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Abstract—Nowadays, to improve animal well-being in livestock
farming applications, a wireless video sensor network (WVSN)
can be deployed for surveillance and livestock monitoring to early
detect injury or Asiatic hornets attacks [1]. They are composed
of small embedded video and camera motes that capture video
frames periodically and send them to a specific node called a
sink. Sending all the captured images to the sink consumes a
lot of energy on every sensor and may cause a bottleneck at the
sink level. Energy consumption and bandwidth limitation are two
important challenges in WVSNs because of the limited energy of
nodes and the medium scarcity.

In this work, we exploit the Spatio-temporal correlation
between neighboring nodes to reduce the number of captured
frames. For that purpose, Synchronization with Frame Rate
Adaptation SFRA algorithm is introduced where overlapping
nodes capture frames in a synchronized fashion every N − 1
period, where N is the number of overlapping sensor nodes. The
results show more than 90% data reduction, surpassing other
techniques in the literature at the level of the number of sensed
frames by 20% at least.

Index Terms—data reduction, synchronization, overlapping
sensor nodes, event detection, WVSN.

I. INTRODUCTION

Nowadays, the smart agriculture domain faces a lot of
challenges for better usage of its natural resources. However,
the agriculture domain includes livestock farming. Understand-
ing the wild animals’ behavior would facilitate the means of
protection of cattle in places beyond man’s control. For that,
wireless video sensor networks (WVSNs) are deployed in a
remote site to monitor livestock that is exposed to threats from
wild animals like jackals in South Africa. WVSNs process
in real-time and retrieve multimedia data periodically to be
sent to a sink. They represent a low-cost monitoring solution
and are considered an important part of the surveillance field
systems, where they are taking great attention to livestock
monitoring [2]. Different architectures have been studied in
the literature. Figure 1 represents the general architecture of a
wireless sensor network, where the nodes capture frames from
videos with a given frequency (frame rate) and wirelessly send
them to the sink.

In a WVSN system, limited energy resources nodes capture
frames periodically. This periodic cycle leads to a lot of redun-
dant data sent to the sink if no changes occur in the monitored
zone of interest, especially when dealing with multimedia
data that consumes a lot of energy. Maximization of system

Fig. 1: General architecture of a wireless sensor network

lifetime and energy conservation is commonly recognized as
a key challenge in the design and implementation of wireless
video sensor networks. So, the main target is to reduce the
energy consumption related to the sensing process, and the
transmission phase at the sensor node level.

As an example, let us assume that a frame is captured
once each second. When the shooting time is 12h/day and
the frame size is 1920 × 1080, the total amount of captured
frames per month is approximately 1800 GB (1.8 TB). If we
capture frames from different sensor nodes, the amount of data
will escalate exponentially as the number of deployed sensors
increases. Moreover, network energy consumption gets highly
stressed by the transmission of a huge amount of redundant
and unnecessary data [3].

Therefore, a method that can minimize the amount of sensed
data at the sensor-node level and transmitted data is required.
Thus, to achieve data reduction on each sensor node in the
overall system, there are three main phases to be studied: The
sensing phase, processing techniques, and the transmission
phase. The main focus of our work is to reduce redundant
data between neighboring nodes.

Neighboring nodes are defined by their field of view (FoV).
Overlapping FoVs in dense networks causes wasting power of
the system because of redundant sensing of area [2]. Figure
2 represents three neighboring sensor-nodes that have over-
lapping FoV. To achieve data reduction between overlapping
sensors, we proposed a Synchronization with Frame Rate
Adaptation (SFRA) algorithm. The main aim of the proposed



Fig. 2: Overlapping wireless video sensor nodes

synchronization method is energy conservation and prolonging
network lifetime while preserving all needed information.

After having all overlapping sensor nodes detected in a
stable state from the FRABID algorithm in [1] (a stable state
is defined when no motion is detected), the nodes will start
synchronization. Each node will capture frames in a different
time slot from its overlapping nodes with the minimum frame
rate.

