(τ(τ̂)) = f̂(τ̂) are written as:

f̂v,1 = f̂
∣∣
v

= fg(v),1

f̂v,2 =
∂f̂

∂ŝ

∣∣∣∣
v

=
∂f

∂s

ds

dŝ

∣∣∣∣
v

= fg(v),2
ds

dŝ

∣∣∣∣
v

f̂v,3 =
∂f̂

∂t̂

∣∣∣∣
v

=
∂f

∂t

dt

dt̂

∣∣∣∣
v

= fg(v),3
dt

dt̂

∣∣∣∣
v

f̂v,4 =
∂2f̂

∂ŝ∂t̂

∣∣∣∣
v

=
∂2f

∂s∂t

ds

dŝ

∣∣∣∣
v

dt

dt̂

∣∣∣∣
v

= fg(v),4
ds

dŝ

∣∣∣∣
v

dt

dt̂

∣∣∣∣
v

where the coefficients f̂v,d with d = 1, 2, 3, 4 are the Hermite data associated to f̂(τ̂). The terms
ds/dŝ and dt/dt̂ at a vertex v, called as scale factors, arise due to the mapping from parametric
to reference element and can be different in all the four elements sharing that vertex v. For
clarity, we rewrite the relations between the coefficients for a function f in τl and τ̂ as:

f̂v,1 = fg(v),1 σ
e
v,1, f̂v,2 = fg(v),2 σ

e
v,2, f̂v,3 = fg(v),3 σ

e
v,3, f̂v,4 = fg(v),4 σ

e
v,4 (4)

where, σev,1 = 1; σev,2 and σev,3 take the values ds/dŝ and dt/dt̂ which are different in each element
τl sharing the vertex v, while σev,4 = σev,2 σ

e
v,3. These scale factors σev,d arrange G1 regularity

across the elements in the parametric space and consequently C1 regularity in the physical space.
Using the relations (4), the interpolation of a function f̂(τ̂) on the reference element is written
as:

f̂(ŝ, t̂) =

4∑
v=1

4∑
d=1

f̂v,d Bv,d(ŝ, t̂) =

4∑
v=1

4∑
d=1

fg(v),d σ
e
v,d Bv,d(ŝ, t̂) 0 ≤ ŝ, t̂ ≤ 1

where the index d denotes the degrees of freedom and the index v denotes the vertices. In the
isoparametric framework, the above interpolation is used to write the geometric mapping of the
grid coordinates in terms of the bi-cubic Bézier basis function Bv,d

(
ŝ, t̂
)

on τ̂ as:

ξeh(ŝ, t̂) =

4∑
v=1

4∑
d=1

ξg(v),d σ
e
v,d Bv,d(ŝ, t̂) 0 ≤ ŝ, t̂ ≤ 1 (5)

The coefficients ξg(v),d are the properties of the vertex (nodal formulation) which all the elements
containing that vertex share. The scale factors σev,d are the properties of the elements and are
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constant on each element. The four basis functions associated with the first vertex of the reference
element τ̂ (see Figure (2b)) are written below:

B1,1(ŝ, t̂) = (1− ŝ)2(1− t̂)2(1 + 2ŝ)(1 + 2t̂)

B1,2(ŝ, t̂) = 3(1− ŝ)2(1− t̂)2(1 + 2t̂)ŝ

B1,3(ŝ, t̂) = 3(1− ŝ)2(1− t̂)2(1 + 2ŝ)t̂

B1,4(ŝ, t̂) = 9(1− ŝ)2(1− t̂)2ŝ t̂

The basis functions associated with the other vertices can be obtained by replacing ŝ → 1 − ŝ
and/or t̂ → 1 − t̂ depending upon the vertex number [26]. The grid generation consists of
computing the coefficients ξg(v),d and σev,d such that the image of the parametric domain describes
the physical domain up to the accuracy of the numerical approximation. Any circular or non-
circular polar grid can be constructed based on the mapping described above. Computation of
the mapping parameters is not always easy, especially for the grid blocks aligned to the magnetic
flux iso-surfaces [22]. For our purpose, we will assume that the polar grid constructed using the
mapping is available to us and the parameters ξg(v),d and σev,d are known.

The Galerkin FEM formulation for weak form of the PDE is written as: Find wh ∈ [0, T ]×
Vh (Ωξh

) such that for any w? ∈ Vh (Ωξh
):∫

Ωξh

w? · R(wh) dξ = 0 (6)

where w? are the test functions, Vh (Ωξh
) is the space of the trial functions defined over dis-

cretized domain Ωξh
. In practice the integral (6) may be reformulated by applying integration

by parts to reduce the order of derivatives in the equations. The Galerkin FEM gives the cen-
tral numerical approximation which may generate the spurious oscillations when the dynamics
is convection-dominated. Therefore, the additional contribution coming from Taylor-Galerkin
stabilization method is added to the integral to enforce the numerical stability.

In the bi-cubic Hermite-Bézier FEM the restriction of wh on any element Ωe is written as:

we
h(ξ) = ŵe

h

(
ŝ (ξ) , t̂ (ξ)

)
where ŵe

h(ŝ, t̂) =

4∑
v=1

4∑
d=1

wg(v),d σ
e
v,d Bv,d(ŝ, t̂) 0 ≤ ŝ, t̂ ≤ 1

(7)

The coefficients wg(v),d are the degrees of freedom defining the approximated function wh(ξ)
and are the unknowns of the discrete problem. A link between the wg(v),d and the derivatives of
the function in the reference element is given by the change of variables. For any scalar function
W (ξ(τ(τ̂))) = W (τ̂) the following relations can be written:

W = W (8)

∂W

∂ŝ
= ∇ξW ·

∂ξ

∂ŝ
(9)

∂W

∂t̂
= ∇ξW ·

∂ξ

∂t̂
(10)

∂2W

∂ŝ∂t̂
= ∇ξW ·

∂2ξ

∂ŝ∂t̂
+Hξ (W) :

(
∂ξ

∂ŝ
⊗ ∂ξ

∂t̂

)
(11)

where Hξ(W) is the Hessian matrix in the physical space and the partial derivatives ∂ξ
∂ŝ , ∂ξ

∂t̂

and ∂2ξ
∂ŝ∂t̂

are computed using the scale factors. The relations (8)-(11) will be useful afterwards
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to develop a simple, efficient and accurate strategy for the polar grid center that enforces the
regularity of functions in the physical space.

