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Abstract

This paper presents a method for the automatic labeling of vascular bifurcations

along the Circle of Willis (CoW) in 3D images. Our automatic labeling process

uses machine learning as well as dimensionality reduction algorithms to map

selected bifurcation features to a lower dimensional space and thereafter classify

them. Unlike similar studies in the literature, our main goal here is to avoid a

classical registration step commonly applied before resorting to classification. In

our approach, we aim to collect various geometric features of the bifurcations of

interest, and thanks to dimensionality reduction, to discard the irrelevant ones

before using classifiers.

In this paper, we apply the proposed method to 50 human brain vascular

trees imaged via Magnetic Resonance Angiography (MRA). The constructed

classifiers were evaluated using the Leave One Out Cross-Validation approach

(LOOCV). The experimental results showed that the proposed method could

assign correct labels to bifurcations at 96.8% with the Naive Bayes classifier.

We also confirmed its functionality by presenting automatic bifurcation labels

on independent images.
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1. INTRODUCTION

Automated labeling of the bifurcations that constitute blood arteries is a

critical problem with many practical applications. It could provide additional

guidance to an interventional radiologist when surveying a patient’s vascular

system, or provide an automatic measurement of specific vessel segments [1]. It5

can also be used to detect trends in the development of a given disease. Among

the vascular disorders, intracranial aneurysms (ICAs) are of particular interest

as their occurrence, or more precisely their rupture may be devastating [2].

Within the framework of this study, we will specifically focus on the CoW

and its constituting arteries. Indeed, the ICAs presenting the highest rupture10

rates, are those located onto the bifurcations of the CoW [3]. The CoW is

a network of arteries which connects the left and right sides of the anterior

cerebral circulation to the posterior cerebral circulation at the base of the skull

(Fig. 1(a)). It originates from three primary arteries: the left and right internal

carotid arteries and the vertebrobasilar artery.15

The prevalence of these ICAs can vary between 5 and 8% of the population

[4]. It is therefore important to understand the anatomical variants with their

effects on the haemodynamic and geometrical parameters responsible for the

pathogenesis of this neurological disease [5].

Analyzing the statistical variation of the arteries and bifurcations’ geometry20

may help to quantify the risk factors related to the vascular tree geometry for

aneurysm occurrence [6]. It is important to notice that the significant variability

of the vasculature shapes among patients, and the important complexity of the

arteries’ shapes [7, 8, 9] make the automatic labeling of the CoW a very challeng-

ing problem. In order to help monitoring ICAs, the detection and recognition of25

the bifurcations and aneurysms are needed. The Manual anatomical labeling is
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a tedious and time consuming task. Therefore, its automation becomes crucial

to streamline the geometric characterization of a large number of cases [10].

In particular, we are interested in the automatic labeling of major CoW

bifurcations (Fig. 1(b)), where 90% of all the cerebral aneurysms occur [10].30

Bifurcations are defined as the end points of cerebrovascular vessels. Thus, the

labelling of bifurcation centers identifies the intersection points of the arteries

connecting them. In this study, we have selected eleven Bifurcations of Interest

(BoI) presenting the highest risk of aneurysm development (see Fig. 1(a)) :

The Anterior communicating Artery (AcoA), the Basilar Artery (BA), left and35

right Posterior Cerebral Arteries (PCA). They are connected to the posterior

communicating arteries (PcoA). The internal carotid artery (ICaA), which is

divided into the anterior cerebral artery (ACA) and the middle cerebral artery

(MCA). In addition to the ophthalmic artery (OA) that is a branch of the ICaA.

(a) The area of interest (b) Schematic representation of

the BoIs.

Figure 1: Anatomy of the Circle of Willis.

In this paper, we present a new automatic method to identify the main40

BoI on 3D TOF-MRA human brain acquisitions. This study follows a previous

work which was focused on the automatic labeling of the main bifurcations

constituting the CoW in synthetic and mouse vasculatures [11]. Our suggested

method is designed to satisfy the following main expectations: 1) experiment
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the method on complex images; 2) propose a more robust labeling method,45

and 3) demonstrate how a dimensionality reduction method can replace the

registration step. The remainder of the paper is organized as follows. In Section

2, a summary of the previous studies is presented. Section 3 describes the

workflow of the proposed method. The evaluation on a set of 50 TOF-MRA

images is presented in Section 4, experimental results are presented in section50

5. And finally, section 6 provide a discussion of the strengths, limitations of the

proposed method and concludes the paper.

