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Hydrodynamic limit for the Kob-Andersen model1

Assaf Shapira2

ABSTRACT. This paper concerns with the hydrodynamic limit of the Kob-Andersen model, an
interacting particle system that has been introduced by physicists in order to explain glassy
behavior, and widely studied since. We will see that the density profile evolves in the hydrody-
namic limit according to a non-degenerate hydrodynamic equation, and understand how the
diffusion coefficient decays as density grows.

1. Introduction3

The Kob-Andersen (KA) model is an interacting particle system on Zd, where each site of4

the lattice is allowed to contain at most one particle, and particles could jump to an empty5

neighboring site only under a certain constraint, conserving the total number of particles.6

More precisely, depending on an integer parameter k, every particle jumps with rate 1 to each7

of its neighboring sites, provided that the particle has at least k empty neighbors both before8

and after the jump (so for k = 1 we obtain the symmetric simple exclusion process). This9

model has been introduced in the physics literature ([16]) as one member of a large family of10

interacting particle systems called kinetically constrained lattice gases (KCLGs), which model11

certain aspects of glassy behavior (see [12, 20]).12

In this paper we will study the hydrodynamic limit of the KA model. Consider a finite box13

with periodic boundary conditions TdN = Zd/NZd, and run the KA dynamics inside TdN . The14

configuration at time s could be described as an empirical measure ν(N)
s on the continuous15

torus Td = Rd/Zd: for a rectangle R ⊂ [0, 1]d, seen as a subset of Td, ν(N)
s (R) will count16

the number of particles in (NR) ∩ TdN , normalized by N−d (so that the total mass remains17

independent of N). The initial configuration that we choose will be approximated by some18

macroscopic profile ρ0 : Td → [0, 1], i.e., the measure ν
(N)
0 will be close to a measure ν019

that has density ρ0 with respect to the Lebesgue measure. A simple example of such initial20

configuration is given by placing a particle at each site x ∈ Zd independently at random with21

probability ρ0(x/N).22

In many systems, the relevant time scale over which νsN changes macroscopically is the23

diffusive time scale N2 (see, e.g., [15, 23]). That is, fixing a time t, we expect the random24

measure ν(N)

N2t to satisfy a law of large numbers, converging to some limiting measure νt. We25

also expect this limiting measure to have a density with respect to the Lebesgue measure,26

namely νt = ρ(θ, t)dθ, which solves the diffusion equation:27

∂

∂t
ρ = ∇D(ρ)∇ρ, ρ(θ, 0) = ρ0(θ). (1.1)
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The parameter D(ρ) is the diffusion coefficient, and when it is non-zero we obtain indeed a28

macroscopic density profile that changes over diffusive time scales.29

Hydrodynamic limits of other KCLGs have been analyzed in [13, 4]. They present two30

example of non-cooperative KCLGs, in which one is able to identify structures (called mobile31

clusters) that could move freely in Zd (see Definition A.3). This way, even though particles32

could be blocked, mobile clusters behave effectively in an unconstrained manner. In cooper-33

ative KCLGs there are no such mobile clusters, so in order to move a particle from one site34

to the other one needs the cooperation of a diverging number of particles. This property has35

a major contribution to the glassy behavior of many KCLGs, and is responsible for the fast36

divergence of time scales. See [25].37

Unlike the models previously studied in [13, 4], the KA model is cooperative. Due to this38

cooperative nature, the combinatorics behind the KA model becomes much more compli-39

cated. Consider the following question – starting from a stationary measure and assuming40

that there is a particle at the origin, will this particle eventually move, or could it stay at the41

origin forever? When the model is non-cooperative the probability to stay forever at the ori-42

gin is clearly 0 – we know that there is some non-zero density of mobile clusters in Zd which43

diffuse freely, so at some point one of them will reach the origin and move the particle. When44

the model is cooperative, as in the case of the KA model, already this basic question becomes45

much more complicated. In some cooperative models the particle might remain blocked for-46

ever with positive probability, possibly depending on the density of the initial configuration.47