The addition of the SFRA algorithm to other approaches
presented in the literature for overlapping sensor nodes is the
synchronization fashion, which reduces the number of sensed
frames while still preserving almost the needed information.
This method has shown more than 90% reduction of data
compared to other methods. In SFRA algorithm, we are
concerned with data reduction at the sensor-node level which
affects proportionally energy consumption and bandwidth lim-
itation. The remainder of this paper is structured as follows:
Section 2 presents a general review of previous contributions
presented in the literature. Section 3 describes the system
model and presents some assumptions. Section 4 presents the
main contribution about the overlapping sensor nodes, then
Section 5 presents and discuss the results. Finally conclusions
are drawn in Section 6 with perspective on future work.

II. RELATED WORK

Different techniques and research work have been proposed
in the literature to reduce energy consumption and data re-
dundancy in Wireless Video Sensor Networks (WVSNs). In
this section, we will browse some of these approaches while
focusing on the data reduction between overlapping sensor-
nodes at the application level.

Several research work for energy reduction has been pro-
posed to decrease data redundancy: Scheduling methods [2],
[4], [5], Data aggregation [6], Geometrical criteria [7]–[9],
prediction techniques [10], frame rate adaptation [11]–[13].

To reduce the redundancy of captured data, the overlapping
field of views (FoVs) of sensor nodes is exploited to achieve
data reduction. Nodes can considerably prevent wasting power
avoiding redundant sensing, processing or sending similar
multimedia data. Thus, it prolongs network lifetime partic-
ularly in dense networks that are usually deployed with a
high number of low power, low resolution and inexpensive

multimedia nodes in random manner [2]. Several approaches
tried to solve the issue of data redundancy by taking into
consideration overlapping sensor-nodes. The authors in [11],
[12] used geometrical conditions to detect overlapping sensors.
After detecting the overlapping sensor-nodes, the authors in
[11] defined a stable situation, where no motion is detected in
the monitored zone. In the stable situation, the node with less
residual energy will decrease its frame rate to its minimum,
while the other overlapping sensor-node will continue sensing
with its initial frame rate. This approach [11] outperforms
the algorithm in [14] where in every period, the video shots
are compared using a similarity process, and if the two shots
surpasses a predefined threshold then one of the sensor-nodes
will send the frame.In [15] Priyadarshini et al. investigated the
overlapping method, which reduces redundancies by turning
off certain cameras and activating the appropriate number of
cameras based on the overlapping FOVs (field of view) of
various cameras.

Based on the different approaches mentioned above, our
contribution presents a synchronization method (SFRA al-
gorithm) that achieves data reduction between overlapping
sensor nodes that reduces redundancy. Before describing the
approach, we introduce the general scenario and conditions
needed to achieve our technique.

III. ASSUMPTIONS AND SYSTEM MODEL

In our scenario, the wireless video sensor network (WVSN)
is composed of two different kinds of nodes: the video sensor
nodes and the sink node as shown in Fig 3. In this system
model, frames are captured periodically and sent directly to
the sink. At the very beginning of the sensing, the initial frame
rate is set to its maximum (FRmax = FRinit), then after the
activation of our data reduction algorithm, a new frame rate
(NFRi ) is dynamically computed at every period ∆ti.

Fig. 3: System Model Architecture

We assume that a wireless video sensor network is homo-
geneous, where all sensors have the same storage, processing,
battery power, sensing, and communication capabilities. In this
system model and in a normal situation, all nodes will have



the same battery power over time (since they are capturing
with the same frame rate). The sensor nodes are deployed
outdoors, and they are battery devices. Battery depletion has
been identified as one of the primary causes of lifetime
limitation of these networks [16]. Replacing them regularly
is impractical in large networks or may even be impossible in
hostile environments [16].

The nodes are prone to failure for any internal or external
reasons or die of the battery however stop functioning. By the
time, after applying any algorithm that may put some nodes
into sleep mode, or power-saving mode, we will get a group
of sensor nodes with different battery power percentages.
Suppose nodes x, y and z are homogeneous, and node x is
in power saving mode, then basically its battery lifetime will
last more than y and z. These variations and variables will
help in the identification of our approaches in the upcoming
sections.