2. RELATED WORKS

Structural changes in cerebral vasculatures are key indicators of many dis-

eases affecting the brain. Primary angiopathies, vascular risk factors, vascular55

occlusions, and strokes all affect the functions of the brain’s vascular network

[12]. The frequency of cerebrovascular aneurysms is rapidly increasing [13].

Considering the risk of rupture that is life-threatening, it is essential to develop

a tool to help radiologists detect aneurysms at an early stage [14].

This work is part of a wide scientific French project [15]. The main goals of60

this project are the following: 1) an in-depth analysis of factors such as genetical

predisposition, smoking, chronic diseases which can lead to the occurence of

an ICA located along the CoW, 2) the automatic detection of bifurcations and

their geometrical analysis [6] and the automatic identification of the bifurcations

of the CoW where the risk of rupture is higher. In this work, we present a65

new automated method for identifying major bifurcations of interest in the

CoW within 3D human brain acquisitions. As previously mentioned, this study

extends our previous work [11], where we labeled major bifurcations in both

artificial images (vascusynth [16]) as well as in mouse brain acquisitions. Using

a set of 30 vascuSynth synthetic images, we achieved a 98% recognition rate70

for the 14 main bifurcations using a Linear Discriminant Analysis (LDA). On

mouse brain acquisitions (µ-CT scans), labeling the 16 bifurcations of interest

with the Naive Bayes classifier exhibited an accuracy of more than 95%.
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The anatomical labeling may be considered as a mapping of an unlabeled

case to an atlas, represented by a knowledge base of the population mean with75

geometric and structural variability. Many works have been devoted to the

design of brain atlases and have attempted to associate various parts of the brain

with a particular ability or task [17]. Fan et al.[18] have developed an atlas that

explores the complex relationships between structure, and connectivity in order

to better understand various functions of the human brain. Nowinski et al.[19]80

summarize the creation, validation and commercialization of the brain atlas.

The construction of a cerebral anatomical atlas of the human brain has al-

ready been studied in the past. Bogunovic et al. [7] took advantage of the a pos-

teriori maximum likelihood estimation to automatically label the CoW. Dunas

et al.[20] constructed a probabilistic atlas for automatic labeling of cerebral ar-85

teries. In the work of Robben et al.[8], the authors used graphical matching

algorithms to identify and label human brain arteries.

With the development of machine learning methods, new methods address-

ing the automatic bifurcation labeling problem have been proposed. Ota et al.

[21] proposed a method that provides the anatomical names of the bronchial90

branches using the AdaBoost multi-class technique. In the work of Murat et

al.[22], they identified cerebral arteries using random forest and a Bayesian

network. Wang et al.[23] also took advantage of supervised machine learning

algorithms to automatically label cerebral arteries. To identify the bifurcations,

they relied on the interdependence of the vessel axis as well as several features95

such as centerline length or curvature. Their method is also based on a model

of the vessel centerline, therefore, they did not take into account the charac-

teristics of the diameter and cross section of the arteries. In the work of Zhao

et al.[24], Random Forest algorithm was implemented based on vessel features

for bifurcation detection on both artificial and 3D clinical chest CT images. All100

these approaches rely on a registration step before the creation of the atlas, in

order to align the images and increase their correspondence. Registration is the

process of finding a geometrical transformation that spatially aligns two distinct

images. It is widely used in medical imaging, in particular, neuroradiologists
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may resort to such methods to quantify aneurysm growth [25].105

In this work, we present an automatic solution to categorize CoW bifurca-

tions (where aneurysms are prevalent) from 3D MRA brain acquisitions. In the

proposed method, we apply machine learning classifiers onto various geometric

features of the cerebral arteries. We hereby exploit more features characterizing

each bifurcation of interest than was previously done from competing methods110

of the literature [7, 23]. For instance, not only do we consider the bifurcations

coordinates, but also the arteries’ thickness (diameters and cross-sections) are

taken into consideration by our process. We believe that such properties may

be highly discriminant when it comes to classify a given bifurcation.