3 Singularity at the Polar grid center

Let us consider an annular grid with curved quadrangular elements constructed using bi-cubic
Hermite Bézier formulation with its inner boundary at a distance ε � 1 from the geometrical
center (see Figure 3). Let us denote by Nθ the number of vertices located at the distance ε. In
the limit ε→ 0, an annular grid becomes a polar grid, all Nθ vertices collapse to the geometrical
grid center and the geometrical transformation from the parametric to physical space becomes
singular. At this limit, the curved quadrangular elements degenerate to the triangular elements
as one of the edges that falls on the grid center collapses to a point. Since Nθ points fall at
the geometrical center, there are 4Nθ independent degrees of freedom at the polar grid center
together.

g(1)

g(2)

g(3)

g(4)

r = ǫ

t̂ = 0

t̂ = 1

ŝ = 0 ŝ = 1

Figure 3: An element Ωe on the polar grid center: As radius r → 0, the edge formed by g(1) and
g(4) collapses to a point which is the polar grid center.

Figure (4a)-(4d) shows the overlapped global shape functions at the polar grid center associ-
ated with the four degrees of freedom respectively. It can be seen that the third and fourth basis
functions form oscillatory shape functions in the azimuthal direction and may give an oscillatory
approximation of a smooth function near the polar grid center. The bi-cubic Hermite Bézier
FEM does not even ensure the continuity of the functions at the grid center and the accuracy
of the FEM is lost at the grid center. The polar grid center then can act as a source of spuri-
ous oscillations and can pollute the numerical solution. The numerical noise at the polar grid
center may remain bounded when a physical or numerical model is diffusion-dominated. For
the hyperbolic equations, however, the polar grid center can severely restrict the stability and
the accuracy of the numerical method. Therefore, proper treatment of the polar grid center is
needed.

In practice, a crude way is used to cure the numerical problems at the polar grid center
by enforcing C0 regularity. In this treatment the degrees of freedom wg(v),1 at the polar grid
center are shared, wg(v),3 are enforced to zero while wg(v),2 and wg(v),4 are kept free. This C0
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(a) (b) (c) (d)

Figure 4: Plots of the global shape functions associated with (a) Wg(v),1 (b) Wg(v),2 (c) Wg(v),3

and (d) Wg(v),4 overlapped at the polar grid center.

polar treatment has been used so far with success in most numerical simulations. Another polar
treatment used in practice enforces wg(v),4 to zero at the polar grid center. This polar treatment
is used in addition to C0 treatment and we refer to it as the ‘intermediate polar treatment’. It
removes the contribution due to the third and fourth basis functions from the interpolation and
thereby reduces the accuracy of the interpolation on the elements on the polar grid. Sometimes
hyperdiffusive terms localized around the polar grid center are used to run the simulations in
a numerically stable way, which can be an unelegant but acceptable solution for instabilities
at the plasma edge. In the case of the plasma core instabilities, however, such localized use
of the hyperdiffusive terms alter their physical behavior. Below, we develop a mathematically
consistent polar grid treatment that enforces the C1 regularity in the physical space, and at the
same time, it preserves the accuracy of the interpolation.

To analyze the problem at the polar grid center we look at the asymptotic limit ε → 0 at
which an element Ωe falls onto the grid center (see Figure (3)). For the discussion, let us assume
that the curved edge connecting the vertices g(1) and g(4) of an element Ωe falls on the polar
grid center as shown in Figure (3). In the reference element τ̂ , this curved edge maps onto ŝ = 0
and therefore we examine the trace of ξ and its derivatives along ŝ = 0. The interpolation for
ξ(ŝ, t̂) is written below at ŝ = 0:

ξ(0, t̂) = ξg(1),1 σ
e
1,1 B1,1(0, t̂) + ξg(1),3 σ

e
1,3 B1,3(0, t̂)

+ ξg(4),1 σ
e
4,1 B4,1(0, t̂) + ξg(4),3 σ

e
4,3 B4,3(0, t̂)

(12)

In above relations, out of 16 only 4 terms contribute to the interpolation and others vanish at
ŝ = 0. By construction of the bi-cubic Bézier FEM, we have σe1,1 = σe4,1 = 1. Further, it is easy
to see the partition of unity at ŝ = 0:

B1,1(0, t̂) +B4,1(0, t̂) = 1 (13)

which can be used in equation (12) to obtain:

ξ
(
0, t̂
)

= ξg(4),1 +
(
ξg(1),1 − ξg(4),1

)
B1,1(0, t̂) + ξg(1),3 σ

e
1,3 B1,3(0, t̂) + ξg(4),3 σ

e
4,3 B4,3(0, t̂)

Asymptotically when ε → 0, the curve ξ
(
0, t̂
)

collapses to the position of the polar grid center

ξ0 which is independent of the parametric coordinate t̂. Therefore we can deduce that:

ξg(1),1 = ξg(4),1 = ξ0, ξg(1),3 = 0 and ξg(4),3 = 0. (14)
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Using the above relations and the t̂ derivative of the equation (13) it is easy to see that:

∂ξ

∂t̂

(
0, t̂
)

= 0 (15)

A similar analysis for the interpolation of a scalar function W (ŝ, t̂) at ŝ = 0 gives:

Wg(1),1 = Wg(4),1 = W0, Wg(1),3 = 0, Wg(4),3 = 0 and
∂W

∂t̂

(
0, t̂
)

= 0 (16)

where W0 is the value of the function at the polar grid center. The first of the above relation
implies that the first degrees of freedom associated with the two vertices falling onto the grid
center must have a common value. The last relation removes the third degrees of freedom and
hence the variation in the azimuthal direction from the interpolation. These are the relations on
which the C0 polar treatment is based upon.