IV. DATA REDUCTION IN OVERLAPPING SENSOR-NODES

In previous work in [1], we were interested in reducing
the amount of sensed and sent frames from each node to
the sink by applying FRABID algorithm at the sensor node
itself. In this algorithm, We address the energy and bandwidth
reduction by reducing the number of frames first captured and
then sent over the air in two steps: 1) it adapts the rate at
which the frames are captured, and 2) it selects among the
captured frames the pertinent to send. To furthermore reduce
the data transmission, we now focus on the spatial correlation
between neighboring sensor nodes to reduce the redundant
sensed frames between overlapping sensor-nodes by applying
a new approach based on synchronization.

Before describing the Synchronization with Frame Rate
Adaptation (SFRA) approach, we introduce the video sensing
model and the characteristics of every video sensor node to
proceed with the SFRA algorithm.

A. Video Sensing Model

We consider a 2-D model of a video sensor node where z =
0 (XOY plane) and all the captured frames are compared as
2-D images not taking into account of the third dimension. A
video sensor node S is represented by the Field of View (FoV)
of its camera. A FoV covers only a part of the surrounding
area of a video sensor. A FoV is a vector of 4-tuple S(P;Rs;−→
V ;θ) where P is the position of S, Rs is its sensing range,−→
V is the vector representing the line of sight of the camera’s
FoV e.g. its sensing direction, and θ is the offset angle of the
FoV as shown in Figure 4.

As mentioned before, we assume that all video sensor-nodes
are identical with fixed lenses providing a θ angle FoV thus
same sensing range Rs , densely deployed in a random manner.
Each node Si covers a sector area in its FoV. We define USi

the set of sensors that have intersecting coverage zone (FoV).

B. The Overlapping Method and Coverage

As mentioned above, in our topology sensor nodes are
deployed randomly. This may increase the spatial correlation

Fig. 4: Video sensor node behaviour during period ∆ti

between neighbouring sensor nodes, so the sensing range of
two or more sensor-nodes may overlap (Figure 5). In such
a scenario, the sensors capture typically redundant data of a
given target since the same event may be captured by multiple
sensors. Several approaches studied how to detect overlapping
sensor-nodes [2], [11], [12], [14]. In our work we will consider
that the overlapping nodes are already detected using the
geometric condition method presented in [11].

Fig. 5: FoV Coverage [4]

Suppose the video sensors S1, S2 and S3 are overlapping
sensor nodes with a stable state and are selected to run the
synchronization with frame rate adaptation algorithm (SFRA)
as explained in the next section.

C. SFRA Algorithm
The idea behind synchronization is to reduce the number

of sensed frames while preserving all needed information.
As mentioned earlier, synchronization phase starts when all
overlapping sensor nodes (Usi) are in a stable state. Inspired
from [11], a stable situation is a state where the sensor node is
not capturing new information. Using the equations from [1]
the sensor will compute the similarity between the captured
frames. If two consecutive sensed frames are estimated as sim-
ilar (no new information is represented in the second frame),



the node does not send the second frame to the coordinator.
The node counts the number of consecutive similar frames,
if it surpasses nb (the required number of consecutive similar
frames), the state of the area of interest monitored by the node
is considered as stable (situation=1).
To activate the SFRA algorithm, each node should know:

• The set of overlapping nodes (Usi ) with its FoV
• The state of each node that belongs to Usi

When all overlapping nodes that belong to Usi are in a
stable state (situation = 1), they will set their frame rate to its
minimum (FRmin) and synchronize capturing frames between
each other as illustrated in Figure 6.

One of the main challenges in SFRA algorithm is to
guarantee that the nodes are well synchronized. We assume
that the system is well synchronized, where the clock drift
which is the result of the clock skew (the difference between
the two clocks frequency [17]) is approximately negligible.
The capturing phenomenon will be as follows:
In each period one sensor node that belongs to Usi will be
capturing frames with (FRmin). The other nodes will be in a
sleep mode. So, each node will sense at period ∆i then sleeps
for N − 1 periods, where N is the number of sensor nodes
that belongs to Usi .

