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QUANTITATIVE STABILITY OF BARYCENTERS

IN THE WASSERSTEIN SPACE

GUILLAUME CARLIER, ALEX DELALANDE, AND QUENTIN MÉRIGOT

Abstract. Wasserstein barycenters define averages of probability measures in a geometrically
meaningful way. Their use is increasingly popular in applied fields, such as image, geometry
or language processing. In these fields however, the probability measures of interest are
often not accessible in their entirety and the practitioner may have to deal with statistical
or computational approximations instead. In this article, we quantify the effect of such
approximations on the corresponding barycenters. We show that Wasserstein barycenters
depend in a Hölder-continuous way on their marginals under relatively mild assumptions. Our
proof relies on recent estimates that allow to quantify the strong convexity of the barycenter
functional. Consequences regarding the statistical estimation of Wasserstein barycenters
and the convergence of regularized Wasserstein barycenters towards their non-regularized
counterparts are explored.
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1. Introduction

Wasserstein barycenters are Fréchet means in Wasserstein spaces: they define averages of
families of probability measures that are consistent with the optimal transport geometry and
generalize to more than two measures the fundamental notion of displacement interpolation due
to McCann [28]. As such, they average out probability measures in a geometrically meaningful
way and appear as a relevant tool to interpolate or summarize measure data. This notion of
barycenter have indeed found many successful applications, for instance in image processing
[32], geometry processing [36], language processing [19, 14, 27], statistics [37] or machine
learning [15, 22]. We refer the readers to existing surveys [31, 29] for further applications. In
such applications however, the probability measures of interest are often not accessible in their
entirety. They may be accessible for instance only through noisy samples in a statistical context,
or they may be approximated in order to use existing computational methods that estimate
Wasserstein barycenters (see e.g. [12, 4, 15, 3]) while paying an affordable computational cost.
Thus, in addition to the computational error induced by the algorithm used to calculate the
barycenter, the practitioner may be subject to an extra statistical or approximation error
that corresponds to the approximation of the marginal measures of interest. While works
focusing on the computation of Wasserstein barycenters may now come with guarantees on
the first type of error (see e.g. [3]), very little is known on the second type of error, which
corresponds broadly speaking to a stability error since it quantifies the effect of a perturbation
of the marginals on the corresponding barycenters. In this work, we focus on this type of
error and show that the Wasserstein barycenter depends in an Hölder-continuous way on its
marginal measures under regularity assumptions on (some of) the latter. In the remainder of
this section, we define Wasserstein barycenters and the setting we focus on. We then show
that mild regularity assumptions are necessary in order to hope for any stability result. Next,
we give the dual formulation of the Wasserstein barycenter problem in our context, that is
necessary to present our main assumption. This assumption and our main result are then
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stated and we conclude this section by giving some immediate but useful consequences of our
main result.

1.1. Wasserstein barycenters. Introduced in [1] for finite families of probability measures
supported over a Euclidean space, the definition of Wasserstein barycenters have been extended
to infinite families of probability measures in [7, 30], possibly supported over a Riemannian
manifold in [23, 25]. In this work, we focus on families of probability measures supported over
a compact Euclidean domain. Let Ω = B(0, R) ⊂ Rd be the ball of Rd centered at zero and of
radius R > 0 and denote P(Ω) the set of Borel probability measures over Ω. We endow P(Ω)
with the 2-Wasserstein distance W2 defined for any ρ, µ ∈ P(Ω) by

W2(ρ, µ) =

(
min

γ∈Γ(ρ,µ)

∫
Ω×Ω

∥x− y∥2 dγ(x, y)
)1/2

,

where the minimum is taken over the set Γ(ρ, µ) of transport plans between ρ and µ. We equip
P(Ω) with the the topology induced by W2 (i.e. the weak topology) and denote P(P(Ω)) the
set of corresponding Borel probability measures over P(Ω). For a measure P ∈ P(P(Ω)), we
introduce its variance functional FP defined from P(Ω) to R by:

FP : µ 7→ 1

2

∫
P(Ω)

W2
2(ρ, µ)dP(ρ).

A Wasserstein barycenter of P ∈ P(P(Ω)) is then defined as a minimizer µP of the variance
functional FP:

µP ∈ arg min
µ∈P(Ω)

FP(µ).

Such a minimizer always exists, and it is uniquely defined whenever P(Pa.c.(Ω)) > 0, where
Pa.c.(Ω) denotes the set of probability measures over Ω that are absolutely continuous with
respect to the Lebesgue measure [23, 25].

1.2. Stability of Wasserstein barycenters. As mentioned above, the population of interest
P ∈ P(P(Ω)) may not always be accessible in practice, and one may have to deal with another
measure Q ∈ P(P(Ω)) instead. The stability question that then comes up is the following: can
we bound a distance between minimizers µP of FP and µQ of FQ in terms of a distance between
P and Q? While the above-defined 2-Wasserstein distance gives a natural metric to compare
µP and µQ, there remains to choose a metric in order to compare P and Q. For this, we will
use the following 1-Wasserstein distance over P(P(Ω)), defined for any P,Q in P(P(Ω)) by

W1(P,Q) = min
γ∈Γ(P,Q)

∫
P(Ω)×P(Ω)

W2(ρ, ρ̃)dγ(ρ, ρ̃).

This choice of distance is justified by the fact that Wasserstein distances are naturally defined
for probability measures on the compact metric space (P(Ω),W2) and that they allow to
compare measures that have incomparable support. The 1-Wasserstein distance being the
weakest of the Wasserstein distances, our bounds are ensured to be the sharpest in terms of
this optimal transport geometry. We are thus interested in bounding W2(µP, µQ) in terms of
W1(P,Q) for P,Q ∈ P(P(Ω)).

1.2.1. Consistency of Wasserstein barycenters. Before looking for any quantitative stability
result, one may first wonder if the Wasserstein barycenters depend at least in a continuous
way on their marginals. This question, framed under the notion of consistency of Wasserstein
barycenters, has been answered positively in [7, 8] in some specific settings and in [25] in the
most general setting. Theorem 3 of [25] ensures in particular the following:
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Figure 1. Let ρ1 = 1
2(δ(0;1) + δ(0;−1)). For ε > 0 and xε = (1; ε/2) ∈

R2, let ρε2 = 1
2(δxε + δ−xε). Introduce Pε = 1

2(δρ1 + δρε2). Then for ε ≤ 1
2 ,

W2(µPε , µP−ε) = 1 while W1(Pε,P−ε) ≤ ε.

Theorem (Le Gouic, Loubes). Let P ∈ P(P(Ω)) and a sequence (Pn)n≥1 ∈ P(P(Ω)) be such
that

W1(Pn,P) −−−−−→
n→+∞

0.

For all n ≥ 1, denote µPn a barycenter of Pn. Then the sequence (µPn)n≥1 is precompact in
(P(Ω),W2) and any limit is a barycenter of P.

This result ensures the continuity of Wasserstein barycenters with respect to the marginal
measures, at least in our setting, so that we can now legitimately look for bounds that quantify
this continuity.

1.2.2. Quantitative stability in dimension d = 1. In dimension d = 1, the derivation of
quantitative stability bounds for Wasserstein barycenters is straightforward. Indeed, in this
context W2 is Hilbertian, which ensures a Lipschitz behavior of the barycenters with respect
to their marginals. More precisely, denoting Qρ the quantile function of a measure ρ ∈ P(Ω)
(i.e. the generalized inverse of its cumulative distribution function), one has for any measures
ρ, µ ∈ P(Ω) that W2(ρ, µ) = ∥Qρ −Qµ∥L2([0,1]). This leads for any P ∈ P(P(Ω)) to a simple

formula for the unique barycenter:

µP =

(∫
P(Ω)

QρdP(ρ)

)
#

λ[0,1],

where λ[0,1] denotes the Lebesgue measure over [0, 1]. Using this fact and the triangle inequality,
one immediately obtains the following Lipschitz stability result, that actually holds for any
families of measures in the set P2(R) of probability measures supported over R that admit a
finite second-order moment:

Proposition. Let P,Q ∈ P(P2(R)) and denote µP, µQ their respective barycenters. Then

W2(µP, µQ) ≤ W1(P,Q).

This fact was exploited in [6] to characterize the statistical rate of convergence of empirical
Wasserstein barycenters towards their population counterpart in an asymptotic setting for
probability measures supported over the real line.
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Figure 2. Let ρ1 = 1
2(δ(0;1) + δ(0;−1)). For a ∈ (0, 1) and ε > 0, let cε =

[1 − a
2 ; 1 +

a
2 ] × [−a

2 + ε; a2 + ε] and ρε2 the probability measure with density

ρε2(x, y) = α
21−2αa1+2α

(
|y − ε|2α−1

1cε(x, y) + |y + ε|2α−1
1−cε(x, y)

)
for some

α > 0. Introduce Pε = 1
2(δρ1 + δρε2). Then for ε ≤ a

2 , W2(µP0 , µPε) ∼ εα while
W1(P0,Pε) ≤ ε.