To achieve C1 regularity at the polar grid center, we now look at the second and fourth
degrees of freedom at the polar grid center which are associated to ŝ and mixed derivatives of
a function W . The relation (15) can be used in the equations (8)-(11) to rewrite the relations
between derivatives in the reference element and the physical space at the polar grid center as:

Wv = W (ξ0) (17)

∂W

∂ŝ

∣∣∣∣
v

= ∇ξW (ξ0) · ∂ξ
∂ŝ

∣∣∣∣
v

(18)

∂W

∂t̂

∣∣∣∣
v

= ∇ξW (ξ0) · ∂ξ
∂t̂

∣∣∣∣
v

= 0 (19)

∂2W

∂ŝ∂t̂

∣∣∣∣
v

= ∇ξW (ξ0) · ∂
2ξ

∂ŝ∂t̂

∣∣∣∣
v

(20)

The above relations express all the degrees of freedom associated to the polar grid center in
terms of the three quantities: the value of function W (t, ξ0) and its gradient ∇ξW (t, ξ0) in the
physical space at the polar grid center. Indeed, these relations should be satisfied at all the
vertices g(v) that collapse on the polar grid center. Therefore we propose a polar treatment in
which we apply the relations (17)-(20) at all the vertices on the grid center. Compactly, they
can be written as the transformation of the quantities from the reference element to the physical
space as:

W
∣∣
g(v)

= Te
∣∣
g(v)

W
∣∣
ξ=ξ0

(21)

where

W
∣∣
g(v)

=


W

∂W
∂ŝ

∂2W
∂ŝ∂t̂

 , W
∣∣
g(v)

=


W
∂W
∂R

∂W
∂Z

 and Te
∣∣
g(v)

=


1 0 0

0 ∂R
∂ŝ

∂Z
∂ŝ

0 ∂2R
∂ŝ∂t̂

∂2Z
∂ŝ∂t̂


Equation (21) can be thought as a transformation from the old to the new degrees of freedom
where the latter are W (t, ξ0), ∂W

∂R (t, ξ0) and ∂W
∂Z (t, ξ0). The transformation matrix Te|g(v) is

different for the each vertex collapsing on the grid center, however the new degrees of freedom
are common for the each vertex. This leads to the formulation of the problem in terms of the
unique value of the function W and its derivatives at the polar grid center.
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The use of the new degrees of freedom requires the basis functions in the interpolation to
change accordingly. Using equation (7), the interpolation of a scalar function W (τ̂) restricted to
ŝ = 0 is re-written below and then written in terms of the new basis functions as:

W (0, t̂) =

4∑
v=1

B̃e
g(v)(0, t̂) · W̃g(v) =

4∑
v=1

N e
g(v)(0, t̂) ·W(ξ0)

where the index v denotes the vertex of an element, B̃e
g(v) =

(
σev,1 Bv,1, σ

e
v,2 Bv,2, σ

e
v,4 Bv,4

)T
is the vector containing basis functions and the vector W̃g(v) =

(
W, ∂ŝW, ∂ŝt̂W

)T |g(v) denotes
the associated degrees of freedom. We recall here that the degree of freedom ∂t̂W = 0 in the
limit ŝ→ 0. The vector of new basis functions is given by

N e
g(v) = [Te|g(v)]

T B̃e
g(v) (22)

and the associated new degrees of freedom are W(ξ0). For a typical polar grid, the three
global shape functions N1(ξ), N2(ξ) and N3(ξ) obtained by overlapping N e

g(1), N
e
g(2) and N e

g(3)

respectively for all the vertices on the grid center are shown in Figure (6). These shape functions
are associated with the three new unknowns W, ∂RW and ∂ZW at the grid center respectively.
As opposed to the shape functions associated with old degrees of freedom (see Figure (4)), the
new shape functions are smooth and continuous in the azimuthal direction.

We now show from a simple numerical test that the new basis functions follow the expected
order of convergence. In Figure (5), the L2-norm of the error in Hermite Bézier interpolation of
a smooth function W computed with the new basis functions is plotted versus element size h.
On the circular polar grid, the smooth function is specified as:

W = R4 +R3 +R2 +R+ Z4 + Z3 + Z2 + Z

The parametric space (r, θ) is assumed to discretized by equispaced points such that the rectan-
gular elements have sides with length:

dr =
1

2m+1
, dθ =

2π

2m+1
, m = 1, 2, ..., 8

and h =
√
dr dθ. In Figure (5) it can be seen that the new basis functions preserves the accuracy

of the original basis functions. Figure (5) also shows that the reduced order interpolation used
in the intermediate polar treatment that converges with the second order accuracy.

Summarizing, the analysis of the interpolation of the grid and physical variables gives an
alternate way of writing the interpolation of a function in terms of the new degrees of freedom
W(ξ0) and basis functions N e

g(v). There are three new degrees of freedom at the polar grid
center: the value of a function W and its gradient ∇W at the polar grid center. Therefore,
we have three unknowns associated with the polar grid center. The new basis functions N e

g(v)

are simply the linear transformation given by equation (22) of the old basis functions. The
superscript e highlights that the new basis functions are different in each element falling on the
grid center. The transformation (22) is to be applied only at the vertices falling onto the polar
grid center in each element and leaving all other vertices untouched.

The polar grid center treatment we have developed above uses the smooth basis functions
that preserve the accuracy of the interpolation and enforces C1 continuity directly in the physical
space. The implementation of the proposed polar treatment is straightforward and amounts
to the application of the transformation (22) on the bi-cubic Hermite Bézier basis functions
associated with the vertices on the polar grid center. The rest of the numerical algorithm remains
unchanged while the linear system (formed due to finite element discretization of equation (6))
solves for the new degrees of freedom at the grid center.
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Figure 5: L2-norm of the interpolation error for the function W = R4 + R3 + R2 + R + Z4 +
Z3 + Z2 + Z plotted vs element size h in case of the intermediate (TC∗) and C1 (TC1) polar
treatment.