In the case of the KA model, it is shown in [25] that all particles will eventually move with48

probability 1, unless the initial density equals 1.49

In the context of the hydrodynamic limit, the techniques used in [13, 4] cannot be simply50

adapted to cooperative models. It is shown in Appendix A that cooperative KCLGs are non-51

gradient, a fact which makes the analysis of the hydrodynamic limit much more involved.52

See Appendix A for a more complete discussion. Another property of non-cooperative models53

used in [4] is that the probability for a site to stay blocked forever for the dynamics in TdN54

decreases exponentially fast with the volume Nd, since it is bounded by the probability that55

no mobile cluster is found in TdN . In the KA model, on the other hand, even though this56

probability decays to 0, the decay is not fast enough.57

Recently, a few methods have been developed to overcome some of these difficulties, prov-58

ing diffusive scaling of the relaxation time [17] and of the motion of a tagged particle [5, 9]59

in the stationary setting. In both cases, the behavior is the same as that of the simple exclu-60

sion process, with time scales that are all slowed down by a factor which diverges quickly as61

the density approaches 1. For example, in the case k = d = 2, the relaxation time at density ρ62

in a box of side N behaves (roughly) like eC/(1−ρ)N2; and the path of a tagged particle in Z263

converges to a standard Brownian motion as the length scale N diverges, when time is scaled64

(roughly) as eC/(1−ρ)N2.65
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FIGURE 1.1. This is an example of a blocked configuration for the case k =
d = 2. The filled circles represent occupied sites, while sites marked with a line
pattern could be either empty or occupied. In this example particles have at
most one empty neighbor, so none of them could move.

The hydrodynamic limit of the KA model has been studied in the physics literature, both66

heuristically and numerically. In [21] the model has been analyzed, under the (wrong) as-67

sumption that the diffusion coefficient D(ρ) vanishes for ρ > ρc ≈ 0.88. [24] studies the68

diffusion coefficient in two dimensions both numerically and under a mean-field approxima-69

tion. This approximation yields a diffusion coefficient that behaves polynomially in ρ, and is70

in rather good agreement with numerical results for low densities. [1] provides a perturba-71

tive analysis of the diffusion coefficient in two dimensions, considering finite range effects,72

and obtaining a polynomial in ρ which approximates D(ρ) very accurately as long as ρ is not73

too big. In view of other quantities related to the KA model studied in [17, 9], a natural con-74

jecture for the high density regime is that the diffusion coefficient remains positive whenever75

ρ < 1, and as ρ tends to 1 it decays (roughly) as e−C/(1−ρ) (in the case k = d = 2). This76

conjecture has been raised in [1] and was supported by numerical simulations.77

The hydrodynamic limit in its full generality, though, cannot exist for this model – consider,78

for example, the case k = d = 2, and an initial density ρ0 bounded above 8
9
. Fix N ∈ 3N,79

and construct the following initial configuration – for every x ∈ T2
N , if x /∈ 3Z2 place a80

particle at x (deterministically). Otherwise, place a particle at x independently at random81

with probability 9ρ0(x/N) − 8. See Figure 1.1. These configurations have limiting density82

1
9

(9ρ0(x/N)− 8) + 8
9

= ρ0, so one may naively expect that, starting the KA dynamics from83

such a configuration, the particle density will converge to the solution of the hydrodynamic84

equation (1.1) with initial density ρ0. However, observing the initial configuration more85

carefully, one sees that it is blocked – no site has two empty neighbors, so the constraint is86

not satisfied. In this case particles do not move, and the dynamics will certainly not follow87

the hydrodynamic limit. Still, since blocked configurations are very rare ([25]), we may hope88

that a hydrodynamic limit does exist in a weaker sense, that would allow us to avoid these89

untypical configurations.90

The same problem also appears in [13], and they suggest two solutions – the first is to re-91

strict the initial configuration, e.g., to an independent product of Bernoulli random variables92
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with parameter ρ0(x/N). This prevents the issue discussed above, where the configuration is93

entirely blocked from the beginning, but one must work harder in order to show that blocked94

configurations are not created later on during the dynamics. Another approach, also con-95

sidered in [13], is to permit transitions in which the constraint is not satisfied, but with a96

vanishing rate. Namely, for some ε > 0, we introduce soft constraints, which allow a particle97

to move with rate 1 when it has k empty neighbors before and after the jump, and with rate98