1.2.3. Quantitative stability in dimension d ≥ 2. In dimension d ≥ 2, the derivation of any
quantitative stability bound turns out to be much more difficult. This first comes from the
fact that without assumption on P and Q, the barycenters µP and µQ may not be uniquely
defined, which makes hopeless the derivation of any stability result. Even when uniqueness of
the barycenters is ensured, one can easily build examples where no quantitative stability bound
holds, see for instance the setting illustrated in Figure 1. This example relies on barycenters
with only discrete marginals, and recovers in the limit ε = 0 the pathological case where the
barycenter is not uniquely defined. One may circumvent this issue by ensuring, even in the
limit ε = 0, uniqueness of the barycenter. As mentioned above, this can be done by imposing
that some of the marginal measures are absolutely continuous. Nevertheless, even under such
an assumption on the marginals, one can easily build an example where the barycenter achieves
an Hölder behavior with respect to its marginal, but with an Hölder exponent that can be
chosen arbitrarily small, see Figure 2. These negative results show that, even in dimension
d = 2, regularity assumptions on the marginals P,Q that go beyond sole absolute continuity
are necessary in order to hope to derive stability estimates for their barycenters.

1.2.4. Previous works. Consistently with the above remarks, previous works having dealt with
the stability of Wasserstein barycenters have either worked under stringent assumptions on
the marginal measures or regularized the barycenter problem in order to ensure more regular
solutions. In [2, 26] for instance, the question of the rate of convergence of the empirical
barycenter in a Wasserstein space towards its population counterpart has been answered at
the cost of assumptions that require in particular to have guarantees on the regularity of
the (unknown) population barycenter (see sub-section 1.5.2 for more details). In [5, 11], a
regularization of the barycenter problem has been considered and stability bounds and central
limit theorems were deduced for the solutions to this regularized problem. In this work,
we do not regularize the variance functional and work under less restrictive assumptions on
the marginal measures than previous works having dealt with the stability of Wasserstein
barycenters. In order to state these assumptions, we first need to introduce the dual problem
to the Wasserstein barycenter problem.
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1.3. Dual formulation. Building from [1], we show that the Wasserstein barycenter problem
admits the following dual formulation with strong duality. The proof of this proposition is
deferred to the appendix, Section A.

Proposition 1.1 (Dual formulation). For any P ∈ P(P(Ω)), one has

min
µ∈P(Ω)

FP(µ) =
1

2

∫
P(Ω)

M2(ρ)dP(ρ)− (D)P,

where M2(ρ) = ⟨∥·∥2 |ρ⟩ is the second-order moment of ρ and where (D)P corresponds to the
dual value

(D)P = min

{∫
P(Ω)

⟨ψ∗
ρ|ρ⟩dP(ρ) | (ψρ)ρ ∈ L∞(P;W 1,∞(Ω)),

∫
P(Ω)

ψρ(·)dP(ρ) =
∥·∥2

2

}
.

In the expression above, ψ∗
ρ(·) = supy∈Ω{⟨·|y⟩ − ψρ(y)} corresponds to the convex conjugate of

ψρ and L∞(P;W 1,∞(Ω)) denotes the set of essentially bounded P-measurable mappings from
P(Ω) to the Sobolev space W 1,∞(Ω) of bounded Lipschitz continuous functions from Ω to R.

Remark 1.1. Note that in the above minimization problem, (ψρ)ρ is to be understood as the
following mapping, defined P-almost everywhere:

(ψρ)ρ :

{
P(Ω) →W 1,∞(Ω),
ρ 7→ ψρ.

Remark 1.2. By Kantorovich duality [42], for P ∈ P(P(Ω)), the collection of functions (ψρ)ρ
solving (D)P gives solutions to the optimal transport problems between P-a.e. ρ ∈ P(Ω) and
any barycenter µP ∈ argmin (P)P:

1

2
W2

2(ρ, µP) =
1

2
M2(ρ) +

1

2
M2(µP)−

(
⟨ψ∗

ρ|ρ⟩+ ⟨ψρ|µP⟩
)

=
1

2
M2(ρ) +

1

2
M2(µP)−

(
min
ψ∈C(Ω)

⟨ψ∗|ρ⟩+ ⟨ψ|µP⟩
)
. (1)

As such, ψρ = ψ∗∗
ρ for P-a.e. ρ, so that this function – that we call later on a (Kantorovich)

potential – is convex and Lipschitz continuous with Lipschitz constant smaller than R. When
P(Pa.c.(Ω)) > 0 and ρ ∈ spt(P) ∩ Pa.c.(Ω), the convex function ψ∗

ρ is the Brenier potential [10]
and its gradients achieves the optimal transport from ρ to the unique barycenter µP:(

∇ψ∗
ρ

)
#
ρ = µP, and W2

2(ρ, µP) =
∥∥∇ψ∗

ρ − id
∥∥2
L2(ρ;Rd)

.

1.4. Assumptions. For any P ∈ P(P(Ω)), the variance functional FP is convex. Stability
estimates for the minimizers of FP (which are the Wasserstein barycenters of P) may thus be
obtained from estimates on the strong convexity or curvature of FP. However, without any
assumption on P, the variance functional FP is in general not strongly-convex in any sense. In
fact, it is easy to construct examples where FP showcases an affine behavior with respect to
the linear structure of P(Ω):

Example 1.2. For any P ∈ P(P(Ω)) of the form P =
∑

i λiδδxi , one has for any y, z ∈ Ω and

t ∈ [0, 1] the relation

FP((1− t)δy + tδz) = (1− t)FP(δy) + tFP(δz).

Our main stability applies to measures P ∈ P(P(Ω)) such that the variance functional
FP satisfies a strong convexity estimate, also called a variance inequality in the language of
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[38, 13]. Because for any P ∈ P(P(Ω)) we have

FP(·) =
1

2

∫
P(Ω)

W2
2(ρ, ·)dP(ρ),

it suffices to choose a P whcih gives positive mass to probability measures ρ ∈ P(Ω) for which
the squared Wasserstein distance 1

2W
2
2(ρ, ·) satisfies itself a strong convexity estimate. In turn,

relying on Kantorovich’s dual formulation displayed in (1), this can be obtained from the
assumption that the minimized functional in the dual problem presents a form of local strong
convexity. We will denote Kρ : ψ 7→ ⟨ψ∗|ρ⟩ the Kantorovich functional associated to ρ ∈ P(Ω).
This convex functional appears in the minimization problem (1); its gradient formally reads
∇Kρ(ψ) = −(∇ψ∗)#ρ. We will make the following assumption:

Assumption 1.3. There exists constants αP ∈ (0, 1], cP,perP,mP,MP ∈ (0,+∞) and a
measurable set SP ⊂ P(Ω) verifying P(SP) = αP and such that for all ρ ∈ SP,

(1) ρ ∈ Pa.c.(Ω),
(2) mP ≤ ρ|spt(ρ) ≤MP,

(3) spt(ρ) has a Hd−1-rectifiable boundary and Hd−1(∂spt(ρ)) ≤ perP,

(4) ∀ψ, ψ̃ ∈ C(Ω), cPVarρ(ψ̃∗ − ψ∗) ≤ Kρ(ψ̃)−Kρ(ψ)− ⟨ψ − ψ̃|(∇ψ∗)#ρ⟩,
where spt(ρ) denotes the support of ρ, ∂spt(ρ) denotes the topological boundary of this support
and Hd−1 denotes the (d− 1)-dimensional Hausdorff measure.

While conditions (1), (2) and (3) speak for themselves, condition (4) might seem ad hoc
and difficult to verify. However, conditions under which a measure ρ ∈ Pa.c.(Ω) verifies the
local strong convexity estimate (4) of Assumption 1.3 are given in [18] as a consequence of the
Brascamp-Lieb concentration inequality [9]. In particular, this estimate holds for an absolutely
continuous measure ρ, supported on a compact convex set, and whose density is bounded away
from zero and infinity. In the appendix, we slightly extend this result to measures supported
on a connected union of convex sets, thus showing that the convexity of the support of ρ is
not absolutely necessary to get strong convexity of Kρ.

Proposition 1.4. Let ρ ∈ Pa.c.(Ω) and assume that there exists mρ,Mρ ∈ (0,+∞) such that
mρ ≤ ρ ≤Mρ on spt(ρ). Assume in addition that ρ satisfies a Poincaré-Wirtinger inequality
and that spt(ρ) is a connected finite union of convex sets. Then there exists cρ > 0 such that

for all ψ, ψ̃ ∈ C(Ω),

cρVarρ(ψ̃∗ − ψ∗) ≤ Kρ(ψ̃)−Kρ(ψ)− ⟨ψ̃ − ψ|∇Kρ(ψ)⟩.