(a) N1(ξ) (b) N2(ξ) (c) N4(ξ)

Figure 6: The new global shape functions plotted at the polar grid center that are associated
with the new degrees of freedom: (a) W0 (b) ∂RW and (c) ∂ZW

Note:

The C1 polar treatment developed here has some similarities with the case k = 1 of the gen-
eralized work to construct Ck smooth polar splines presented in [13]. In both constructions,
three basis functions are constructed at the polar center which are a linear combination of the
underlying basis functions. While the linear combination turns out naturally in this work, an
‘extraction operator’ Ē1 provides the required linear combination in [13] to enforce C1 continuity.
This operator is constructed using ‘triangular Bernstein polynomials’ as the basis functions on a
triangular domain satisfying the Hermite data at the polar point. This triangular domain needs
to encompass the polar point and can be entirely arbitrary however, the authors in [13] provide
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an option (for standardization) that gives the following triangular Bernstein polynomials:

T1 =
1

3
+

2R

3τ1

T2 =
1

3
− R

τ1
+

√
3Z

τ1

T3 =
1

3
− R

τ1
−
√

3Z

τ1

An estimate for τ1 is also given in [13] which guarantees non-negative extraction coefficients Ē1.

The equivalent functions T̃1, T̃2 and T̃3 provided by the C1 polar treatment proposed here turn
out to be:

T̃1 = 1 = T1 + T2 + T3

T̃2 = R =
τ1
2

(2− 3T2 − 3T3)

T̃3 = Z =

√
3τ1
2

(T2 − T3)

The polar treatment in [13] requires defining a triangular domain around the polar center which
is not needed in our development. Indeed the basis functions we construct are already associated
with the Hermite data [16].
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4 Numerical results

In this section, we present the numerical tests performed on the linear model problems and
MHD instabilities to compare the performance of the three polar treatments. For the sake of
the discussion, we identify four different situations based on the transformations to be applied
on the basis functions at the polar grid center.

1) No polar treatment (Teg(v) = I) : The identity transformation denotes the use of original
formulation and hence no special treatment at the polar treatment.

2) C0 polar treatment (Teg(v) = TC0) : The transformation to enforce the C0 regularity at the

polar grid center by using the relations (16).

3) Intermediate polar treatment (Teg(v) = TC∗) : In addition to the above C0 polar treatment
the order of the interpolation is reduced by removing the contribution of the fourth basis
functions from the interpolation.

4) C1 polar treatment (Teg(v) = TC1) : The transformation developed in Section above to

enforce the C1 regularity at the polar grid center.

4.1 Linear model problems

4.1.1 Poisson’s equation

First we consider a linear elliptic PDE and use the bi-cubic Hermite Bézier FEM to compute
the numerical solution on the series of polar grids. Poisson’s equation on the unit disc is written
with the boundary conditions as:

−∇2u = 1 ∀ξ ∈ Ω (23)

u = 0 ∀ξ ∈ ∂Ω (24)

The exact solution for this equation is given by uex(ξ) = (1 − R2 − Z2)/4. The domain on the
unit disk Ω is discretized using bi-cubic Hermite Bézier formulation to construct a polar grid
with Nr and Nθ points in the radial and azimuthal direction respectively. The system of linear
equations resulting due to the discretization is solved exactly using LAPACK [27] library. The
FEM solver is run on a series of grids with Nr = Nθ = 8, 16, 32 and 64 points with different
polar treatments at the polar grid center. Figure (7a) and (7b) shows L2 and H1-norm of the
error in the numerical solution plotted vs an estimate of the grid size. All the polar treatments
used show the negligible difference in the error in the numerical solution of equation (23). The
errors follow expected 4th and 3rd order convergence in L2 and H1-norm respectively.

4.1.2 Linear advection equation

Next we demonstrate the effect of the polar grid center treatment on a linear hyperbolic PDE.
The linear advection equation with the initial condition is written as:

∂u

∂t
+ c · ∇u = 0, ∀ξ ∈ Ω

u(t = 0, ξ) = u(ξ) = e−32[(R−Rc)2+(Z−Zc)2]

and is solved numerically using the bi-cubic Hermite Bézier FEM on the polar grid with the
different polar treatments. The initial condition is specified as Gaussian bump centered around

14



101√
Nr ∗Nθ

10−7

10−6

10−5

10−4

L
2-

n
or

m
of

er
ro

r

I
TC0

TC∗
TC1

4th

(a)

101 102√
Nr ∗Nθ

10−5

10−4

10−3

H
1-

n
or

m
of

er
ro

r

I
TC0

TC∗
TC1

3rd

(b)

Figure 7: a) L2 and b) H1-norm of the error in the numerical solution of the Poisson’s equation
plotted vs element size (≈ √Nr ∗Nθ) where Nr = Nθ = 8, 16, 32 and 64. The different polar
treatments considered have negligible difference on the numerical solution.

Rc = 0.5 and Zc = 0. The constant vector c = {−0.5, 0}T is chosen such that the initial
Gaussian bump advects towards the polar grid center R = Z = 0. The time step is specified by
the Courant number (CC):

∆tn = CC

min
e
he

√
c · c

where he is an estimate for the element size. To estimate he approximately, we assume that
each element e is formed by linear edges and he is taken as the minimum of lengths of two
line segments formed by joining midpoints of the linear edges of e. Streamwise Upwind/Petrov-
Galerkin stabilization term [28] is added for the numerical stability purposes with the coefficient
that is dependent upon the characteristic grid size he such that the amount of the stabilization
goes to zero as he → 0.

Figure (8) shows the evolution of the L2-norm of the error in the numerical solution of the
advection equation computed using explicit Euler’s method, with different grids and different
polar treatments applied at the polar grid center. Top, middle and bottom rows in Figure (8)
show L2-norm of the error computed on the grids with Nr = Nθ = 16, 32 and 64 respectively,
while left and right columns denote the computations with CC = 0.2 and 0.1 respectively. With-
out any polar treatment, the simulations blow up at polar grid centers after very few time steps
and L2-norm of the errors becomes unbounded. The application of C0 polar treatment improves
the numerical results at polar grid centers and the errors obtained are bounded for the interval
over which simulations are performed. However the simulation with C0 polar treatment on the
finest grid used and CC = 0.2 blows up after a few time steps due to the numerical instability
at the polar grid center. This suggests that grid refinement is not always beneficial when using
C0 treatment. The intermediate polar treatment gives almost identical numerical results to that
obtained with C1 treatment on all grids used here. The linear advection equation is also solved
numerically with the implicit Crank-Nicolson method on the series of grids mentioned above. In
this case, each polar treatment gives bounded numerical solution even at CC = 10.