ε otherwise. This softening of the constraint enables the system to unblock the blocked con-99

figurations, and still the main contribution to the overall dynamics comes from the allowed100

transitions (where the constraint is satisfies).101

This is the approach we will take – consider the KA model with ε-soft constraints, which102

has a hydrodynamic limit with diffusion coefficient D(ε). We analyze this coefficient, showing103

that, as ε→ 0, it converges to a strictly positive limiting coefficient D. This result tells us that104

when ε is very small, it has a very mild effect on the hydrodynamic limit; and the role it plays105

(of unblocking configurations), though crucial for the convergence to the hydrodynamic limit,106

takes a negligible amount of time compared to the hydrodynamic scale. We also analyze the107

value of D at large densities, finding upper and lower bounds for its decay, which match up108

to sub-leading corrections. The decay that we obtain is of the same type as the corresponding109

factor in [17, 9]; so in particular for the case k = d = 2, as conjectured is [1], D decays110

(roughly) as e−C/(1−ρ).111

2. Model and main result112

The Kob-Andersen model in dimension d is a Markov process on Ω = {0, 1}Zd, depending113

on a parameter 2 ≤ k ≤ d. For a configuration η ∈ Ω, we say that x ∈ Zd is occupied if114

η(x) = 1 and empty if η(x) = 0. The elements of Zd are called sites, and we will consider the115

(undirected) graph structure given by the edge set116

E(Zd) =
{

(x, y) ∈ Zd × Zd, y ∈ x+ {±e1, . . . ,±ed}
}
,

where e1, . . . , ed are the standard basis vectors. We will sometimes write x ∼ y to denote117

(x, y) ∈ E(Zd).118

For each configuration η ∈ Ω and edge (x, y) ∈ E(Zd), we define the constraint119

cx,y(η) =

1 if
∑

z:y∼z 6=x(1− η(z)) ≥ k − 1 and
∑

z:x∼z 6=y(1− η(z)) ≥ k − 1,

0 otherwise.
(2.1)

The KA dynamics is then defined as the Markov process whose generator, operating on a local120

function f : Ω→ R, is given by121

Lf(η) =
∑

(x,y)∈E(Zd)

cx,y(η)∇x,yf(η), (2.2)
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where122

∇x,yf(η) = f(ηx,y)− f(η),

and ηx,y is the configuration obtained from η by exchanging the occupation at x and at y. This123

process, for any ρ ∈ (0, 1), is reversible with respect to the measure µρ, which is a product124

measure of Bernoulli random variables with parameter ρ. This is a consequence of the fact125

that cx,y(η) does not depend on the occupation at x and at y. When clear from the context we126

will sometimes omit the subscript ρ. For more details on the construction of the model see127

[6].128

As discussed in the introduction, in order to study the hydrodynamic limit we introduce129

the soft constraint for some ε ≥ 0:130

c(ε)
x,y =

1 if cx,y = 1,

ε otherwise,
(2.3)

and the soft dynamics defined by the generator131

L(ε)f(η) =
∑

(x,y)∈E(Zd)

c(ε)
x,y(η)∇x,yf(η). (2.4)

The introduction of the soft constraints allows us to use the general result of [11, 26]. Fix132

ε ≥ 0, and let133

D(ε)(ρ) =
1

2ρ(1− ρ)
inf
f
µρ

∑
α

c
(ε)
0,eα

(
δα,1 (η(e1)− η(0))−

∑
x∈Zd
∇0,eατxf

)2
 , (2.5)

where the infimum is taken over all local functions f : Ω→ R; a function is local if it depends134

on the occupation of finitely many sites. Note that the sum over x is well defined thanks to135

the locality of f . The operator τx is the translation by x, that is,136

(τxf)(η) = f(τxη),

(τxη)(y) = η(x+ y).