Furthermore, in this work, one of our basis assumptions was that using n-115

dimensional clustering combined with a dimensionality reduction step might

successfully replace the registration stage. To do so, we have used the Linear

Discriminant Analysis (LDA). We also provide an additional experimental eval-

uation of the approach using rigid registration before the labeling step. Using

evaluation measures, we demonstrate the advantages of the proposed method120

over state of the art methods.

3. MATERIALS AND METHODS

The whole pipeline architecture of the automatic labeling is shown in Figure

2. The MRA data were preprocessed before generating feature vectors for each

bifurcation. After preprocessing, the features were combined to form the con-125

catenated feature vector. A dimensionality reduction step was applied before

classification. We used a Linear Discriminant Analysis to project the concate-

nated feature vector onto a reduced number of dimensions where the points

representing the data belonging to the same group (bifurcation label) tend to

be close to each other. Eight classifiers were used : Support Vector Machine130

(SVM), Logistic Regression (LR), LDA, Decision Tree (DT), Random Forest

(RF), K-Nearest Neighbor (KNN), Naive Bayes (NB), XGBoost and Quadratic

Discriminant Analysis (QDA). Further details will be provided for all these clas-
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Figure 2: The pipeline architecture of the data preprocessing and automatic labeling method.

sifiers in section 3.2.2.

3.1. Preprocessing135

3.1.1. Subjects

In this study, 50 TOF MRA source images were used to develop the auto-

matic labeling solution. The data includes images with and without aneurysms.

The images were acquired from various University Hospitals, all over France.

15 images were reconstructed within a matrix of size 500 × 500 × z, 15 images140

have a resolution of 512×512× z, and 20 other images are of size 475×475× z,

where z refers to the number of slices in the 3D volume.

Using zero-padding along x and y coordinates, we resized all images to the

same resolution of 512 × 512 × z voxels (preserving the slice number). High-

resolution images have a voxel size of 0.49 × 0.49 × 0.57µm and were all saved145

with a 16-bit per voxel depth.
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3.1.2. Bifurcations of interest and annotations

To allow extraction of quantitative features from the vessel structures, the

acquired brain vasculature must be segmented in 3D. The MRA data was seg-

mented using 3D Slicer1. Indeed, we must first extract the arteries from the 3D150

vasculatures by manual segmentation. For each image, a region of interest along

the CoW is delineated. Note that this manual segmentation is only performed

once, for the learning phase of the anatomical atlas construction process. Ob-

viously, once the model is set up, an automatic segmentation will be applied to

any new image provided to the model.155

Once the vascular tree (and more particularly its CoW) has been properly

segmented, a 3D skeleton is computed and its corresponding 3D undirected

graph is built [26]. The labeling algorithm presented in this work consists of

estimating the label of each bifurcation using machine learning classifiers. Thus,

generating an atlas requires a training set of vascular graphs and ground truth160

annotation of BoIs on these graphs. Note that not all BoIs will be present in

every vascular graph. This variability can be caused either by the patient’s par-

ticular vasculature anatomy or by the segmentation process and the subsequent

skeletonization.

In the present study, only the bifurcations with the highest risk of aneurysm165

formation along the CoW were selected. We first prune the centerline model

to a region around the CoW. For a complete representation of the Circle of

Willis, this yields to 13 bifurcations. We have witnessed in our dataset that both

posterior cerebral arteries were regularly missing in the MRA-TOF acquisitions.

Therefore, the two bifurcations constituted by the left and right PCA and PCoA170

arteries (in Figure 1) are not considered in our study when the communicating

artery (PCA or AcoA) was actually missing in the majority of the MRA subjects

in our dataset. Due to the heterogeneity of the different cases, we are thus

mainly interested by eleven bifurcation points, which are labeled as A through

K in Figure 1.175

1https://www.slicer.org/
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3.1.3. Features extraction

It is widely accepted that the geometrical features of the bifurcation plays an

important role in the aneurysms formation [27]. Similarly to our previous work,

we hereby propose to classify the bifurcation points based on their associated

geometric features. That is, for each BoI, we compute several geometrical fea-180

tures from its three branches, and moreover, we also consider various combined

features. Overall, we end up gathering 61 computed features identifying the

bifurcations: 35 collected geometrical features, and 26 combinations. The 35

basis features were collected using the works in [6].