Figure (9) shows the visualizations of the numerical solution computed on the grid with
Nr = Nθ = 32, using two different time integration methods and C1 polar treatment plotted at
approximately the same time instant t ≈ 1.3921. The solution with the explicit Euler’s method
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Figure 8: Evolution of the L2-norm of the error in the numerical solution of the linear advection
equation computed using explicit Euler’s time integration method. First and second column
shows the errors computed using CC = 0.2 and 0.1 respectively while the first, second and third
row shows the simulation on the grids with Nr = Nθ = 16, 32 and 64 respectively.

is computed with CC = 0.05 while the solution with the Crank-Nicolson method is computed
with CC = 1.25. In both simulations, the Gaussian bump crosses the polar grid center without
showing any sign of numerical instabilities. While the explicit Euler method requires smaller
time steps to obtain the stable solution at t ≈ 1.3921, the Crank-Nicolson method gives the
stable solution even with CC=10 (not shown here).

This numerical test with a linear hyperbolic equation suggests that the stability limit at
the polar grid center is restrictive for the explicit time integration methods while the implicit
methods stabilize the numerical instabilities at the polar grid center.

4.2 MHD instabilities

Finally, we present the numerical tests on MHD equations performed in the computational set-
up of JOREK. Fourier representation is used to discretize the MHD equations in the periodic φ
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(a) (b) (c)

Figure 9: a) The initial condition for the numerical solution of the linear advection equation on
the polar grid with Nr = Nθ = 32. The numerical solution computed with C1 polar treatment
plotted at t ≈ 1.3921 using b) explicit Euler’s method with CC = 0.05 and c) Crank-Nicolson’s
method with CC = 1.25.

direction and n denotes the harmonics in the toroidal direction. In the plane perpendicular to
the φ direction, called the poloidal plane, the bi-cubic Hermite Bézier FEM is used. Second-order
backward difference (Gear’s) method [29] is used for the time integration.

In tokamak applications, the investigation of the MHD instabilities is of major interest. The
initial condition is chosen as the equilibrium configuration for the ideal MHD equations which is
then perturbed by small numbers to evolve the MHD equations in time. The MHD instabilities
are mainly of two kinds: current driven and pressure-driven (see ‘The Energy Principle’ section
in Chapter 8 of [30]). The internal kink and tearing modes are examples of current-driven
instabilities and they grow around a rational q surface, where q denotes the safety factor of the
plasma. Ballooning modes are an example of pressure-driven instabilities and they grow near the
location of high-pressure gradients. These instabilities are often investigated for the validation
and benchmark of a physical and numerical model for MHD simulation. The growth rates of the
magnetic and kinetic energies are often used to quantify these MHD instabilities. In a typical
linear run, n = 0 mode is kept constant in time and a single n 6= 0 is evolved in time. The
growth rates are computed during the time interval in which the magnetic and kinetic energies
of the perturbations grow exponentially. On the polar grids, however, numerical instabilities may
develop at the grid center that can lead to the wrong estimations of the growth rates. In this
subsection, we present the linear simulations of the tearing and ballooning modes to highlight
the effect of numerical noise at the polar grid center on the estimations of the growth rates. We
choose the so-called full MHD equations as the physical model.

Full MHD model

The full MHD model was first implemented and validated for simple geometries in [26] and then
it was extended and benchmarked for the realistic geometries in [18]. The visco-resistive full
MHD model is written as the system of PDEs for the magnetic vector potential (A), plasma
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velocity (v), density (ρ) and pressure (p) as:

∂A

∂t
− v ×B = −η(J − Sj)

ρ
∂v

∂t
+ ρv · ∇v +∇p− J ×B = µ∇2v − Γρv

∂ρ

∂t
+∇ · (ρv) = ∇ · (Dρ) + Sρ

∂p

∂t
+ v · ∇p+ γp∇ · v = ∇ · (KT ) + ST

where B denotes the magnetic field and the current is given by J = ∇×B. The scalar quantities
η and µ denote the resistivity and viscosity respectively. The tensors D and K denote the
anisotropic modeling of the particle diffusion and thermal conductivity respectively. The terms
Sj , Sρ and ST denote sources while the term Γρ appears due to the non-conservative form of the
momentum equation. The ratio of specific heats γ is chosen as 5/3 for a monoatomic gas. Weyl’s
gauge [26] is used while writing the induction equation for A. The absence of the permeability
of the free space µ0 from the MHD equations is due to the choice of the normalization [1]. The
cylindrical (or toroidal) coordinate system is used to write the physical equations where any
vector is written in the orthogonal cylindrical basis as: v = vReR + vZeZ + vφeφ.

Initial and boundary conditions

The plasma equilibrium is given by the steady and stationary ideal MHD equations. For an
axisymmetric MHD equilibrium the magnetic field is defined as B = ∇×A+F (ψ)∇φ such that
Gauss’s law is satisfied exactly. Here, F (ψ) is an axisymmetric equilibrium function of ψ and
does not evolve in time. The Grad-Shafranov equation governs the equilibrium for stationary,
axisymmetric, ideal MHD equations in terms of ψ and is written as:

R2∇ ·
(

1

R2
∇ψ
)

= −F dF
dψ
− dp

dψ

This is a nonlinear elliptic PDE and its solution requires the boundary data and the profiles F (ψ)
and p(ψ). Usually this data comes from experiments. For the numerical test cases presented
below the required data is taken from [18].

For the numerical tests considered here for the simple geometries, we impose Dirichlet bound-
ary conditions on the variables at the boundaries.

4.2.1 Linear simulations

In the linear simulations presented below the magnetic energies En in the Fourier modes n > 0
are expected to grow in time exponentially at a constant rate. At each time step, these energies
are computed as 1

2

∫
1
µ0
Bn · Bn dΩ where Bn denotes the amplitude of nth harmonic of the

magnetic field and µ0 denotes the vacuum permeability. The growth rates in En are computed
using the second order finite difference formula applied in time.