In this setting, by [11, 3, 26], the density profile of the soft dynamics converges in the hydro-137

dynamic limit to the solution of the hydrodynamic equation (1.1), with diffusion coefficient138

D(ε)(ρ).139

By equation (2.5) the diffusion coefficient is decreasing with ε, and hence converging to a140

limit:141

D(ρ) = lim
ε→0

D(ε)(ρ). (2.6)

When taking ε to 0 slowly enough as N grows to infinity, the density profile converges to the142

solution of the diffusion equation (1.1) with this diffusion coefficient:143

Proposition 2.1. Fix a smooth initial density profile ρ0 : Td → (0, 1), and let ν0 be the measure144

whose density with respect to the Lebesgue measure is ρ0. Consider a sequence of initial conditions145
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(η
(N)
0 )N∈N, with η

(N)
0 ∈ {0, 1}TdN , such that the associated empirical measures ν(N)

0 converge to146

ν0. Let ρt(θ) be the solution of the diffusion equation (1.1), with diffusion coefficient D given by147

equation (2.6), and νt the measure with density ρt. For s ≥ 0, denote by ν(ε,N)
s the (random)148

empirical measure associated with the Kob-Andersen model on TdN with ε-soft constraints at149

(microscopic) time s, with the initial configuration η(N)
0 .150

Then there exists a sequence (εN)N∈N for which ν
(εN ,N)

N2s converges in probability to νt as N151

tends to infinity.152

Remark 2.2. In general, the diffusion coefficient is a matrix given by (see [23, Propositions153

2.1 and 2.2])154

Dαβ = lim
t→∞

1

t

1

2ρ(1− ρ)

∑
x∈Zd

xαxβ
(
µρ(η(0) etLη(x))− ρ2

)
.

The reason that D(ε)(ρ) in equation (2.5) is a real number, is that in our case D is a scalar155

matrix: the dynamics is invariant under inversion of a single coordinate (i.e., x 7→ x −156

(2x · eα) eα), and therefore, if α 6= β, the sum
∑

x∈Zd xαxβ(µ(η(0) etLη(x)) − ρ2) must vanish.157

That is, D is a diagonal matrix. Since the dynamics is also invariant under permutation158

of coordinates, all diagonal elements are equal, i.e., D is scalar. This fact is useful for the159

analysis of the limiting PDE in the proof of Proposition 2.1.160

The main result of this paper is that D is strictly positive, so that the hydrodynamic limit is161

not degenerate, i.e., the density profile evolves over diffusive time scales.162

Theorem 2.3. For all ρ ∈ (0, 1),163

D(ρ) ≥

C/ exp
(
λ log(1/(1− ρ))2 (1− ρ)−1/(d−1)

)
k = 2,

C/ expk−1
(
λ(1− ρ)−1/(d−k+1)

)
k ≥ 3,

D(ρ) ≤C ′/ expk−1(λ′(1− ρ)−1/(d−k+1)),

where expk(·) is the k-th iterate of the exponential. The constants C,C ′, λ, λ′ are all strictly164

positive, and may depend only on d and k.165

3. Proof of Proposition 2.1166

The proof is based on the results of [11, 3, 26], together with the continuity of the solution167

ρt(θ) with respect to the diffusion coefficient.168

Denote by ρ(ε)
t the solution of the diffusion equation (1.1) with diffusion coefficient D(ε)169

given by equation (2.5). The existence and uniqueness of ρt and ρεt , as well the maximum170

principle, comes from the theory of parabolic equations (see, e.g., [27]) 1. Indeed, since D171

is bounded and isotropic (see Remark 2.2), we may define a continuous increasing positive172

1Most works treat the equation on Rd rather than the torus. Nonetheless, the results we need hold also for the
equation on Td, see the discussion in Section 11.5 of [27].
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function Φ(u) =
∫ u

0
D(ρ) d ρ, allowing us to write equation (1.1) as173

∂tρ = ∆Φ(ρ),

known as the generalized porous medium equation, or the filtration equation. It is the subject174

of [2], and discussed thoroughly in [27].175

The main tool we use is:176

Theorem 3.1 ([11, 3, 26]). For any smooth test function f on Td,177 ∫
f(θ) d ν

(ε,N)