We refer to Proposition B.2 of the appendix for a precise statement and a proof. We
conjecture that such a strong convexity estimate actually holds for any absolutely continuous
measure satisfying the Poincaré-Wirtinger inequality, maybe with mild additional assumptions
on the density and its support. However, this is not the focus of the present article and we
leave this for future work. On a more technical side, we note that the Borel measurability of a
set SP ⊂ P(Ω) as defined in Assumption 1.3 needs to be checked depending on the application.
Obviously, measurability holds when the number of marginals is finite (P is discrete) and SP
is a (finite) subset of these marginals. When the number of marginals is not finite, we note
that if SP is made of all the measures ρ ∈ P(Ω) that satisfy conditions (1)–(3) and that have
convex supports, then the measures of SP satisfy condition (4) by [18] and the set SP is closed
for the weak topology.

1.5. Main result and consequences. Under Assumption 1.3, we prove that the Wasserstein
barycenters depend in a Hölder-continuous way on their marginals:
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Theorem 1.5. Let P,Q ∈ P(P(Ω)) and assume that P satisfies Assumption 1.3. Let µP be
the barycenter of P and µQ be a barycenter of Q. Then

W2(µP, µQ) ≤
(
Cd,mP,MP,perP,cP

αP

)1/6

W1(P,Q)1/6,

where Cd,mP,MP,perP,cP = Cd
M3

P
mP

per2P
cP
R5 and where Cd is a dimensional constant. It also holds,

with the same constant:

W2(µP, µQ) ≤
(
Cd,mP,MP,perP,cP

αP

)1/5

∥P−Q∥1/5TV .

In this result, the Hölder exponents might not be optimal. However, our structure of proof
does not leave space to much improvement of these exponents (see Remark 2.3). Theorem
1.5 is essentially a corollary of the fact that whenever a measure P ∈ P(P(Ω)) satisfies
Assumption 1.3, its variance functional FP satisfies a strong convexity estimate (Theorem 2.1).
Note that a strong convexity estimate for the variance functional FP may have an interest
beyond the stability of Wasserstein barycenters with respect to their marginals, e.g. to control
the bias induced by the entropic penalization of the variance functional as introduced in [5]
(see Corollary 2.2). We defer the detailed proof of Theorem 1.5 to Section 2. Let us now
mention some consequences of Theorem 1.5 in applications.

1.5.1. Statistical estimation of barycenter with a finite number of marginals. For a probability
measure ρ ∈ P(Ω) and an i.i.d. sequence (xj)j=1,...,n sampled from ρ, it is well-known that
the empirical measure ρ̂n = 1

n

∑n
j=1 δxj converges weakly to ρ almost-surely as n → ∞ [41].

By Theorem 1 of [21], the rate of this convergence can be controlled in expected Wasserstein
distance: there exists a constant Cd depending only on d such that

EW2
2(ρ̂

n, ρ) ≤ CdR
2


n−1/2 if d < 4,

n−1/2 log(n) if d = 4,

n−2/d else,

where the expectation is taken with respect to (xj)j=1,...,n ∼ ρ⊗n. Theorem 1.5 together with
a double use of Jensen’s inequality allows to translate these rates to the statistical estimation
of a Wasserstein barycenter with a finite number of marginals:

Corollary 1.6. Let Pm =
∑m

i=1 λiδρi ∈ P(P(Ω)) satisfying Assumption 1.3. For all i ∈
{1, . . . ,m}, denote ρ̂ni = 1

n

∑n
j=1 δxi,j an empirical measure built from an i.i.d. sequence

(xi,j)1≤j≤n sampled from ρi. Then the barycenters µPm of Pm and µP̂n
m

of P̂nm =
∑m

i=1 λiδρ̂ni
verify

EW2
2(µP̂n

m
, µPm) ≲

1

α
1/3
Pm


n−1/12 if d < 4,

n−1/12 log(n)1/6 if d = 4,

n−1/(3d) else,

where ≲ hides a multiplicative constant that depends on d,R,mPm ,MPm , perPm
and cPm.

1.5.2. Convergence rate of empirical barycenters in the Wasserstein space. Another statistical
question occurs in the setting where the population of marginals P ∈ P(P(Ω)) is only known
through samples (ρi)1≤i≤m ∼ P⊗m. Introducing the plug-in estimator Pm = 1

m

∑m
i=1 δρi , it

is natural to wonder how well µPm approaches µP in terms of m. This question, asked in
the more general framework of barycenters in Alexandrov spaces, has been the object of
recent research [2, 26]. In the Wasserstein space, the authors of [26] show in particular that

EW2(µP, µPm) converges at the parametric rate m−1/2 under the assumption that P admits a
barycenter µP that it is such that there exists a bi-Lipschitz optimal transport map between
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any ρ ∈ spt(P) and µP, and that the Lipschitz constants of these maps and their inverses do not
differ by a value more than 1. Under similar assumptions, the authors of [13] derive a strong
convexity estimate for the variance functional at its minimum which helps them derive rates
of convergence of gradient descent algorithms for the (stochastic) estimation of barycenters.
Such assumptions however require to have guarantees on the regularity of a barycenter of
P, which can be obtained when restricted to specific families of probability measures (e.g.
Gaussian measures), but are difficult to get in general (for instance, barycenters of measures
with convex support may not have a convex support [34], which hampers a straightforward use
of Caffarelli’s regularity theory). In contrast, our stability result entails that for barycenters
µP of P and µPm of Pm,

EW2(µP, µPm) ≲
1

α
1/6
P

EW1(P,Pm)1/6,

whenever P satisfies Assumption 1.3. This implies that any rate of convergence of EW1(P,Pm)
with respect to m is readily transferred to EW2(µP, µPm), up to an exponent. However, P(Ω)
is an infinite dimensional space and there is no general convergence rate for EW1(P,Pm).
Nonetheless, assuming some structure on the population P may help derive convergence
bounds. One may use for instance the notion of upper Wasserstein dimension of P introduced
in [43] (Definition 4), defined from quantities that depend on the covering numbers of (subsets
of) the support of P. Assuming that this dimension is strictly upper bounded by s > 0, the
authors of [43] show that

EW1(P,Pm) ≲ m−1/s,

where ≲ hides a multiplicative constant that depends on R and s. We note finally that if we
assume that P satisfies Assumption 1.3 with αP = 1, our results allow to get the following
finite-sample guarantee for the empirical estimation of barycenters in the Wasserstein space:

Theorem 1.7. Let P ∈ P(P(Ω)) satisfying Assumption 1.3 with αP = 1. For m ≥ 1, introduce
the plug-in estimator Pm = 1

m

∑m
i=1 δρi built from an m-sample (ρi)1≤i≤m ∼ P⊗m. Then the

barycenters µP of P and µPm of Pm satisfy

EW2(µPm , µP) ≲ m−1/30,

where ≲ hides a multiplicative constant that depends on d,R,mP,MP, perP and cP.

The main idea to prove this result is to see the minimization of FP through the lens of risk
minimization, so that the minimization of FPm corresponds to a problem of empirical risk
minimization (ERM) [40]. Under the assumptions of Theorem 1.7, the empirical risk FPm is
ensured to be strongly-convex almost surely, which allows to derive stability bounds for the
empirical risk minimizer µPm with respect to its population counterpart µP using classical ideas
from the ERM litterature [35]. The detailed proof of Theorem 1.7 is deferred to Section 3.

1.5.3. Error induced by a discretization of the marginals. Let ρ ∈ P(Ω) and let h > 0 be a
discretization parameter. Denoting (xhi )1≤i≤Nh

an h-net of Ω and (V h
i )1≤i≤Nh

the corresponding

Voronoi tessellation of Ω, it is trivial to verify that the discretization ρh =
∑Nh

i=1 ρ(V
h
i )δxhi

verifies

W2(ρ, ρ
h) ≤ h.

Such a type of discretization, with controlled error bound, may be useful in practice for
computational purposes. The stability result of Theorem 1.5 allows to translate the error
bound made when discretizing the marginals to the corresponding barycenter:
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Corollary 1.8. Let Pm =
∑m

i=1 λiδρi ∈ P(P(Ω)) satisfying Assumption 1.3. Let h > 0 and

for all i ∈ {1, . . . ,m}, denote ρhi =
∑Nh

j=1 ρi(V
h
j )δxhj

a discretization of ρi built from the h-net

(xhj )1≤j≤Nh
. Then the barycenters µPm of Pm and µPh

m
of Phm =

∑m
i=1 λiδρhi

verify

W2(µPh
m
, µPm) ≲

1

α
1/6
Pm

h1/6,

where ≲ hides a multiplicative constant that depends on d,R,mPm ,MPm ,perPm
and cPm.