Tearing modes

Tearing modes are resistive, current-driven modes that grow around a rational surface. In [18]
the full MHD model was used to simulate the tearing modes and it was shown that the growth
rates converge with the expected order of the accuracy as the entire grid is refined. Instead
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of refining the entire grid, here we investigate the effect of the different polar treatments by
clustering the polar grids near the grid center.

This test considers a circular plasma with a major radius of 10 m and a plasma radius of 1
m. As the first step in each simulation, GSE is computed on each polar grid to obtain the initial
conditions. The required profiles for the equilibrium flux function are chosen as:

F (ψ)2 = F 2
0 + 4(ψe − ψ0)(ψ̄ − 0.35ψ̄2) with ψ̄ =

ψ − ψ0

ψe − ψ0

where F0 = 19.45, ψ0 and ψe are the flux values at the magnetic axis and the plasma edge
respectively while ψ̄ is the normalized flux such that ψ̄ is scaled to zero at the magnetic axis
(which is also the polar grid center) and unity at the plasma boundaries. The pressure profile is
specified by using the density and temperature profiles as:

ρ

ρ0
= 1− 0.9ψ̄,

T

T0
= 1− 0.8ψ̄

where ρ0 and T0 are the values of plasma density and temperature at the magnetic axis. We
choose ρ0 = 3.34 × 10−7 kg.m−3 and T0 = 2.49 × 105 K. It is observed that irrespective of the
polar treatment used the iterative solver to solve the GSE converge with the same number of
iterations. The numerical solutions obtained with the different polar treatments have insignificant
differences and this observation is consistent with the numerical tests on the elliptic (Poisson’s)
equation.

In the next step of each simulation, the polar grids are aligned to the magnetic flux surfaces
and the resulting grids are isomorphic to the polar grids with Nr = 101 and Nθ = 70. Starting
from the numerical solution of the GSE, we evolve full MHD equations by adding small pertur-
bations in n = 1 mode and by keeping n = 0 mode constant in time. Gear’s method is used for
the time integration with the time step of ∆t ≈ 1.2967×10−4 s. Tearing mode instabilities grow
around a rational surface q = 2 which is located around the radius ≈ 0.5 m. The resistivity is
set to η = 1.9382× 10−6 Ω.m while the viscosity, particle, and heat diffusivities are set to zero.

(a) Grid 0 (b) Grid 1 (c) Grid 2 (d) Grid 3

Figure 10: The series of grids used for tearing mode simulations with Nr = 101 and Nθ = 70
with different distribution of the grid points near the polar grid center. Grid 0, 1, 2 and 3 are
obtained by the clustering of the grid points at the grid center by using the clustering parameter
σ1 = 999, 0.2, 0.1 and 0.08 respectively .

The full MHD simulations are performed on the series of polar grids in which Nr and Nθ are
kept the same but the clustering of the grid points is altered near the polar grid center as shown
in Figure (10). JOREK allows the construction of non-equidistant grids with the possibility
of clustering grid points at user-defined positions. In the parametric space, a normalized unit
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domain (s) is discretized such that the distribution of the grid points is given by:

D(s) =

s∫
0

g(ζ) dζ

1∫
0

g(ζ) dζ

(25)

where g(ζ) is a Gaussian function specified as:

g(ζ) = 0.6 + 1.59576

[
1

σ1
exp

(−0.5(ζ − ζ1)2

σ2
1

)
+

1

σ2
exp

(−0.5(ζ − ζ2)2

σ2
2

)]
(26)

User-defined parameters ζ1 and ζ2 are used to specify two different locations around which the
grid points are to be clustered whereas σ1 and σ2 are used to control the clustering at those
locations. The location of polar grid center is identified by ζ1 = 0 while the choice of parameter
σ1 = 999, 0.2, 0.1 and 0.08 gives Grid 0, 1, 2 and 3 respectively (shown in Figure (10)). An
arbitrary high number σ1 = σ2 = 999 is entered not to cluster the grid points whereas reducing
σ1 or σ2 increases the grid point density at the respective locations ζ1 and ζ2.

The growth rates of the magnetic energies obtained with each grid and different polar treat-
ments are shown in Table (1). Without any polar treatment and with C0 treatment, the numerical
solution contains the numerical noise at the grid center and steady growth rates are not obtained.
In Figure (11a) the snapshot of the numerical solution obtained using C0 treatment is shown
where the tearing mode instability structures are seen along with the small region near the grid
center with the numerical noise. It contributes to the computation of the growth rates and leads
to wrong values. For Grid 0, the intermediate and C1 polar treatment also show numerical noise
at the grid center and the growth rates estimated are wrong. As the grid is refined near the
polar grid center, clean numerical solutions are obtained and the converged values of the growth
rates are obtained (see Table (1)). In Figure (11b), the numerical solutions obtained with Grid
3 are shown and it can be seen that the solution obtained is clean.

Refinement I TC0 TC∗ TC1

Grid 0 – – 222.54292969955 378.150973378987
Grid 1 – 960.817436300821 215.82983095811 215.826140415818
Grid 2 – 829.437061663274 215.82867928311 215.835691745327
Grid 3 – – 215.83175751125 215.832876025665

Table 1: Growth rates of the magnetic energies (E1) of the tearing modes obtained on a series
of polar grids with Nr = 101 and Nθ = 70 shown in Figure (10) and different polar treatments.

To further illustrate the effect of the polar treatments, we show in Figure (12) the comparison
between the evolution of the magnetic energies obtained with C0 and C1 polar treatments.
At initial times, there is no significant difference in the two curves as the numerical solution
is dominated by physical instability. Figure (13a) shows the lineout plots of AR taken at the
horizontal diameter at t ≈ 6.48 ms and the development of the tearing mode instability structures
are seen at R ≈ 9.5 and 10.5. The numerical noise seen at the grid axis R ≈ 10 m is orders
of magnitude lower than instability structures. Later in time, the numerical noise at the grid
center with C0 polar treatment grows faster than the tearing mode instability and dominates
the physical instability. This leads to the wrong estimates of the growth rates of the magnetic
energies which is seen in Figure (12) after t ≈ 25 ms. This is also evident from Figure (13b)-(13c)
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(a) (b)

Figure 11: Zoomed view of R-component of the magnetic vector potential AR (n = 1) at t ≈ 32.42
ms obtained on Grid 3 from Figure (10) with a) C0 and b) C1 polar treatment at the polar grid
center. The former treatment yields unphysical noise at the grid center which contributes the to
the wrong estimations of the growth rates.

where the lineout plots of AR are shown at t ≈ 25.92 and 32.48 ms and the noise at the grid
center with C0 polar treatment is seen to dominate the tearing mode instability structures. With
C1 polar treatment however the numerical noise seen at the grid center is negligibly small as
compared to physical instability and remains bounded. The intermediate polar treatment gives
almost identical results to the C1 treatment and hence are not shown here in figures.