N2t (θ)
N→∞−−−→

∫
f(θ)ρεt(θ) d θ

in probability.178

In addition, we need to know that, for small ε, the profile ρ(ε)
t is close to ρt. This problem179

is analyzed in [2] in a much more complicated setting, where D(ρ) may approach 0 in some180

points of space. Since we only consider the case where ρ is bounded away from 1, the181

assumptions of [2] are easily verified, yielding:182

Claim 3.2. For all t > 0183

ρ
(ε)
t

ε→0−−→ ρt

in L1(Td).184

In order to prove Proposition 2.1, we will fix a dense countable family {fm}m∈N of bounded185

functions on Td. Then, as discussed in [15, Chapter 4.1], it suffices to show that186

P

[∣∣∣∣∫ fm(θ) d ν
(εN ,N)

N2t (θ)−
∫
fm(θ)ρt(θ) d θ

∣∣∣∣ > δ

]
N→∞−−−→ 0 (3.1)

for any fixed δ > 0 and all m ∈ N, for an appropriately chosen sequence {εN}.187

An immediate corollary of Theorem 3.1 and Claim 3.2 is:188

Corollary 3.3. Fix M > 0. Then there exists ε(M), N(M) such that, for all m ≤ M and189

N ≥ N(M),190

P

[∣∣∣∣∫ fm(θ) d ν
(ε(M),N)

N2t (θ)−
∫
fm(θ)ρt(θ) d θ

∣∣∣∣ > δ

]
≤ 1

M
.

Moreover, we may assume ε(M)→ 0 and N(M)→∞ as M →∞.191

Proof. By Claim 3.2, for all m there exists ε∗(m) such that192 ∣∣∣∣∫ fm(θ)ρ
(ε)
t (θ) d θ −

∫
fm(θ)ρt(θ) d θ

∣∣∣∣ < δ/2

for all ε < ε∗(m). We will choose ε(M) = minm<M ε∗(m) ∧ 1
M

.193

By Theorem 3.1, for any m and any ε there exists N(m, ε), such that if N ≥ N(m, ε) then194

P

[∣∣∣∣∫ fm(θ) d ν
(ε,N)

N2t (θ)−
∫
fm(θ)ρ

(ε)
t (θ) d θ

∣∣∣∣ > δ/2

]
≤ 1

M
.

Define N(M) = maxm≤M N(m, ε(M)) ∨M . This concludes the proof of the corollary. �195
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We are now ready to choose our sequence εN :196

MN = max{M : N ≥ N(M)},

εN = ε(MN).

Then, indeed,197

P

[∣∣∣∣∫ fm(θ) d νεN ,NN2t (θ)−
∫
fm(θ)ρ(θ) d θ

∣∣∣∣ > δ

]
≤ 1

MN

for all m ≤MN . This concludes the proof of the proposition. �198

4. Proof of the lower bound199

The purpose of this section is to prove200

D(0) ≥ L−λ, (4.1)

L =

C exp
(
λ log(1/q)2 q−1/(d−1)

)
k = 2,

C expk−1
(
λq−1/(d−k+1)

)
k ≥ 3,

(4.2)

where for convenience we denote 1− ρ = q. Throughout the section λ and C denote generic201

positive constants, depending only on k and d, that may be updated from one line to the202

other. This will prove the first inequality of Theorem 2.3 since D ≥ D(0).203

The proof is based on a comparison to the diffusion coefficient of a random walk on the204

infinite component of a percolation cluster. The idea behind the proof, is that even though205

at small scale particles are blocked, at a large scale there is high probability that somewhere206

a droplet containing many empty sites could approach the particle allowing it to move; and207

this is the scale which determines the diffusion coefficient. This mechanism is constructed in208

[17, 9] using the notion of a multistep move – a sequence of exchanges, all allowed for the209

KA dynamics, moving a particle with the aid of a nearby vacancies.210

We start by providing the exact definition of a multistep move (see also [17]):211