2. Strong convexity of the variance functional

Let us recall the definition of the variance functional associated to some P ∈ P(P(Ω)):

FP :

{
P(Ω) → R,
µ 7→ 1

2

∫
P(Ω)W

2
2(ρ, µ)dP(ρ).

Our objective in this section is to get a strong convexity estimate for the variance functional FP
when P satisfies Assumption 1.3. More precisely, we wish to quantify to much extent the graph
of the convex functional FP lies above its tangents. For any measure µ ∈ P(Ω), the directions
of the tangents of the graph of FP at µ are given by the subdifferential of FP evaluated at
µ and denoted ∂FP(µ). This subdifferential may be described using Kantorovich’s duality
formula [42], already mentioned in equation (1), that ensures that for any ρ, µ ∈ P(Ω), one has

1

2
W2

2(ρ, µ) = ⟨1
2
∥·∥2 |ρ⟩+ ⟨1

2
∥·∥2 |µ⟩ −

(
min
ψ∈C(Ω)

⟨ψ∗|ρ⟩+ ⟨ψ|µ⟩
)
. (2)

From this formula, one easily has the following description of the subdifferential of the
half-squared Wasserstein distance to a fixed measure ρ ∈ P(Ω) (Proposition 7.17 of [33]):

∂

[
1

2
W2

2(ρ, ·)
]
(µ) =

{
1

2
∥·∥2 − ψρ→µ | ψρ→µ ∈ arg min

ψ∈C(Ω)
⟨ψ∗|ρ⟩+ ⟨ψ|µ⟩

}
.

This allows to directly characterize the subdifferential of FP at any µ ∈ P(Ω) as follows:

∂FP(µ) =

{∫
P(Ω)

(
1

2
∥·∥2 − ψρ→µ

)
dP(ρ) | for P-a.e. ρ, ψρ→µ ∈ arg min

ψ∈C(Ω)
⟨ψ∗|ρ⟩+ ⟨ψ|µ⟩

}
.

Thus for any µ and ν in P(Ω), for any collection (ψρ→µ)ρ ∈ L∞(P;W 1,∞(Ω)) of Kantorovich
potentials in the transport between P-almost every ρ ∈ P(Ω) and µ, we have by definition of
the subdifferential:

FP(µ) + ⟨
∫
P(Ω)

(
1

2
∥·∥2 − ψρ→µ

)
dP(ρ)|ν − µ⟩ ≤ FP(ν).

Our strong convexity estimate quantifies the gap in this subdifferential inequality under the
hypothesis that P satisfies Assumption 1.3:

Theorem 2.1. Let P ∈ P(P(Ω)) satisfying Assumption 1.3. Let µ, ν ∈ P(Ω) and let
(ψρ→µ)ρ ∈ L∞(P;W 1,∞(Ω)) be a collection of Kantorovich potentials in the transport between
P-almost every ρ ∈ P(Ω) and µ. Then it holds:

αPW
6
2(µ, ν) ≲ FP(ν)− FP(µ)− ⟨

∫
P(Ω)

(
1

2
∥·∥2 − ψρ→µ

)
dP(ρ)|ν − µ⟩,

where ≲ hides on the right-hand side the multiplicative constant

Cd,mP,MP,perP = Cd
M3

P
mP

per2P
cP

R4,
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where Cd is a dimensional constant.

Remark 2.1. This estimate holds without any regularization of the variance functional.
As such, it may be used directly to study the stability of smoothed notions of Wasserstein
barycenters defined from a regularization of the variance functional [5, 11], yielding stability
bounds that may not depend on the regularization parameter(s). Other versions of smoothed
Wasserstein barycenters have also been obtained from a regularization of the Wasserstein
distance itself, such as the celebrated entropic regularization [15]. The stability of these
barycenters may also be obtained from similar strong convexity estimates found in the context
of entropic optimal transport [16, 17]. Finally, the estimate of Theorem 2.1 can be used to
study the convergence of regularized Wasserstein barycenters towards their non-regularized
counterparts, as indicated by the following corollary.

Corollary 2.2. Let P ∈ P(P(Ω)) satisfying Assumption 1.3. For λ ≥ 0, denote

µλP = arg min
µ∈P(Ω)

FP(µ) + λG(µ),

where G : P(Ω) → R is either the entropy G(µ) =
∫
Ω µ logµ or G(µ) =

∫
Ω µ

p for some p ≥ 1.
Then for any λ > 0,

W2(µ
λ
P, µ

0
P) ≲ λ1/6,

where ≲ hides a multiplicative constant that depends on d,R,mP,MP, perP, cP and αP.

Proof. Theorem 2.1 together with the positiveness of G and the definition of µλP yield

αPW
6
2(µ

λ
P, µ

0
P) ≲ FP(µ

λ
P)−FP(µ

0
P) ≤ FP(µ

λ
P) + λG(µλP)−FP(µ

0
P) ≤ FP(µ

0
P) + λG(µ0P)−FP(µ

0
P).

The conclusion follows from the boundedness of G(µ0P) induced by the maximum principle
followed by µ0P = µP ∈ Pa.c.(Ω) when P satisfies Assumption 1.3 (Proposition 4.7 and Remark
4.8 of [11]): ∥∥µ0P∥∥L∞ ≤MP/α

d
P. □

Before proving Theorem 2.1, let us use it to prove the stability estimate of Theorem 1.5.

Proof of Theorem 1.5. Let (ψρ)ρ = (ψρ→µP)ρ ∈ L∞(P;W 1,∞(Ω)) be a collection of potentials
that give a dual solution to the barycenter problem with population P (Proposition 1.1). We
have in particular ∫

P(Ω)
ψρ(·)dP(ρ) =

1

2
∥·∥2 .

Applying Theorem 2.1 with µ = µP, ν = µQ and with the collection of potentials (ψρ)ρ, we
have the bound

αPW
6
2(µP, µQ) ≲ FP(µQ)− FP(µP).

By definition of µQ as a minimizer of FQ, we have

FQ(µP)− FQ(µQ) ≥ 0.

Thus the following bound holds:

αPW
6
2(µP, µQ) ≲ FP(µQ)− FQ(µQ) + FQ(µP)− FP(µP)

= ⟨1
2
W2

2(·, µQ)|P−Q⟩+ ⟨1
2
W2

2(·, µP)|Q− P⟩

= ⟨1
2
(W2

2(·, µQ)−W2
2(·, µP))|P−Q⟩. (3)
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The mapping ρ 7→ 1
2(W

2
2(ρ, µQ)−W2

2(ρ, µP)) being 4R-Lipschitz continuous with respect to
W2, we finally have with the Kantorovich-Rubinstein duality result the bound

⟨1
2
(W2

2(·, µQ)−W2
2(·, µP))|P−Q⟩ ≤ 4RW1(P,Q),

which gives the first estimate of the statement. Now remark that for any ρ ∈ P(Ω), the triangle
inequality yields∣∣W2

2(ρ, µQ)−W2
2(ρ, µP)

∣∣ ≤ (W2(ρ, µQ) +W2(ρ, µP))W2(µP, µQ) ≤ 4RW2(µP, µQ).

Injecting this last bound into (3) gives the second bound of the statment:

αPW
6
2(µP, µQ) ≲ W2(µP, µQ) ∥P−Q∥TV . □

Let us now prove Theorem 2.1. This result simply relies on the fact that for any ρ ∈ P(Ω)
that belongs to the set SP from Assumption 1.3, the function 1

2W
2
2(ρ, ·) satisfies a strong

convexity estimate given in the following proposition. Theorem 2.1 then immediately follows
from this proposition after summing over ρ ∼ P. In the following statement, we recall that the
Kantorovich functional Kρ associated to a measure ρ ∈ P(Ω) corresponds to the map

Kρ :

{
C(Ω) → R,
ψ 7→

∫
Ω ψ

∗dρ.

Proposition 2.3. Let ρ ∈ Pa.c.(Ω) be absolutely continuous and such that there exists
mρ,Mρ,perρ, cρ ∈ (0,+∞) verifying

(1) mρ ≤ ρ|spt(ρ) ≤Mρ,

(2) spt(ρ) has a Hd−1-rectifiable boundary and Hd−1(∂spt(ρ)) ≤ perρ,

(3) ∀ψ, ψ̃ ∈ C(Ω), cρVarρ(ψ̃∗ − ψ∗) ≤ Kρ(ψ̃)−Kρ(ψ)− ⟨ψ − ψ̃|(∇ψ∗)#ρ⟩.
Then for any µ, ν ∈ P(Ω) and any Kantorovich potential ψρ→µ ∈ C(Ω) in the optimal transport
between ρ and µ, one has

∀µ, ν, W6
2(µ, ν) ≲

1

2
W2

2(ν, ρ)−
1

2
W2

2(µ, ρ)− ⟨1
2
∥·∥2 − ψρ→µ|ν − µ⟩,

where ≲ hides on the right-hand side the multiplicative constant

Cd,mρ,Mρ,perρ = Cd
M3
ρ

mρ

per2ρ
cρ

R4,

where Cd is a dimensional constant.