The basic feature vector contains: the 3D coordinates of the center of each185

bifurcation, the extremity coordinates of the branches, the sum of the three

unit direction vectors of all branches (Sx, Sy, Sz), the tortuosity (Ti), the max-

imum and minimum diameters(�min
i , �max

i ), the three angles vector between

each pair of branches Θi and the cross-section area of the arteries (Ai), where

i = {1, 2, 3} refers to the bifurcation branch. Note that for the bifurcations’190

classification, we rely on the comparison of the minimum, maximum, sum or

average of the three computed features composing each bifurcation. The com-

binations of characteristics are very critical for the classification accuracy. For

each bifurcation, we have computed the ratio between the minimum and max-

imum diameters, angles and cross-section ( max(�max
i )

min(�min
i )

,max(Θ)
min(Θ) ,

max(Ai)
min(Ai)

). Also,195

we suppose that the product of the largest branch’s section by it’s own tortu-

osity, or between the largest branch’s tortuosity and it’s corresponding section

can help identifying each bifurcation.

In this work, we add new features related to the bifurcation orientation. For

each branch constituting the bifucation, we make the projection of its directional200

vector with respect to the xy, xz and yz plans.

Thus we compute the angles θixy,θixz and θiyz. Consequently, we get three

angles computed for each artery. Unfortunately, the characterization process [6]

cannot relate a given angle with it’s corresponding arteries, we thus use the

average, sum, min and max of the three directional angles along each axis, i.e.205
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ΘO = (θixy, θ
i
xz, θ

i
yz). All those 61 features are presented in Table 1 and are

considered as input data to train machine learning algorithms for bifurcation

recognition and labeling in MRA images.

Feature Description

Basics (x0, y0, z0): coordinates (coords) of centers

(max(xi),max(yi),max(zi)): maximum of extremities

coords

(min(xi),min(yi),min(zi)): minimum of extremities co-

ords

(Sx, Sy, Sz): Directional sum vector

(Θ = (θ1, θ2, θ3)): Average, sum, min and max of the

three Angles(
ΘO =

(
θix, θ

i
y, θ

i
z

))
: Average, sum, min and max of the

three orientation angle

(T = (T1,T2,T3)): Average, sum, min and max of tor-

tuosity(
�max = (�1

max,�
2
max,�

3
max)

)
: Average, min & max

of the maximum diameter(
�min = (�1

min,�
2
min,�

3
min)

)
: Average, min & max

of the minimum diameter

(A = (A1,A2,A3)): Average, sum, minimum and max-

imum of Area-Cross-section.

Combinations ( max(�max
i )

min(�min
i )

,max(Θ)
min(Θ) ,

max(Ai)
min(Ai)

)

max(A)×max(T) , max(Ti)×Ai, max(Ai)× Ti

max(Ai)

max(�i
max)

, max(Ai)

min(�i
min)

, max(�max)
min(�min) ,

max(�min)
min(�min) ,

max(A)
max(�max)

Table 1: Feature set of collected data.
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3.2. Classification

After the preprocessing step, the combined and basic features were merged210

to form the final concatenated feature vector that represents, in our context, the

descriptor of a target bifurcation. Once the descriptor vector, composed of 61

feature, is assembled, it is being fed to the dimensionality reduction step prior

to be used by the classification algorithms. The performances of the final model

were assessed by a separate test set to ensure generalization. The complete215

architecture of the Atlas construction pipeline is shown in Figure 2.

3.2.1. Dimensionality reduction

A dimensionality reduction step can be applied before the classification pro-

cess due to a possible overlapping or irrelevant features that may lead to over-

fitting during the training [28]. Independent Component Analysis and non-220

negative matrix factorization represent two unsupervised techniques for dimen-

sionality reduction. One of the most well-known unsupervised multivariate

methods is Principal Component Analysis [29]. For unsupervised classifica-

tion, a labelling of the various classes is not necessary, whereas for supervised

clustering, the classes labels must be known while carrying out dimensionality225

reduction.

In this work, we aim to tackle the bifurcation clustering issue using super-

vised classification methods, and more particularly, we have used the LDA as a

dimensionality reduction algorithm.

The main goal of the LDA is to map input data into lower dimensions with230

the highest variance using a linear function [30]. In other words, the LDA de-

termines a linear combination feature vectors in the aim to maximize the mean

difference between the classes or to maximize the interclass variance. Hence,

similar data are clustered altogether whereas dissimilar ones are further sepa-

rated. In this Work, the LDA was used with a twofold purpose: i) reduce the235

data dimensionality and ii), act as a classifier in order to predict a bifurcation

label. Therefore, bifurcation labeling can be performed directly using the LDA

algorithm or by applying another classification algorithm on the mapped data
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within the lower dimension space.