Definition 4.1 (multistep move). FixM⊆ Ω and T ∈ N. A T -step move M with domainM is212

a function fromM to
(
Ω× Zd × {±e1, . . . ,±ed, 0}

)T+1, described by a sequence of functions213

M = {ηt(η), xt(η), et(η)}Tt=0, such that, for all η ∈M,214

(1) η0(η) = η,215

(2) for all t ∈ {1, . . . , T}, ηt(η) = ηt−1(η)x
t,xt+et,216

(3) for all t ∈ {1, . . . , T}, cxt,xt+et(ηt(η)) = 1, where by convention we set cx,x(η) = 1 for217

all x, η.218

Warning: t in the above definition does not stand for the (continuous) time in which219

the process evolves. It is a discrete variable indexing steps in a multistep move.220
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Definition 4.2. Fix a T -step move M with domain M. Then, for t ∈ {1, . . . , T}, the loss of221

information at time t, denoted Losst(M), is defined as222

2Losst(M) = sup
η′∈M

#{η ∈M : ηt(η) = ηt(η
′), xt(η) = xt(η′), et(η) = et(η′)}.

We also set Loss(M) = supt Losst(M).223

The multistep move that we will define will allow us to move a particle at x to the site224

x + Leα (α ∈ {1, . . . , d}). The choice of L in equation (4.2) guarantees that such a multistep225

move could indeed be applied. Note that C, λ can be chosen such that L ∈ N.226

We will therefore consider the coarse grained lattice ZdL = LZd, and split a generic config-227

uration η in two – the occupation of the sites of ZdL denoted η ∈ ΩL = {0, 1}Z
d
L, and that of228

the sites outside ZdL denoted η̂ ∈ {0, 1}Z
d\ZdL. We will also split the measure in two, such that229

η distributes according to µ and η̂ according to µ̂. Note that both measures µ, µ̂ are Bernoulli230

product measure with parameter ρ (which is implicit in the notation). The coarse grained231

lattice has a graph structure (isomorphic to Zd), i.e., two vertices i, j are connected by an232

edge if i− j ∈ {±e1, . . . ,±ed}, where eα = Leα. We denote the edge set by E(ZdL).233

Next, we will define a multistep move allowing particles to move on the coarse grained234

lattice ZdL, that is, it will exchange the occupation at Li with the occupation at Lj for some235

edge (i, j) ∈ E(ZdL). In order to achieve that, there must be sufficiently many empty sites236

organized in a proper fashion in the region between i and j. We can think of an edge in237

E(ZdL) satisfying this condition as open, and otherwise closed, defining a percolation process238

on ZdL. An important property of this construction is that the conditions we require for an239

edge to be open or closed will only depend on the occupation outside ZdL, namely η̂.240

Lemma 4.3. There exist a percolation process c(η̂) ∈ Π = {0, 1}E(ZdL) and T -step movesM±e1 , . . . ,241

M±ed such that:242

(1) The process cij is stationary and ergodic (with respect to µ̂), and dominates a supercriti-243

cal Bernoulli percolation2 uniformly in q.244

(2) T ≤ CLλ.245

(3) For any e ∈ {±e1, . . . , ed} the move M e satisfies:246

(a) The domain of M e, DomM e, consists of the configurations in which c0,e = 1.247

(b) 2Loss(Me) ≤ C Lλ.248

(c) For any η ∈ DomM e, denoting M e = {ηt(η), xt(η), et(η)}Tt=0, at the final configura-249

tion250

ηT (η) = η0,e.

Proof. The lemma is proven in [9], Lemmas 3.9 and 3.14. See also [17, Section 3.4.1]. The251

reader may note that in the proof of [9] q is assumed small, but since the relevant probabilities252

2Domination here means that there exists a supercritical Bernoulli percolation process on Zd
L whose set of open

edges is contained in the set of open edges given by c.
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FIGURE 4.1. Droplet propagation. Sites marked with 0 are empty, the other
sites could be either empty or occupied. We see that in a sequence of uncon-
strained transitions the empty column moves to the right.

estimated are monotone in q one may discard this assumption by adjusting the constants C, λ253

in equation (4.2). �254

Remark 4.4. The reason for the iterated exponential scaling of D(ρ) hides in the proof of255