Remark 2.2 (Linear convexity vs. displacement convexity). We emphasize on the fact that
Proposition 2.3 gives a strong convexity estimate for 1

2W
2
2(ρ, ·) with respect to the linear

structure on P(Ω), and not with respect to the metric structure of (P(Ω),W2). Convexity of
a functional with respect to this structure is referred to the notion of displacement convexity.
Strong convexity of 1

2W
2
2(ρ, ·) with respect to the metric structure of (P(Ω),W2) is trivial

to get in dimension d = 1 because of the Hilbertian nature of W2 in this context (see Sec-
tion 1.2.2). However, this is limited to the unidimensional setting and 1

2W
2
2(ρ, ·) is notoriously

not displacement convex in dimension d ≥ 2 (see for instance Section 7.3.3 of [33]).

Remark 2.3 (Exponent). We note that the value 6 of the exponent on the left-hand side term
of the estimate of Proposition 2.3 might not be optimal. However, 4 should be a lower-bound
on the value of this exponent. This may be seen from the following example: in dimension
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d = 1 and for ε > 0, set µε = (12 − ε
2)(δ−1 + δ1) + εδ0. Then we have W2

2(µ
0, µε) = ε. For

ρ = λ|[− 1
2
, 1
2
], the following computation holds:

1

2
W2

2(µ
ε, ρ)− 1

2
W2

2(µ
0, ρ) =

∫ ε/2

0
(|0− x|2 − |1− x|2)dx =

ε2

4
− ε

2
.

Finally, one can choose a Kantorovich potential in the transport from ρ to µ0 to be ψρ→µ0 =
ι[−1,1] (i.e. valued 0 on [−1, 1] and +∞ outside this segment), so that

⟨∥·∥
2

2
− ψρ→µ0 |µε − µ0⟩ = ⟨∥·∥

2

2
|µε − µ0⟩ = −ε

2
.

Hence:

1

2
W2

2(µ
ε, ρ)− 1

2
W2

2(µ
0, ρ)− ⟨∥·∥

2

2
− ψρ→µ0 |µε − µ0⟩ = ε2

4
=

1

4
W4

2(µ
0, µε).

Proof of Proposition 2.3. Let ψρ→ν ∈ C(Ω) be a Kantorovich potential in the optimal transport
between ρ and ν. Then the conjugates ψ∗

ρ→µ, ψ
∗
ρ→ν are both convex Brenier potentials [10] in

the optimal transport between the absolutely continuous source ρ and the targets µ, ν, in the
sense that:

(∇ψ∗
ρ→µ)#ρ = µ and (∇ψ∗

ρ→ν)#ρ = ν.

Therefore, the coupling (∇ψ∗
ρ→µ,∇ψ∗

ρ→ν)#ρ is an admissible transport plan between µ and ν
and as such:

W2
2(µ, ν) ≤

∥∥∇ψ∗
ρ→µ −∇ψ∗

ρ→ν

∥∥2
L2(ρ;Rd)

. (4)

We now quote a Gagliardo-Nirenberg type inequality, extracted from Proposition 4.1 in [18],
that ensures that for any compact domain K of Rd with Hd−1-rectifiable boundary and
u, v : K → R two Lipschitz functions on K that are convex on any segment included in K,
there exists a constant Cd depending only on d such that

∥∇u−∇v∥6L2(K) ≤ CdHd−1(∂K)2(∥∇u∥L∞(K) + ∥∇v∥L∞(K))
4 ∥u− v∥2L2(K) .

We note from [18] that the exponents in this inequality are optimal. Using that the Brenier
potentials ψ∗

ρ→µ, ψ
∗
ρ→ν are both convex and R-Lipschitz continuous and leveraging assumptions

(1) and (2) made on ρ, we can apply this inequality to get that for any constant c ∈ R:
1

M3
ρ

∥∥∇ψ∗
ρ→µ −∇ψ∗

ρ→ν

∥∥6
L2(ρ;Rd)

≤ Cd(perρ)
2(2R)4

1

mρ

∥∥ψ∗
ρ→µ − ψ∗

ρ→ν − c
∥∥2
L2(ρ)

.

Minimizing over c ∈ R in the last inequality yields:∥∥∇ψ∗
ρ→µ −∇ψ∗

ρ→ν

∥∥6
L2(ρ;Rd)

≲ Varρ(ψ∗
ρ→µ − ψ∗

ρ→ν). (5)

But assumption (3) on ρ ensures:

cρVarρ(ψ∗
ρ→µ − ψ∗

ρ→ν) ≤ Kρ(ψρ→µ)−Kρ(ψρ→ν) + ⟨ψρ→µ − ψρ→ν |ν⟩. (6)

Finally, notice that by Kantorovich’s duality formula (2) and by definition of ψρ→µ, ψρ→µ as
Kantorovich potentials, one has:

1

2
W2

2(ρ, µ) = ⟨1
2
∥·∥2 |ρ⟩+ ⟨1

2
∥·∥2 |µ⟩ − Kρ(ψρ→µ)− ⟨ψρ→µ|µ⟩,

1

2
W2

2(ρ, ν) = ⟨1
2
∥·∥2 |ρ⟩+ ⟨1

2
∥·∥2 |ν⟩ − Kρ(ψρ→ν)− ⟨ψρ→ν |ν⟩.

This yields:

Kρ(ψρ→µ)−Kρ(ψρ→ν)+⟨ψρ→µ−ψρ→ν |ν⟩ =
1

2
W2

2(ν, ρ)−
1

2
W2

2(µ, ρ)−⟨1
2
∥·∥2−ψρ→µ|ν−µ⟩. (7)
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The conclusion follows after combining (4), (5), (6) and (7) together. □

3. Convergence of empirical barycenters in the Wasserstein space

This section is devoted to the proof of Theorem 1.7. This proof relies on a classical
symmetrization technique used in the study of empirical processes [39], already employed in
the context of strongly-convex empirical risk minimization (see e.g. the proof of Theorem 2 in
[35]).

Proof of Theorem 1.7. Applying the strong convexity estimate of Theorem 2.1 to FP at the
minimizer µ = µP and with ν = µPm , we have the bound

W6
2(µP, µPm) ≲ FP(µPm)− FP(µP)

≤ FP(µPm)− FPm(µPm) + FPm(µP)− FP(µP) (8)

We now proceed to the control of the expectation with respect to (ρi)1≤i≤m ∼ P⊗m of the
above two differences.

Control of E(FP(µPm)− FPm(µPm)). Notice that

FP(µPm)− FPm(µPm) =
1

2

∫
P(Ω)

W2
2(ρ, µPm)dP(ρ)−

1

2m

m∑
i=1

W2
2(ρi, µPm).

In order to control the expectation of this difference, we introduce another i.i.d. m-sample of
P: (ρ′i)1≤i≤m ∼ P⊗m. One can then notice that

E
1

2

∫
P(Ω)

W2
2(ρ, µPm)dP(ρ) = E(ρi)i∼P⊗mEρ∼P

1

2
W2

2(ρ, µPm)

= E(ρi)i∼P⊗mNE(ρ′i)i∼P⊗m
1

2m

m∑
i=1

W2
2(ρ

′
i, µPm)

= E
1

2m

m∑
i=1

W2
2(ρ

′
i, µPm), (9)

where the last expectation is against all the random variables (ρi)1≤i≤m ∼ P⊗m and (ρ′i)1≤i≤m ∼
P⊗m. Now for any i ∈ {1, . . . ,m}, introduce the empirical measure

P(i)
m =

1

m

m∑
j=1,j ̸=i

δρj +
1

m
δρ′i .

Then for any i ∈ {1, . . . ,m}, taking again the expectation against all the random variables
(ρi)1≤i≤m ∼ P⊗m and (ρ′i)1≤i≤m ∼ P⊗m one has

EW2
2(ρi, µPm) = EW2

2(ρ
′
i, µP(i)

m
).

This ensures the equality

E
1

2m

m∑
i=1

W2
2(ρi, µPm) = E

1

2m

m∑
i=1

W2
2(ρ

′
i, µP(i)

m
). (10)

From equations (9) and (10), the expectation of the first difference appearing in (8) reads:

E(FP(µPm)− FPm(µPm)) =
1

2m

m∑
i=1

E(W2
2(ρ

′
i, µPm)−W2

2(ρ
′
i, µP(i)

m
)).
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Using that Ω = B(0, R) is bounded and the triangle inequality, we have the bound

1

2m

m∑
i=1

E(W2
2(ρ

′
i, µPm)−W2

2(ρ
′
i, µP(i)

m
)) ≤ (2R+ 2R)

2m

m∑
i=1

EW2(µPm , µP(i)
m
)

= 2REW2(µPm , µP(i)
m
).