3.2.2. Machine learning classification240

Over the past decades, Artificial Intelligence, and more particularly Ma-

chine Learning (ML), have been increasingly used for various medical imaging

tasks [31]. In this paper, the bifurcation labeling process is considered as a

multi-label classification problem. Using the variables generated with the LDA,

we have tested the following nine classifiers : LDA, SVM, LR, RF, QDA, DT,245

NB, KNN and XGBoost. The first one was developed by Fisher in 1936 [32]. Its

principle is to project the data set in a lower dimension space where the points

belonging to the same group tend to gather together. The QDA is quite sim-

ilar to the LDA, it allows quadratic decision boundaries between classes [33].

SVM was first suggested by Vapnik in 1995 [34], it aims to find the optimal250

hyperplane separating the data set with differing labels into multiple hyper-

spaces [35]. Similarly to SVM, LR also produces a hyperplane using a linear

transformation function and a sigmoid activation function to split the data and

provide the probability that the unseen data is classified into a given group.

DT represents the hierarchical exemplification of knowledge relationships that255

contains nodes and connections [36]. Each node represents the characteristics of

a category to be classified and each subset defines a value that can be taken by

the node. Following the same principle, RF is a bagging algorithm that predicts

the labels of unseen data based on the votes of all the embedded decision trees

[37]. Each decision tree is generated by randomly choosing the data from the260

total available data. The KNN classifier groups the data into coherent clusters

or subsets and ranks the newly entered data based on their similarity to the

previously formed data [38]. And finally, XGBoost is a popular supervised ma-

chine learning algorithm used for classification and prediction problems. It is

a modified version of the gradient boosting algorithm, which classifies data by265

combining model resulting from classification decision trees [39]. In the context

of our work, the best algorithm was selected by cross-validation, as described

within the next section, based on the evaluation metrics.
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4. EVALUATION METHODOLOGY

Overall, 50 MRA-TOF volumes were selected and a LOOCV step was per-270

formed to build the predictive model with optimal hyperparameters. Among the

50 volumes, 49 were used for training, and one was used for validation. Each

and every volume was iteratively used as the “validation set”.

The classification performances were systematically analyzed for the different

combinations of classifiers using LOOCV in the section 5. The reliability was

evaluated using the area under the ROC curve (AUC). In parallel, sensitivity,

specificity and F1-Score were measured for additional performance evaluation,

all these metrics are presented below.

Precision =
Tp

Tp + fp

Recall =
Tp

Tp + fn

F1− Score =
2×Recall × Precision
Recall + Precision

Accuracy =
Tp + Tn

Tp + fn + fp + Tn

where the True positive (Tp) is the number of positive samples predicted

as positive; True Negative (Tn) is the number of negative samples predicted275

as negative. False Positive (Fp): the number of negative samples predicted as

positive; and False Negative (Fn): the number of negative samples predicted as

positive.

5. EXPERIMENTAL RESULTS

Traditionally, registration techniques are used to attenuate the differences280

between various acquisitions in order to construct an anatomical atlas. In this

section, we compare the effects of registration and dimensionality reduction

(using LDA) on the classification results. Both experiments are performed with

a LOOCV on 50 MRA 3D images.

13



5.1. Labeling using registration285

In the first experiment, all volumes composing our dataset are rigidly aligned

using the General Registration (BRAINS) library [40] (the target reference had

a dimension of 512 × 512 × 210 voxels). From each registered image, we first

compute a 3D undirected graph on the skeleton of the segmented MRA-TOF.

Our experimental protocol was as follows:290

1. Method A: From the registered images, we only collect the bifurcations’

3D coordinates. We then apply our labeling approach on those coordi-

nates.

2. Method B: We compute geometrical features described in the previous

section from non registered images and concatenate them with the 3D295

coordinates of bifurcations’s centers used in the "Registration - Method

A". Note that here, the geometrical features were collected prior launching

the registration process, in order to avoid any distortion of the arteries’

geometry. Furthermore, the concatenated data are used as classification

inputs without any dimensionality reduction since we expect that such a300

step might allow to avoid resorting to registration.