Lemma 4.3, and explained in details in [9, 17, 25]. It is based on induction over both k and256

d, of two different scales.257

The first scale, l(k, d), is the scale at which cluster of empty sites could typically advance.258

For k = 1, for example, the constraint is always satisfied and l(1, d) = 1. Perhaps more259

interesting is the case k = d = 2, where a column of empty sites of length l could move260

if there is an empty site in a neighboring column (see Figure 4.1). The probability to have261

a vacancy in the neighboring column is 1 − (1 − q)l, hence this event becomes likely when262

choosing l(2, 2) ≈ 1/q. This is the scale of the droplets, which are those empty clusters of size263

l that are able to move in Zd.264

The second scale, L(k, d), is the typical distance of an arbitrary site to a droplet, so L(k, d) ≈265

q−l(k,d). If we look at a particle and consider its neighborhood at scale L(k, d), we are likely266

to find a droplet, that would be able to move to the vicinity of that particle and help it jump.267

In order to understand the scaling of D(ρ), we should understand the two scales l(k, d)268

and L(k, d). Consider the set [1, L(k − 1, d − 1)]d. If we empty the entire boundary of this269

set, it could serve as a droplet – take, for example, the surface {0} × [1, L(k − 1, d − 1)]d−1.270

This is a d − 1 dimensional surface, and each of its sites has an empty neighbor to the right271

coming from [1, L(k − 1, d− 1)]d. Therefore, any move for the KA dynamics with parameters272

k − 1, d − 1 could be applied to that surface. Since its size is L(k − 1, d − 1), it is likely273

to contain a droplet. Hence, using this droplet, we are able to move freely the sites on274

the surface. With slightly more careful analysis, it could be shown that by rearranging the275

sites on {0} × [1, L(k − 1, d − 1)]d−1 the set [1, L(k − 1, d − 1)]d could “swallow” this surface,276

thus moving one step to the left. That is, [1, L(k − 1, d − 1)]d is, indeed, a droplet; and so277

l(k, d) ≈ L(k − 1, d− 1).278

The two relations, L(k, d) ≈ q−l(k,d) and l(k, d) ≈ L(k − 1, d − 1), show that the two scales279

indeed behave as an iterated exponential. The scaling of the diffusion coefficient could then280

be explained heuristically, if we imagine that the particles are mostly blocked, except those in281

the vicinity of a droplet. Since the sites that are able to move have density L−d, the diffusion282

coefficient scales polynomially in L.283
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An immediate consequence of point one of Lemma 4.3 is that the graph induced by the284

open edges (i.e., for which c equals 1) has a unique infinite connected component. Let285

C denote this infinite component. In [10] (see also [22]), it is shown that the diffusion286

coefficient of a random walk on C is given by the following variational formula:287

D = inf
ψ

∑
α

µ̂
[
c0,eα (δα,1 + ψ(τeαc)− ψ(c))2 |0 ∈ C, eα ∈ C

]
,

where the infimum is taken over local functions ψ : Π → R (namely, functions that depend288

on finitely many edges).289

The input we need from [10, 8] is the positivity of the diffusion coefficient:290

Lemma 4.5. There exists D0 > 0 such that for all local ψ : Π→ R and all ρ ∈ (0, 1),291 ∑
α

µ̂
[
c0,eα (δα,1 + ψ(τeαc)− ψ(c))2] ≥ D0.

Proof. This is a direct consequence of [10, Lemma 2.1] and the first point of Lemma 4.3. �292

In order to relate the diffusion coefficient given in equation (2.5) toD, we use the following293

proposition:294

Proposition 4.6. Fix a local function g : ΩL × Π → R. Then there exists a local function295

ψ : Π→ R, such that296

d∑
α=1

µ̂
[
c0,eα (δα,1 + ψ(τeαc)− ψ(c))2] ≤ 1

2ρ(1− ρ)
×

d∑
α=1

µ⊗ µ̂

c0,eα

δα,1(η(e1)− η(0))−
∑
i∈ZdL

∇0,eα g(τiη, τic)

2 ,
where∇ is the gradient operating only on η (that is,∇0,eα g(τiη, τic) = g(τi η