Fig. 6: Synchronization behavior

Each captured frame will be compared with the last sent
frame to the sink (Flast), based on L1 norm. If the difference
surpasses a predefined threshold thdiff , the sensor-node will
return to its normal state with frame rate FRmax and will
notify the other nodes that belongs to Usi to deactivate SFRA
algorithm, since the new captured frame represents a new event
as explained in algorithm 1.

V. RESULTS

In this section, we present the results that validate our
approach and compare them to the INS algorithm in [11].
We implement the algorithms (SFRA and INS) using Python
Imaging Library (PIL) that has light image processing tools.
First we used the function from PIL imaging library in Python
for image comparison to generate imagediff , the difference
image between frames F0 and F1.

We made our simulations on a data-set named ToCaDa
[18], contains two sets of 25 temporally synchronized videos

Algorithm 1 SFRA run at node S1

1: Get situation2 and situation3

2: Get Flast the last sent frame to the sink
3: Set N the number of overlapping nodes
4: while situation1 = 1 and situation2 = 1 and

situation3 = 1 do
5: FRS1 = 1 fps
6: sleep (N - 1)
7: Capture frame F0

8: Generate imgdiff between F0 and Flast

9: Compute per with equation from [1]
10: if per > thdiff then
11: Stop synchronization phase
12: Set FRS1 = FRmax

13: Notify all overlapping nodes
14: Send imgdiff to the sink
15: end if
16: end while

corresponding to two scripted scenarios. 25 cameras were
scattered around the university campus of Universite Paul
Sabatier in Toulouse. 8 among the cameras were located in
front of the building and filmed it with large overlapping fields
of view as it can be seen in the figure 7. Cameras C4, C5 and
C7 are selected for our simulation to test SFRA algorithm.

The initial frame rate to capture the video is set to 30 frames
per second (FRinit = 30 fps) which is the maximum frame
rate (FRmax = FRinit = 30), and the minimum frame rate
is set to 1 frame per second (FRmin = 1 fps) for each
camera. Each period is ∆t = 1s, and initial frame rate is
equal to FRinit = 30 frames per second. The threshold to
detect critical frames is set to thdiff = 1.3%. The aim is
to reduce the number of captured frames in a stable state by
reducing the frame rate and applying synchronization between
the overlapping nodes.

Fig. 7: Scenario



A. Data Reduction: Sensing Phase

The selected videos are capturing for 10204 periods. Table
I presents the initial recorded data in a normal state of the
three cameras C4, C5 and C7 when no reduction algorithm is
activated, where Initial Event Detected represents the number
of the frame where the intrusion is detected.
A stable state is detected at the following time intervals:
C4: 20s from 900 to 1512
C5: 20s from 900 to 1500
C7: 21s from 900 to 1540

C5 first detected the event at frame number 1500, then C4
at frame number 1512, and for C7 the event appears at period
51 at frame number 1540.
A stable state is defined after having 60 consecutive similar
frames (nb = 60) which means 2 seconds of stability. The
thresholds and all the parameters can be adapted according to
the application and the QoS required.

The SFRA algorithm is activated after satisfying the condi-
tions explained in IV-C. Synchronization starts at period 33
(frame number 990), since the first 3sec are dedicated to
detect the stable state and exchange information needed to
start synchronization. So, SFRA algorithm is tested on the
three overlapping cameras (C4, C5 and C7) in the stable state
from period 30 to 50. There are different ways to start the
synchronization depending on the selected order for the nodes
to capture frames. For that, we made different simulations
taking into consideration the different order possibilities of
camera sensor-nodes to achieve the synchronization phase and
observe the results at different conditions.

TABLE I: Data-set Records for overlapping cameras C4,C5
and C7 before activating any algorithm

Total Captured Frames Initial Event Detected
Camera 4 612 1512
Camera 5 600 1500
Camera 7 640 1540

TABLE II: Scenario 1: C4,C5 and C7 respectively

Sensed First Frame Detected
C4 8 1531
C5 8 1561
C7 8 1591

TABLE III: Scenario 1: C5,C4 and C7 respectively

Sensed First Frame Detected
C4 8 1561
C5 8 1531
C7 8 1591

After activating the SFRA algorithm, the results presented
in tables II, III, IV and V show a reduction of 98% of the
captured frames in a stable state. The simulations show the

TABLE IV: Scenario 2: C7,C5 and C4 respectively

Sensed First Frame Detected
C4 12 1861
C5 8 1561
C7 9 1621

TABLE V: Scenario 3: C4,C7 and C5 respectively

Sensed First Frame Detected
C4 8 1531
C5 7 1500
C7 8 1591

different scenarios of capturing frames which is based on the
order of cameras selected to start synchronization.