Table 2 shows the accuracy and F1 score for each method separately. We

can notice that the integration of several additional geometric features improves

the classification rate for the majority of the ML classifiers. Using geometric

features, XGBoost and QDA showed the highest accuracies of 86.7% and 83%305

respectively. However, KNN showed the lowest performance with an accuracy of

60.7%. Our findings suggest that the performance of each algorithm fluctuates

with different inputs for the two labeling methods. The results also illustrate

that potential inaccuracies in 3D realignment can lead to classification errors.

5.2. Labeling without registration310

In this scenario, we have tested three different approaches. First, our method

was applied on the three-dimensional coordinates of the bifurcations centers

without any additional features where the LDA was used as a classifier ("Method

14



Table 2: The Method A indicates the labeling approach based only on the coordinates after

registration, and Method B the labeling approach based on the coordinates after registration

combined with the geometrical features.

Classifier
Method A Method B

Accuracy F1-Scores Accuracy F1-Scores

SVM 62.3 54.5 74.4 73.1

DT 74.2 71.5 78.9 78

LR 51.9 42.6 58.3 56.0

KNN 74.5 70.2 60.7 59.1

NB 73.1 68.6 68.3 66.6

RF 77.5 73.7 81.5 81.0

XGBoost 78.9 76.0 86.7 86.3

QDA 75.8 71.7 83.9 83.2

1"). For the second approach ("Method 2"), the collected features were added

to the bifurcations’ center coordinates and directly used as inputs for the classi-315

fication without any dimensionality reduction. Finally, in the third experiment,

the LDA was used to represent the bifurcations’ features in a lower dimensional

space, the classifiers were then trained in the new components of this reduced

space ("Method 3"). These three tests were performed to demonstrate the im-

portance of BoI features and the improvement brought by the LDA in predicting320

the bifurcation labels during an automatic evaluation.

Our goal being to achieve an efficient clustering of the BoI based on various

geometrical features, we do not know a priori which particular feature might be

discriminative or not. We have hence opted for an approach where we deliber-

ately exploit the large amounts of features, as presented earlier (61 geometrical325

features), and subsequently, we aim to reduce this initial set of features to a

smaller one, which hopefully shall be more representative, to feed our machine

learning classifiers. In this section, we demonstrate the effect of dimensionality
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reduction methods (such as the LDA) on the performance of learning algorithms

to predict the BoI labels.330

5.2.1. Dimensionality reduction

In a scenario where N classes are to be clustered, the LDA transforms the

set of data into (N − 1) discriminant functions. In this study, we aim to clas-

sify eleven bifurcations of interest, the LDA thus transforms the set of computed

features into ten components. In order to select the best number of LDA compo-335

nents that will improve the evaluation rate of our classification, we have plotted

the accuracy and F1-Score as a function of the LDA components. Figures 3(a,b)

show that all classifiers achieve a maximum accuracy and F1-Score when the

dataset dimensions are reduced to 9 components.

It is important to note that KNN and XGBoost reach the maximum accuracy340

of 92% when the dimensions of the dataset are reduced to 9, while the DT and

LR algorithms reach 86% and 88.5% accuracy respectively. Moreover, the NB

model after using LDA performs better when the dataset dimension is reduced

to 9, reaching 96.8% of accuracy. The QDA and LDA classifiers respectively

achieve 95% and 90.6% of accuracy.345
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Figure 3: Effect of the number of LDA components on the Accuracy and F1-Scores metrics.

5.2.2. Predictive models performance

We examine the impact of the features and dimensionality reduction using

the LDA on the performance of 9 popular ML algorithms. Specifically, we use
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9 supervised learning algorithms to predict the BoI of labels. The accuracy

and F1-Score of these algorithms are shown in Table 3 and Figure 6. We can350

notice that adding several additional geometric features improves the classifica-

tion rate. Similarly, transforming and representing features in a LDA-reduced

dimensional space with the 9 components has a very clear impact on the labeling

of the human vasculature’s bifurcations. Moreover, DT and LR have the worst

performance in terms of accuracy and F1-Score. Although NB after dimension-355

ality reduction exhibits the best performances (maximum accuracy (96.8%) and

maximum F1-Score (95.7%)), the second highest accuracy is achieved by the

LDA classifier with 95.1%. NB, LDA, and XGBoost show higher classification

performances, with AUC values equal to 0.97, 0.96, and 0.95, respectively, while

the DT algorithm presents the lower performance, with an AUC of 0.92. In ad-360

dition, QDA, LR and RF, reach similar classification performances with AUC

values of 0.93.(see Fig. 7).