It should be noted that the physical instability structures are far from the grid center, roughly
at the radius 0.5 m and the structures at the polar grid center are only a numerical artifact.
The above numerical test demonstrates the strong effect of the polar treatments and grid point
clustering near the grid center. The comparison of the numerical results for the different polar
treatments suggests that the proposed C1 polar treatment improves the numerical properties at
the polar grid center and gives the clean numerical solution by removing the numerical noise
near the grid center.

Circular ballooning modes

Ballooning modes are pressure-driven modes and instabilities associated with them occur in the
region of high-pressure gradients, typically at the edge of the tokamak plasma. This test uses
circular plasma with the radius of the device being 3 m and the radius of a plasma 2 m.

We evolve the single harmonic n = 6 by keeping the n = 0 mode constant in time for
resistivity specified to η = 1.9382 × 10−6 Ω.m while the viscosity is set to zero. The particle
diffusion perpendicular to the magnetic field is set to 1.54 m2.s−1. The parallel and perpendicular
heat diffusivities are set to 0.516 and 5.16× 10−7 kg.m−1.s−1 respectively.

A series of polar grids is constructed with Nr = 51 and Nθ = 65 at the different levels of
refinement at the polar grid center by specifying the clustering parameter σ1 = 999, 0.2, 0.15
and 0.1 and are shown in Figure (14). Once again the test is designed to highlight the effect
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Figure 12: Evolution of the magnetic energy in n = 1 harmonic in the tearing mode simulation
performed on Grid 3. At initial times both treatments follow the growth of physical instabili-
ties. Later, the numerical instabilities are seen at the grid center with C0 polar treatment that
dominates the physical instabilities.
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Figure 13: Comparison of the lineout plots for the perturbations in AR along the horizontal
diameter of the polar grid obtained using C0 and C1 polar treatments.

of the refinement at the grid center and the polar treatments. The computations are performed
for all the polar treatments under discussion and show no significant difference in the numerical
solution of the GSE which serves as the initial condition for the full MHD computations. Gear’s
method is used for the time integration with the time step of ∆t = 6.4836× 10−6 s to compute
the evolution of the circular ballooning modes. The results with no special polar treatment and
C0 treatment are dominated by the numerical noise at the grid center with all four grids and are
not shown here. Below we show the comparison between the intermediate and C1 treatments.

Figure (15a) shows the initial temperature profile used for the circular ballooning mode
simulations along with a polar grid while a constant density profile is used. The ballooning

22



(a) Grid 0 (b) Grid 1 (c) Grid 2 (d) Grid 3

Figure 14: The series of grids used for the circular ballooning mode simulations with Nr = 51
and Nθ = 65 with different distribution of the grid points near the polar grid center. Grid 0, 1, 2
and 3 are obtained by the clustering of the grid points at the grid center by using the clustering
parameter σ1 = 999, 0.2, 0.15 and 0.1 respectively .

mode instabilities are expected to occur around the gradient in the pressure. The grids are
aligned to the magnetic flux iso-surfaces and the grid center is located at the magnetic axis at
R ≈ 3.68 and Z = 0. Figure (15b) shows the comparison of the growth rates obtained on the
series of grids (see Figure (14)) using the intermediate and C1 polar treatments. It is seen that
C1 treatment converges faster than the intermediate polar treatment as the grid is refined at the
polar center. Using Grid 3 both treatments give nearly identical growth rates and clean numerical
solutions at the polar center. The data point for growth rate on Grid 2 with intermediate polar
treatment is taken from an initial small time interval over which the growth rate is constant.
At later times numerical noise at the polar center pollutes the numerical solution and growth
rates deviate from the shown value (similar to that with Figure (12) in the case of tearing modes
simulation). Using Grid 0 and 1 the intermediate treatment gives the solution dominated by the
numerical noise at the grid center.

In Figure (16) the perturbations in the magnetic flux ψ = RAφ computed on Grid 0 with the
intermediate and C1 polar treatments are plotted in the same scale and at t ≈ 1.29 ms. In both
figures, the ballooning mode structures are seen at the location of the pressure gradient. In Figure
(16a) however, the numerical noise is seen surrounding the grid center whose maximum value is
of the order 10−3. The numerical noise is seen to spread in the region surrounding the grid center
and has dominated the numerical solution. This leads to the wrong estimates of the growth rates.
Figure (16b) shows that C1 polar treatment gives clean numerical solution with Grid 0. As the
grid is refined at the polar center, the noise obtained with the intermediate treatment at the grid
center reduces and it gives nearly identical results to that with C1 treatment.

The intermediate treatment gives clean solutions if the grid is sufficiently resolved near the
grid center while C1 gives cleaner solutions on the relatively coarse grids near the grid center.
This numerical test highlights the improvement of the stability and accuracy of the numerical
method at the polar grid center due to the use of the proposed treatment.

4.2.2 Nonlinear simulations

In subsections above, we presented linear MHD simulations where locations of the physical insta-
bilities are far from the polar grid center. In this subsection, we present a nonlinear simulation
for internal kink modes where plasma undergoes a nonlinear saturation phase. The diffusivities
are chosen such that the cyclic dynamics of kink modes is seen in the nonlinear saturation phase
and dynamics occur across the grid center. The simulation is performed with C1 polar treatment
applied at the grid center.
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Figure 15: a) The initial temperature profile for circular ballooning modes plotted with the polar
grid. b) Growth rates plotted for circular ballooning modes n = 6 for the intermediate and C1

polar treatment for the different levels of the refinement at the polar grid center as shown in
Figure (14).