Table III shows the results of the number of captured frames
by the overlapping nodes, where C5 was first selected to start
synchronization then C4 and C7 respectively. C5 first detected
the new event at period 51 (frame number 1531). The impact
of synchronization delayed the detection of the intrusion by
one period at maximum for all overlapping nodes (at period 52,
all the overlapping nodes will set their frame rate to FRmax

for each period returning to their initial state). While based on
the records of table IV, where the order of camera selection
is C7, C5 and C4 respectively shows that C5 first detected the
event at period 52, which is a delay of at most 2 periods from
detecting the event on time.

Table V presents the results of the best case which is
detecting the new event on time. As we can see C5 first
detected the event at period 50 (frame number 1500), which
is the first event captured by all the overlapping sensor nodes
as shown in table I. For that, the best case will be when the
synchronization technique selects C5 to be the last node to
capture.

B. Comparison

SFRA algorithm is compared to the INS algorithm in [11].
In INS algorithm one out of the selected overlapping nodes
that has more residual energy is selected to sense frames with
FRmax, and the other nodes will go to transmission idle mode
where the frame rate is set to its minimum (FRmin = 1 frame
per second).

The simulation is done in the stable state from period 33
to period 50 on the three selected overlapping cameras C4,
C5 and C7. We assume that C4 has more residual energy, so
for INS algorithm, C4 will capture frames with FRmax = 30
frame per second while C5 and C7 with FRmin = 1 frame
per second.

In INS we can guarantee the capture of the new event in
time, while in SFRA we may miss few frames due to the
impact of synchronization. The difference between those ap-
proaches in terms of data reduction is shown in Table VI. The
results show that SFRA algorithm outperforms INS algorithm
[11] in terms of sensing data reduction. INS achieved 65%



data reduction while SFRA 98%. So, SFRA algorithm added
33% more data reduction over INS algorithm.

TABLE VI: SFRA and INS comparison

Initial Captured Frames INS SFRA
C4 510 510 8
C5 510 17 8
C7 510 17 8

Total 1530 544 24

The overall power consumption reduction cannot be speci-
fied since there are different levels to be studied like the cost
of synchronization which is based on the mechanism used to
achieve this aim. The cost of using GPS, type of the used
hardware. Our main focus is on data reduction, which can be
achieved regardless of other constraints.

VI. CONCLUSION

In recent times, the interest in video surveillance and
environmental monitoring applications has increased. Energy
conservation and maximization of system lifetime are com-
monly recognized as a key challenge in the design and
implementation of WVSNs [2]. For this purpose, in our work,
we have designed an algorithm dedicated to data reduction
between overlapping nodes.

In our approach we exploit the condition of overlapping
sensor nodes by proposing the SFRA algorithm. When a
stable state is detected in the monitored area, the overlapping
nodes will decrease their frame rate to the minimum and
capture frames in a synchronized fashion. When one of the
overlapping nodes captures an event, all nodes must return to
their initial state with maximum frame rate. Simulations were
conducted on a real data set. The results showed a reduction
up to 75% in general. The selected order of nodes to achieve
synchronization will even lead to a best case, where the event
will be detected in time, or intrusion detection will be delayed
at maximum N periods which is considered the worst case.
The evaluation of the results depends on the criticality of the
use case. In our scenario, missing a few critical frames is not
considered a big loss, since the case is not delicate and the
nature of motion is not of high speed.

For future work, we will first combine this approach to our
approach on each node in [1]. Then, we will investigate the
impact of the different parameters such as the convergence
speed v of the new frame rate setting, the threshold value
thdiff above which an action is taken, and the value which
detects the stable state.
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