We report the accuracy, AUC, and F1-Score for each particular BoI in Figure

4 using the NB classifier. We can notice that most bifurcations are correctly

labeled with an identification rate of 100%. The bifurcations’ misclassifications365

can be observed within the confusion matrix (Figure 5). From this confusion

matrix, we can notice that the bifurcation points G, H and J suffer the most

from classifications errors. G is occasionally detected as I and H is sometimes

incorrectly recognized as being J. These misclassifications are mainly due to the

variability of the vascular tree, especially missing or the obvious features of the370

two vessels ICaA and MCA. More interestingly, due to the absence of the ACA

vessels, the D and C bifurcations are barely affected by the above reason.

Table 4 presents a comparison of the precision and recall for each bifur-

cation of interest for our proposed method as well as for two state-of-the-art

algorithms [7, 23]. For each analyzed bifurcation, the best performances, in375

terms of Accuracy, Precision and Recall have been set to bold fonts in Table4,

thus highlighting the good performances of our approach compared to state-of-

the-art methods.

Moreover, it is important to point out that a comparison with these com-
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Figure 4: Details of the classification performances of the 11 BoIs in MRA-TOF images with
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Figure 5: Confusion matrix of the automatic bifurcation labeling on the MRA images using

the NB classifier.

peting methods is to be conducted with extreme care. Indeed, the images being380

used in [7, 23] were all acquired using the same MRA scanner, and hence all

images within these two studies present the exact same resolution. Our dataset

allows a better generalization, as all 50 tested images exhibited different image
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Table 3: The Method 1 indicates the labeling approach based only on the 3D coordinates.

Method 2 refers to the labeling based on 3D coordinates combined to geometrical features and

Method 3 is the approach based on the dimensionality reduction (LDA) applied on coordinates

and geometrical features. For each method, we provide the Accuracy (A)[%] ,F1-Scores (F1)

[%] and fitting time (FT).

Classifiers
Method 1 Method 2 Method 3

A F1 FT A F1 FT A F1 FT

SVM 74.4 67.9 52.72 72.1 69.3 8.02 90.0 88.1 1.08

DT 72.3 68.0 0.56 80.7 77.7 1.84 86.0 83.8 0.45

LR 66.2 60.4 0.56 72.3 68.0 3.07 88.7 86.1 0.59

KNN 71.3 66.7 0.32 73.5 70.3 1.37 92.4 90.6 0.45

NB 69.1 63.6 0.34 75.1 70.4 1.04 96.8 95.7 0.42

RF 75.6 71.3 10.49 82.1 79.2 32.73 91.0 89.4 11.87

XGBoost 77.1 72.3 57.36 88.1 85.6 86.58 92.1 90.7 80.23

LDA 74.1 68.4 0.65 - - - 95.1 91.9 0.60

QDA 74.5 69.7 0.77 66.3 64.5 1.20 88.5 86.3 0.58

resolutions acquired from various scanners.

5.3. Testing on independant images385

Contrary to the works in [23], we have tested our approach on two indepen-

dent images not belonging to the 50 images dataset on which we performed the

LOOCV. This allows to analyse the behavior of our approach when considering

a novel image. These two images have a complete CoW, i.e. for each image

all 11 BoIs were correctly detected. However, only 18 BoIs were characterized390

due to the geometrical configuration of these two images (short branches, irrele-

vant branches belonging to bifurcations, etc.) Afterwards, the computed feature

vectors were reduced using the LDA weights saved during the training phase.

The new components obtained in this phase are used as inputs to the classifi-
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Figure 6: Accuracy and F1-Scores on MRA brain acquisitions
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Figure 7: Comparison of different classification algorithms based on the AUC.

cation algorithms. As a result, there was only one misclassified bifurcation, the395

L-bifurcation, which was confused with the H-bifurcation. Thus, we achieved a

labeling rate of 94% for these two images.
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Table 4: The comparison of the evaluation of the 11 bifurcations of interest with accuracy

(A), precision (P) and recall (R) is reported for the proposed method as well as for the best

performing methods in the state of the art [7, 23].