Using that P satisfies Assumption 1.3 with αP = 1, we have that Pm (or P(i)
m ) almost surely

satisfies Assumption 1.3 with αPm = 1 (and with the same other constants as P in this
assumption). Thus Theorem 1.5 ensures almost surely the bound:

W2(µPm , µP(i)
m
) ≲

∥∥∥Pm − P(i)
m

∥∥∥1/5
TV

≲
1

m1/5
.

We thus have the following bound on the expectation of the first difference appearing in (8):

E(FP(µPm)− FPm(µPm)) ≲
1

m1/5
. (11)

Control of E(FPm(µP)− FP(µP)). Notice that

FPm(µP)− FP(µP) =
1

2m

m∑
i=1

W2
2(ρi, µP)−

1

2

∫
P(Ω)

W2
2(ρ, µP)dP(ρ)

Bounding the expectation of this second difference term is much more straightforward. For any
i ∈ {1, . . . ,m}, denote Xi =

1
2W

2
2(ρi, µP) the scalar random variable built from the random

sample ρi ∼ P. Denote EX the expectation of this random variable (independent of i). Using
this notation we can write the expectation of the second difference term of (8) as follows:

1

2m

m∑
i=1

W2
2(ρi, µP)−

1

2

∫
P(Ω)

W2
2(ρ, µP)dP(ρ) =

1

m

m∑
i=1

Xi − EX.

Using Jensen’s inequality, we thus have:

E(FPm(µP)− FP(µP)) = E

(
1

m

m∑
i=1

Xi − EX

)
≤

(
Var

(
1

m

m∑
i=1

Xi

))1/2

≲
1

m1/2
. (12)

Conclusion. Injecting the bounds (11) and (12) in the expectation of (8) thus yields

EW6
2(µP, µPm) ≲

1

m1/5
+

1

m1/2
≲

1

m1/5
.

Jensen’s inequality used in the above bound finally yields the statement. □

Acknowledgement. The authors acknowledge the support of the Lagrange Mathematics
and Computing Research Center and of the ANR (MAGA, ANR-16-CE40-0014). We thank
Blanche Buet for interesting discussions related to this work.

Appendix A. Dual formulation for the Wasserstein barycenter problem

Proof of Proposition 1.1. Instead of showing directly the formulation of Proposition 1.1, we
will rather show

min
µ∈P(Ω)

FP(µ) = max

{∫
P(Ω)

⟨ϕcρ|ρ⟩dP(ρ) | (ϕρ)ρ ∈ L∞(P;W 1,∞(Ω)),

∫
P(Ω)

ϕρ(·)dP(ρ) = 0

}
,

where for any ρ ∈ P(Ω), ϕcρ denotes the following c-transform of ϕρ: ϕ
c
ρ(·) = infy∈Ω

1
2 ∥· − y∥2−

ϕρ(y). Such a formulation entails the result of Proposition 1.1 by the change of variable

(ψρ)ρ =
∥·∥2
2 − (ϕρ)ρ ∈ L∞(P;W 1,∞(Ω)).
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Duality. Let’s first show that the value of minµ∈P(Ω) FP(µ) is equal to the value of the
following supremum

(D)P
′ := sup

{∫
P(Ω)

⟨ϕcρ|ρ⟩dP(ρ) | (ϕρ)ρ ∈ L1(P; C(Ω)),
∫
P(Ω)

ϕρ(·)dP(ρ) = 0

}
,

where L1(P; C(Ω)) denotes the set of P-measurable and Bochner integrable mappings from P(Ω)
to the space (C(Ω), ∥·∥∞) of continuous function from Ω to R equipped with the supremum
norm. Introduce the functional H : C(Ω) → R defined for all φ ∈ C(Ω) by

H(φ) = inf

{
−
∫
P(Ω)

⟨ϕcρ|ρ⟩dP(ρ) | (ϕρ)ρ ∈ L1(P; C(Ω)),
∫
P(Ω)

ϕρ(·)dP(ρ) = φ(·)

}
.

Notice then that (D)P
′ = −H(0). On the other hand, notice that H has the following convex

conjugate: for µ ∈ P(Ω),

H∗(µ) = sup {⟨φ|µ⟩ −H(φ) | φ ∈ C(Ω)}

= sup

{
⟨φ|µ⟩+

∫
P(Ω)

⟨ϕcρ|ρ⟩dP(ρ) | φ ∈ C(Ω), (ϕρ)ρ ∈ L1(P; C(Ω)),
∫
P(Ω)

ϕρ(·)dP(ρ) = φ(·)

}

= sup

{∫
P(Ω)

⟨ϕρ|µ⟩dP(ρ) +
∫
P(Ω)

⟨ϕcρ|ρ⟩dP(ρ), (ϕρ)ρ ∈ L1(P; C(Ω))

}

=

∫
P(Ω)

(
sup

ϕρ∈C(Ω)
⟨ϕρ|µ⟩+ ⟨ϕcρ|ρ⟩

)
dP(ρ)

=

∫
P(Ω)

1

2
W2

2(µ, ρ)dP(ρ),

where we used the Kantorovich duality formula (see for instance [42]) to get to the last line.
We thus have

min
µ∈P(Ω)

FP(µ) = inf
µ∈P(Ω)

H∗(µ) = −H∗∗(0).

Therefore, showing that (D)P
′ = minµ∈P(Ω) FP(µ) corresponds to show that H(0) = H∗∗(0).

Since H is convex (by concavity of the c-transform operation), this will follow from the
continuity of H at 0 for the supremum-norm over C(Ω) (Proposition 4.1 of [20]). For this, we
can first notice that H never takes the value −∞: for any φ ∈ C(Ω) and (ϕρ)ρ ∈ L1(P; C(Ω))
such that

∫
P(Ω) ϕρ(·)dP(ρ) = φ(·), one has

∀ρ ∈ P(Ω), −ϕcρ(x) = sup
y∈Rd

ϕρ(y)−
1

2
∥x− y∥2 ≥ ϕρ(0)−

1

2
∥x∥2 .

If follows that

H(φ) ≥ φ(0)−
∫
P(Ω)

M2(ρ)

2
dP(ρ) > −∞.

On the other hand, notice that H is bounded from above in a neighborhood of 0 in C(Ω): for
any φ ∈ C(Ω) such that ∥φ∥∞ ≤ 1, one has −φc(x) ≤ 1 for any x ∈ Rd so that

H(φ) ≤ −
∫
P(Ω)

⟨(φ)c|ρ⟩dP(ρ) ≤ 1.

A standard convex analysis result (Proposition 2.5 in [20]) then ensures that H is continuous
at 0, so that H(0) = H∗∗(0) and (D)P

′ = minµ∈P(Ω) FP(µ).
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Restriction to L∞(P;W 1,∞(Ω)). We show here that we can run the supremum (D)P
′ only

over L∞(P;W 1,∞(Ω)) instead of L1(P; C(Ω)), that is

(D)P
′ = sup

{∫
P(Ω)

⟨ϕcρ|ρ⟩dP(ρ) | (ϕρ)ρ ∈ L∞(P;W 1,∞(Ω)),

∫
P(Ω)

ϕρ(·)dP(ρ) = 0

}
.