(a) (b)

Figure 16: Circular ballooning mode instability structures in the magnetic flux ψ = R Aφ for
n = 6 with the a) intermediate and b) C1 polar treatment obtained on the Grid 0 from Figure
(14).

Internal kink modes are resistive, current-driven modes that grow around a rational surface
q = 1. We consider a circular plasma with a major radius of 10 m and a plasma radius of 1 m.
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The required profiles for the GSE to compute the equilibrium are chosen as:

F (ψ)2 = F 2
0 + 4(ψe − ψ0)(ψ̄ − 0.35ψ̄2) with ψ̄ =

ψ − ψ0

ψe − ψ0

where F0 = 12. The pressure profile is specified by using the density and temperature profiles
as:

ρ

ρ0
= 1− 0.9ψ̄,

T

T0
= 1− 0.8ψ̄

We choose ρ0 = 3.34×10−7 kg.m−3 and T0 = 1.15×106 K. The polar grid aligned to the magnetic
flux surfaces is used with Nr = 60 and Nθ = 60 and C1 treatment is applied at the grid center.
Starting from the numerical solution of the GSE, we evolve full MHD equations by adding small
perturbations in n = 1, 2, 3 modes and using Gear’s method for the time integration. For this
configuration, the rational surface q = 1 is located at the radial location ζ2 = 0.42 where the grid
is locally refined by specifying the refinement parameter σ2 = 0.1 to resolve the kink instability
structures. The grid is refined at the polar grid center ζ1 = 0 as well by specifying σ1 = 0.1.

0 10 20 30
t [ms]

10 26

10 23

10 20

10 17

10 14

10 11

10 8

10 5

M
ag

ne
tic

 e
ne

rg
ie

s 
[J

]

n=1
n=2
n=3

Figure 17: Evolution of the magnetic energies for n > 0 in the nonlinear kink mode simulation.
After exponential growth, the modes undergo cyclic kink dynamics in nonlinear saturation phase.

The constant value of resistivity is set to η = 1.9382 × 10−5 Ω.m while the viscosity is set
to µ = 5.16 × 10−6 kg.m−1.s−1. The particle diffusion perpendicular to the magnetic field is
set to 0.15 m2.s−1. The perpendicular heat diffusivity is set to 5.16 × 10−7 kg.m−1.s−1 while
parallel heat diffusivity is set to zero. Figure (17) shows the evolution of magnetic energies in
n > 0 modes for the nonlinear simulation plotted in semi-log scale. Until t ≈ 15 ms we can see
the exponential growth in the magnetic energies in n > 0 modes. In this phase, as expected,
n > 0 modes grow exponentially such that the dynamics is always dominated by lower modes.
Figure (18) shows snapshots of the magnetic flux ψ at some time instants. At beginning of the
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saturation phase, the profile of ψ begins to deform as seen in Figure (18b). Beyond this point
nonlinearities become dominant and the plasma exhibits cyclic kink dynamics as seen in Figure
(17) beyond t ≈ 15 ms. Figure (18c) shows ψ field plotted in the saturation phase at t ≈ 22.25
ms showing the variations in the numerical solution at the polar grid center. The C1 polar
treatment applied here does not show any sign of instability or numerical noise at the polar grid
center and the simulation continues for a long time.

(a) t = 0 ms (b) t = 14.61 ms (c) t = 22.25 ms

Figure 18: Snapshots of ψ field shown at the mentioned time instants from nonlinear internal
kink simulation performed using C1 polar treatment. The numerical solution exhibits a motion
across the polar grid center and no sign of the numerical instability is seen at the polar grid
center.
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5 Summary and Conclusions

Grid generation is an important step in computational applications. Grids decide the numerical
properties, such as the stability and accuracy, of the numerical methods for a problem to be
solved. It is well known that grids should be constructed in a manner such that there are no
sudden variations in the numerical properties of the discretization methods. In this work, we
have investigated the applications of the bi-cubic Hermite Bézier FEM on the polar grids. At the
polar grid center, the bi-cubic Hermite Bézier FEM is not well defined. The numerical properties
of the FEM degrade and lead to the sudden variation at the polar grid center as compared to the
surrounding vertices. Evidently, the bi-cubic Hermite Bézier FEM leads to spurious oscillations
at the polar grid center, especially in absence of any stabilization mechanism. Some of the crude
polar treatments have been used so far to enforce C0 regularity at the grid center however, the
polar grid center remains susceptible to numerical difficulties.

In this work, we have developed a mathematically consistent numerical treatment to enforce
C1 regularity at the polar grid center for the bi-cubic Hermite-Bézier FEM in the isoparametric
framework. The proposed treatment involves the application of the new basis functions at the
grid center which are simply the linear transformation of the original basis functions and its
implementation is straightforward. The treatment also preserves the accuracy of the interpolation
at the polar grid center. With the help of a range of numerical tests, it is demonstrated that the
proposed treatment improves the numerical properties of the bi-cubic Hermite Bézier FEM at the
polar grid center. In presence of numerical or physical stabilization mechanisms, however, the
polar grid center is found to be ‘well behaved’ even with the crude ways of polar treatments. The
role of the proposed polar treatment to correctly and optimally simulate the MHD instabilities is
highlighted. The proposed treatment is valid for any isomorphic polar grid with the isoparametric
bi-cubic Hermite Bézier FEM as well as the classical cubic Hemite FEM, where latter is a special
case of the former. The treatment has been implemented in the computational setup of the code
JOREK and can be helpful in the simulations of MHD flows on the polar grids.

The bi-cubic Hermite Bézier FEM guarantees C1 regularity across the elements when one
vertex is shared by four elements. In certain situations, a vertex may be shared by more than
four elements where many blocks of a grid are patched together. This is particularly the case
in the grid aligned to the magnetic flux iso-surfaces when the plasma equilibrium has a saddle
point, also known as X-point, at which a vertex is shared by eight elements. At such locations,
bi-cubic Hermite Bézier FEM is not well defined. The approach used in this work for the singular
polar grid center can be extended to other such singular points where the gradients and second
derivatives in the physical space can be used as a new set of variables. The approach can also be
extended to the recently implemented higher-order extensions of the Hermite Bézier FEM [21].
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