Wang [23] Bogunovic [7] Our method

BoI A P R A P R A P R

A 99.3 95.9 94.0 96 95 100 100 100 100

B 99.3 100 87.8 100 100 100 100 100 100

C 99.2 93.9 92.0 100 100 100 99.7 95.2 98.0

D 99.8 96.2 100 98 100 98 100 99.7 98.1

E 98.2 90.7 78.0 80 80 100 100 97.8 100

F 97.6 77.8 84.0 84 84 100 100 97.8 100

G 99.4 100 90.0 98 100 97 99.9 93.9 95.8

H 99.5 96.0 96.0 98 97 100 98.4 90.3 91.4

I N/A N/A N/A N/A N/A N/A 100 93.1 100

J N/A N/A N/A N/A N/A N/A 97.6 89.8 91.9

K 97.4 79.6 78.0 84 84 100 100 100 100

Average 98.84 92.23 88.86 93.11 93.33 99.44 99.60 96.14 97.74

6. DISCUSSION AND CONCLUSION

In this work, we have proposed a method for anatomical labeling of the

major 11 bifurcations comprising the anterior part of the cerebral vasculature400

on human MRA . Our method learns features of the arteries that describe the

architecture of the vascular network using a subset of manually labeled samples.

Features such as anatomical variation in branch length, orientation angles and

tortuosity can be captured using this method. The problem is formulated as a

supervised ML solution. The total performances of nine different ML algorithms405

were evaluated using a Linear Discriminant Analysis performing dimensionality

reduction. A leave-one-out cross validation, performed on 50 brain MRA ac-

quisitions, has shown higher accuracy than the best performing state-of-the-art

methods ([7, 23]).
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Without registration, we have shown how the geometrical characteristics of410

bifurcations, as well as their associated 3D coordinates, can be used to improve

bifurcation labeling. We can avoid applying a registration stage before per-

forming a 3D clustering thanks to a dimensionality reduction phase. Indeed,

our findings demonstrate that, without relying on a registration step, such an

approach can greatly enhance the prediction of bifurcation labels. However, our415

bifurcation labeling results, with an accuracy of more than 96.8% using the NB

algorithm, compare favorably with those presented by Bogunović et al. [7] who

achieved a correct labeling rate of the vascular tree of 95%. The labeling of

the target vascular system is achieved by a maximum a posteriori probability

estimation where the labeling probability of individual bifurcations is regular-420

ized by the prior structural knowledge of the graph they span. Furthermore,

their method requires a global rigid realignment step before going through the

labeling process. As for the method presented in [23], the proposed approach is

based on independent vascular tree features, the bifurcations coordinates were

not considered, and hence registration methods did not apply. In contrary, our425

method consists in identifying and classifying the bifurcations based on more

features containing the bifurcations’ coordinates along with their extremities.

Our proposed method for bifurcation classification could easily be used in con-

junction with an aneurysm detection method such as the one proposed in [41].

This would allow to automatically identify the aneurysm-bearing bifurcation.430

We have shown in this work that resorting to registration methods may not nec-

essarily be the best option for vascular bifurcations labeling. Indeed, we found

that the overall performances of all ML algorithms were significantly degraded

when applied onto the features collected from registered images compared to

the features issued from the LDA without any registration step.435

Although our presented results may shed some light on the effect of dimen-

sionality reduction methods in labeling the bifurcations instead of going through

a registration step, our research also has some limitations. First, the image data

set used in this work was small, and thus, required using LOOCV. In future stud-

ies, we plan to estimate classification performances based on MRA images with440
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relatively larger sizes. Second, in this work, dimensionality reduction was used

to cluster various geometric features of vascular bifurcations. However, although

this helps to provide more efficient combinations of the said features for better

discrimination, it remains quite challenging to determine which features are best

for the task at hand. Perhaps Feature Selection Techniques could be useful and445

provide different results. Thus, we plan to perform our detailed labeling using

features selection methods in the future. Third, Some of the newer Artificial

Intelligence approaches, such as Deep Learning, CNN, RNN and CapsNet were

ignored because the dataset was fairly simple and easy to process with standard

ML algorithms. Therefore, we also plan to investigate some Deep Learning450

approaches for further improvement.
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