Let (ϕρ)ρ ∈ L1(P; C(Ω)) be an admissible solution to (D)P
′, i.e. (ϕρ)ρ satisfies∫

P(Ω)
ϕρ(·)dP(ρ) = 0. (13)

Then we can build from (ϕρ)ρ another admissible solution (ϕ̃ρ)ρ that belongs to L
∞(P;W 1,∞(Ω))

and that performs better at (D)P
′, i.e. that verifies∫

P(Ω)
⟨ϕ̃cρ|ρ⟩dP(ρ) ≥

∫
P(Ω)

⟨ϕcρ|ρ⟩dP(ρ). (14)

Indeed, introduce (ϕ̂ρ)ρ := (ϕccρ )ρ. Then for all ρ ∈ P(Ω), ϕ̂ρ = ϕccρ is obviously 2R-Lipschitz

(as a c-transform) and satisfies ϕ̂cρ = ϕcρ and ϕ̂ρ ≥ ϕρ (as a double c-transform). Using then
(13), one has that

α(·) :=
∫
P(Ω)

ϕ̂ρ(·)dP(ρ) ≥ 0,

where α is also 2R-Lipschitz. Now denoting ϕ̃ρ = ϕ̂ρ − α for all ρ ∈ P(Ω), the mapping

(ϕ̃ρ)ρ ∈ L1(P; C(Ω)) is admissible to (D)P
′ by construction and satisfies ϕ̃ρ ≤ ϕ̂ρ for all ρ ∈ P(Ω),

so that ϕ̃cρ ≥ ϕ̂cρ = ϕcρ (using that the c-transform is order-reversing). For each ρ ∈ P(Ω),

up to subtracting ϕ̃ρ(0) to ϕ̃ρ (this operation leaves (ϕ̃ρ)ρ admissible to (D)P
′ and does not

change its value), one can assume that ϕ̃ρ(0) = 0. Noticing that ϕ̃ρ is 4R-Lipschitz by

construction, we have the bound
∥∥∥ϕ̃ρ∥∥∥

W 1,∞(Ω)
≤ 4R(1 +R). We thus have built an admissible

(ϕ̃ρ)ρ ∈ L∞(P;W 1,∞(Ω)) from an admissible (ϕρ)ρ ∈ L1(P; C(Ω)) that satisfies (14), which

shows that we can run the supremum (D)P
′ only over L∞(P;W 1,∞(Ω)) instead of L1(P; C(Ω))

Existence of a maximizer. There now remains to show that the supremum in (D)P
′ can be

replaced by a maximum. Let
(
(ϕnρ )ρ

)
n≥0

be a maximizing sequence to (D)P
′, and assume from

what precedes that this sequence belongs to L∞(P;W 1,∞(Ω)) and satisfies for all n ≥ 0 and
ρ ∈ P(Ω),

∥∥ϕnρ∥∥W 1,∞(Ω)
≤ 4R(1 +R). Further assume that this sequence verifies for all n ≥ 1,∫

P(Ω)
⟨(ϕnρ )c|ρ⟩dP(ρ) ≥ (D)P

′ − 1

n
. (15)

For any n ≥ 0, the mapping (ρ, x) 7→ ϕnρ (x) is bounded in L2(P ⊗ λ) where λ denotes the

Lebesgue measure over Ω. Therefore, by Banach-Alaoglu theorem, the sequence
(
(ϕnρ )ρ

)
n≥0

(seen as a sequence in L2(P⊗ λ)) admits a weakly converging subsequence in L2(P⊗ λ), that
we do not relabel and for which we denote (ϕ∞ρ )ρ the weak limit in L2(P ⊗ λ). Using now
Mazur’s lemma, we know that there exists a sequence of integers (Nn)n≥0 and coefficients

((λn,k)n≤k≤Nn)n≥0 ≥ 0 satisfying for all n ≥ 0,
∑Nn

k=n λn,k = 1 such that the sequence(
(ϕ̄nρ )ρ

)
n≥0

defined for all n ≥ 0 and ρ ∈ P(Ω) by ϕ̄nρ :=
∑Nn

k=n λn,kϕ
k
ρ converges strongly to

(ϕ∞ρ )ρ in L2(P ⊗ λ). By concavity of the c-transform operation and equation (15), we then
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have the bound ∫
P(Ω)

⟨(ϕ̄nρ )c|ρ⟩dP(ρ) ≥
Nn∑
k=n

λn,k

∫
P(Ω)

⟨(ϕkρ)c|ρ⟩dP(ρ)

≥
Nn∑
k=n

λn,k

(
(D)P

′ − 1

k

)
≥ (D)P

′ − 1

n
. (16)

The sequence
(
(ϕ̄nρ )ρ

)
n≥0

is therefore also a maximizing sequence of (D)P
′ and it also satisfies

for any n ≥ 0 and ρ ∈ P(Ω) the bound∥∥ϕ̄nρ∥∥W 1,∞(Ω)
≤ 4R(1 +R). (17)

Since the sequence
(
(ϕ̄nρ )ρ

)
n≥0

strongly converges to (ϕ∞ρ )ρ in L2(P ⊗ λ), one can extract a

subsequence (that we do not relabel) such that for P-almost-every ρ ∈ P(Ω), the sequence
(ϕ̄nρ )n≥0 converges to ϕ∞ρ in L2(λ). Using (17) and Arzelà-Ascoli theorem, we deduce that for

P-almost-every ρ ∈ P(Ω), the sequence (ϕ̄nρ )n≥0 converges uniformly to ϕ∞ρ in C(Ω) and that∥∥ϕ∞ρ ∥∥W 1,∞(Ω)
≤ 4R(1 +R).

In particular, (ϕ∞ρ )ρ belongs to L∞(P;W 1,∞(Ω)) and we have the limit

0 =

∫
P(Ω)

ϕ̄nρ (·)dP(ρ) −−−→n→∞

∫
P(Ω)

ϕ∞ρ (·)dP(ρ),

so that (ϕ∞ρ )ρ is admissible to (D)P
′. Eventually, for P-almost-every ρ ∈ P(Ω), we have the

limit

⟨(ϕ̄nρ )c|ρ⟩ −−−→n→∞
⟨(ϕ∞ρ )c|ρ⟩, (18)

so that by Lebesgue’s dominated convergence theorem and the bound (16),∫
P(Ω)

⟨(ϕ∞ρ )c|ρ⟩dP(ρ) = lim
n→+∞

∫
P(Ω)

⟨(ϕ̄nρ )c|ρ⟩dP(ρ) = (D)P
′,

which proves that (ϕ∞ρ )ρ ∈ L∞(P;W 1,∞(Ω)) is a maximizer for (D)P
′. □

Appendix B. Strong-convexity of Kρ for measures with non-convex support

This section gathers occurrences of measures ρ where the strong convexity estimate (4) of
Assumption 1.3 is verified.

B.1. Measures with convex support. This result is mostly extracted from [18].

Proposition B.1. Let ρ ∈ Pa.c.(Ω). Assume that spt(ρ) is convex and that there exists

mρ,Mρ ∈ (0,+∞) such that mρ ≤ ρ ≤Mρ on spt(ρ). Let ψ, ψ̃ ∈ C(Ω). Then

⟨ψ − ψ̃|(∇ψ∗)#ρ⟩+ Cd,R,mρ,MρVarρ(ψ̃∗ − ψ∗) ≤ Kρ(ψ̃)−Kρ(ψ),

where Cd,R,mρ,Mρ =

(
e(d+ 1)2d+1Rdiam(spt(ρ))

(
Mρ

mρ

)2)−1

.
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Proof. We only present here a formal sketch of the proof, which heavily relies on computations
done in Section 2 of [18]. Assuming that ψ and ψ̃ are smooth enough (see Proposition 2.4

of [18]) and introducing for t ∈ [0, 1], ψt = (1 − t)ψ + tψ̃, Proposition 2.2 of [18] allows to
differentiate Kρ(ψ

t) with respect to t and to obtain:

Kρ(ψ̃)−Kρ(ψ) =
d

dt
Kρ(ψ

t)
∣∣∣
t=0

+

∫ 1

0

∫ s

0

d2

dt2
Kρ(ψ

t)dtds

= ⟨ψ − ψ̃|(∇ψ∗)#ρ⟩+
∫ 1

0

∫ s

0

∫
Ω
⟨∇v(∇(ψt)∗)|D2(ψt)∗ · ∇v(∇(ψt)∗)⟩dρdtds, (19)

were v = ψ̃ − ψ. Reasoning as in the proof of Proposition 2.4 of [18], the Brascamp-Lieb
concentration inequality [9] and the log-concavity of the determinant seen as an application
on the set of s.d.p. matrices ensure the following bound:

CR,mρ,Mρ min(t, 1− t)d2Var 1
2
(µ+µ̃)(ψ̃ − ψ) ≤

∫
Ω
⟨∇v(∇(ψt)∗)|D2(ψt)∗ · ∇v(∇(ψt)∗)⟩dρ,

where CR,mρ,Mρ =

(
eRdiam(spt(ρ))

(
Mρ

mρ

)2)−1

, µ = (∇ψ∗)#ρ and µ̃ = (∇ψ̃)#ρ. Back to

(19), this leads to

⟨ψ − ψ̃|(∇ψ∗)#ρ⟩+ Cd,R,mρ,Mρ2Var 1
2
(µ+µ̃)(ψ̃ − ψ) ≤ Kρ(ψ̃)−Kρ(ψ),

where Cd,R,mρ,Mρ =

(
e(d+ 1)2d+1Rdiam(spt(ρ))

(
Mρ

mρ

)2)−1

. We conclude using the convex

analysis argument of Proposition 3.1 from [18], which directly ensures

Varρ(ψ̃∗ − ψ∗) ≤ 2Var 1
2
(µ+µ̃)(ψ̃ − ψ).

We get the general case (without the smoothness assumptions on ψ and ψ̃) using approximation
arguments presented in Proposition 2.5 and 2.7 of [18]. □

B.2. Measures with connected union of convex sets as support. We extend Proposition
B.1 to the case of a source measure ρ with a possibly non-convex support. We will assume
that spt(ρ) can be written as a connected finite union of convex sets.

Proposition B.2. Let ρ ∈ Pa.c.(Ω) such that there exists mρ,Mρ ∈ (0,+∞) verifying mρ ≤
ρ ≤ Mρ on spt(ρ). Assume that spt(ρ) is connected and that there exists N ≥ 1 convex

sets (Ci)1≤i≤N in Ω such that spt(ρ) =
⋃N
i=1Ci. Also assume that for any i ̸= j such that

Ci ∩ Cj ̸= ∅, one has ρ(Ci ∩ Cj) > 0. Then there exists a constant cρ depending on ρ such

that for any ψ, ψ̃ ∈ C(Ω),

⟨ψ − ψ̃|(∇ψ∗)#ρ⟩+ cρVarρ(ψ̃∗ − ψ∗) ≤ Kρ(ψ̃)−Kρ(ψ).

Remark B.1 (Constant cρ and Poincaré-Wirtinger constant of ρ). The constant cρ of
Proposition B.2 is not made precise in the statement. A look at the proof of this proposition
only allows to bound cρ in terms of the second smallest eigenvalue λ2(L) of a weighted graph
Laplacian L, that is built from the graph whose vertices are the convex sets Ci and whose
edge weights are the masses ρ(Ci ∩ Cj) that ρ grants to the intersection of the convex sets Ci
and Cj . The constant cρ then reads:

cρ =

(
e(d+ 1)2d+1R2

(
Mρ

mρ

)2(
N2 +

2N3

λ2(L)

))−1

.
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The quantity λ2(L) is not explicit, but it can be linked to the weighted Cheeger constant of ρ,
defined by

h(ρ) = inf
A⊂spt(ρ)

|∂A|ρ
min(ρ(A), ρ(spt(ρ) \A))

,

where |∂A|ρ =
∫
∂A∩int(spt(ρ)) ρ(x)dH

d−1(x) and where the infimum is taken over Lipschitz

domains A ⊂ int(spt(ρ)) with boundary of finite Hd−1-measure. Quoting [24] (Lemma 5.3),
this constant can in turn be linked to the L1 Poincaré-Wirtinger constant CPW (ρ) of ρ. Indeed,
h(ρ) is positive whenever ρ satisfies an L1 Poincaré-Wirtinger inequality, i.e. whenever there
exists a finite CPW (ρ) > 0 such that for all smooth function f on Ω,

∥f − Eρf∥L1(ρ) ≤ CPW (ρ) ∥∇f∥L1(ρ;Rd) .

The Poincaré-Wirtinger constant CPW (ρ) and the Cheeger constant h(ρ) are then related by
the inequality

h(ρ) ≥ 2

CPW (ρ)
.

Using ideas similar to the ones found in Section 5.2 of [24], the eigenvalue λ2(L) can be
bounded in terms of the Cheeger constant of ρ, and thus in terms of CPW (ρ). We do not
detail this comparison here but only report that cρ may be written

cρ =

(
e(d+ 1)2d+1R2

(
Mρ

mρ

)2

N

(
N +

1

2

(
Mρsd−1R

d−1N2CPW (ρ)

ε2

)3
))−1

,

where sd−1 denotes the surface area of the unit sphere in Rd and

ε = min

(
min

i,j|Ci∩Cj ̸=∅
ρ(Ci ∩ Cj),min

i
ρ (Ci \ ∪j ̸=iCj)

)
> 0.

Proof of Proposition B.2. Let’s denote for now f = ψ̃∗ − ψ∗. We will first exploit a discrete
Laplacian over X = spt(ρ) in order to upper bound Varρ(f) by a sum of variances of f w.r.t.
probability measures supported over the convex sets (Ci)i. We will then use Proposition B.1
to conclude.

For any i ∈ {1, . . . , N}, we denote ρi =
1

ρ(Ci)
ρ|Ci

and mi =
∫
Ci
fdρi. Then one has the

following bound:

Varρ(f) =
1

2

∫
X×X

(f(x)− f(y))2dρ(x)dρ(y)

≤ 1

2

∑
i,j

∫
Ci×Cj

(f(x)− f(y))2dρ(x)dρ(y)

=
1

2

∑
i,j

∫
Ci×Cj

(f(x)−mi +mi −mj +mj − f(y))2dρ(x)dρ(y)

=

(∑
i

ρ(Ci)

)∑
i

∫
Ci

(f(x)−mi)
2dρ(x) +

1

2

∑
i,j

(mi −mj)
2ρ(Ci)ρ(Cj)

=

(∑
i

ρ(Ci)

)∑
i

ρ(Ci)Varρi(f) +
1

2

∑
i,j

(mi −mj)
2ρ(Ci)ρ(Cj). (20)

We now consider the graph G = ({Ci}1≤i≤N , {wij}1≤i,j≤N ) with vertices {Ci}1≤i≤N and
weighted edges {wij}1≤i,j≤N defined by

∀i, j ∈ {1, . . . , N}, wij = ρ(Ci ∩ Cj).
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By construction, this graph has a single connected component. We introduce the weighted
Laplacian matrix L ∈ RN×N of G as follows:

∀i, j ∈ {1, . . . , N}, Lij =

{ ∑
k wik if i = j,

−wij else.

Then L is a symmetric and positive semi-definite matrix. Its null space is made of constant
vectors and we denote λ2(L) its second smallest eigenvalue, which is non-zero. Denoting
m = (mi)1≤i≤N ∈ RN , we introduce m̄ =

(
1
N

∑
imi

)
1N ∈ RN the constant vector whose

coordinates equal the mean of m (we use 1N = (1)1≤i≤N ∈ RN ). Notice that m− m̄ is in the
orthogonal to the null space of L, ensuring the following bound:

1

2

∑
i,j

(mi −mj)
2ρ(Ci)ρ(Cj) ≤ N2 1

2

∑
i,j

(mi −mj)
2 1

N2

= N ∥m− m̄∥2

≤ N

λ2(L)
⟨m− m̄|L (m− m̄)⟩

=
N

λ2(L)

∑
i,j

wij(m
2
i −mimj)

=
N

λ2(L)

∑
i,j

wij
2

(mi −mj)
2. (21)

But for any i, j such that wij > 0, denoting mi∩j =
1

ρ(Ci∩Cj)

∫
Ci∩Cj

fdρ, one has

1

2
(mi −mj)

2 ≤ (mi∩j −mi)
2 + (mi∩j −mj)

2.

And for such i, j,

(mi∩j −mi)
2 =

(
1

ρ(Ci ∩ Cj)

∫
Ci∩Cj

(f −mi)dρ

)2

≤ 1

ρ(Ci ∩ Cj)

∫
Ci

(f −mi)
2dρ

=
ρ(Ci)

wij
Varρi(f),

where we used Jensen’s inequality and the fact that Ci ∩ Cj ⊂ Ci. A similar bound can be
shown for (mi∩j −mj)

2, and plugging these into (21) yields

1

2

∑
i,j

(mi −mj)
2ρ(Ci)ρ(Cj) ≤

N

λ2(L)

∑
i

∑
j|Ci∩Cj ̸=∅

(
ρ(Ci)Varρi(f) + ρ(Cj)Varρj (f)

)
≤ 2N2

λ2(L)

∑
i

ρ(Ci)Varρi(f).

Injecting this into (20) yields

Varρ(f) ≤
(
N +

2N2

λ2(L)

)∑
i

ρ(Ci)Varρi(f). (22)

Now recalling that f = ψ − ψ̃, we have by Proposition B.1 for any i ∈ {1, . . . , N} that

⟨ψ − ψ̃|(∇ψ∗)#ρi⟩+ Cd,R,mρ,MρVarρi(ψ̃
∗ − ψ∗) ≤ Kρi(ψ̃)−Kρi(ψ),
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where Cd,R,mρ,Mρ =

(
e(d+ 1)2d+1R2

(
Mρ

mρ

)2)−1

. Weighting this last inequality with ρ(Ci)

and summing over i ∈ {1, . . . , N}, this raises

⟨ψ − ψ̃|(∇ψ∗)#ρ⟩+
Cd,R,mρ,Mρ

N

N∑
i=1

ρ(Ci)Varρi(ψ̃
∗ − ψ∗) ≤ Kρ(ψ̃)−Kρ(ψ).

Using (22) eventually gives

⟨ψ − ψ̃|(∇ψ∗)#ρ⟩+ cρVarρ(ψ̃∗ − ψ∗) ≤ Kρ(ψ̃)−Kρ(ψ),

where cρ =

(
e(d+ 1)2d+1R2

(
Mρ

mρ

)2 (
N2 + 2N3

λ2(L)

))−1

. □
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