0,eα , τic)−g(τiη, τic)).297

Proof. Note first that the sum
∑

i∈ZdL
∇0,eα g(τiη, τic) is finite (and hence well defined) since g298

is local. We are therefore allowed, throughout the proof, to replace it by a sum over a large299

enough torus TdN,L = ZdL/NZdL for large N (depending on g). We start by writing the left hand300

side of the inequality as301
d∑

α=1

µ̂ [c0,eα (I + II + III)] ,

302

I = δα,1,

II = 2δα,1 (ψ(τe1c)− ψ(c)) ,

III = (ψ(τeαc)− ψ(c))2 ;
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and the right hand side (noting that c depends only on η̂ and not on η) as303

d∑
α=1

µ̂ [c0,eα(I′ + II′ + III′)] ,

304

I′ = µ
[
δα,1(η(e1)− η(0))2

]
,

II′ = −2δα,1 µ

(η(e1)− η(0))
∑
i∈TdN,L

∇0,e1 g(τiη, τic)

 ,
III′ = µ

 ∑
i∈TdN,L

∇0,eα g(τiη, τic)

2 .
We now compare term by term. The term I, I′ do not depend on ψ: I′ = δα,12ρ(1 − ρ), so305

indeed I ≤ 1
2ρ(1−ρ)

I′.306

For the other terms we need to specify our choice of ψ:307

ψ(c) = 2µ

η(0)
∑
i∈TdN,L

g(τiη, τic)

 .
Fix e ∈ {e1, . . . , ed}, and note that τic depends only on η̂ for any i ∈ ZdL. Then308

ψ(τec) = 2µ

η(0)
∑
i∈TdN,L

g(τiη, τi+ec)

 = 2µ

η(e)
∑
i∈TdN,L

g(τi+eη, τi+ec)


= 2µ

η(0)
∑
i∈TdN,L

g(τi η
0,e, τic)

 ,
and thus309

ψ(τeαc)− ψ(c) = µ

2η(0)
∑
i∈TdN,L

∇0,eα g(τi η, τic)

 . (4.3)

Observe now that η(0) = η(e1) implies ∇0,e1 g(τi η, τic) = 0, and otherwise η(e1) = 1 − η(0),310

yielding311

(η(e1)− η(0))∇0,e1 g(τi η, τic) = (1− 2η(0))∇0,e1 g(τi η, τic).

Therefore, by equation (4.3),312

µ

(η(e1)− η(0))
∑
i∈TdN,L

∇0,e1 g(τi η, τic)

 =
∑
i∈TdN,L

µ
[
∇0,e1 g(τi η, τic)

]
− (ψ(τe1c)− ψ(c)),
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and noting that µ
[
∇0,e1 g(τi η, τic)

]
= 0 (the gradient of any function has 0 expected value),313

we obtain314

II = II′.

Finally, for the last term we use again equation (4.3), together with Jensen’s inequality and315

the fact that η(0)2 ≤ 1:316

III ≤ µ

2η(0)
∑
i∈TdN,L

∇0,eα g(τi η, τic)

2 ≤ 4 III′. �

Corollary 4.7. For all local g : ΩL × Π→ R,317

1

2ρ(1− ρ)

d∑
α=1

µ⊗ µ̂

c0,eα

δα,1(η(e1)− η(0))−
∑
i∈ZdL

∇0,eα g(τiη, τic)

2 ≥ D0,

where D0 is the positive constant given in Lemma 4.5.318

The next step of the proof is to use the multistep move given in Lemma 4.3 in order to319

compare D0 with D(0) (recalling equation (2.5)).320

Proposition 4.8. Fix a local function f : Ω→ R. Then there exists a local function g : ΩL×Π→321

R such that322

µ

 d∑
α=1

c0,eα(η)

(
δα,1(η(eα)− η(0))−

∑
x∈Zd
∇0,eα(τxf)

)2
 ≥

L−λ
d∑

α=1

µ⊗ µ̂

c0,eα

δα,1(η(e1)− η(0))−
∑
i∈ZdL

∇0,eα g(τiη, τic)

2 .
Proof. Let g(η, c) = µ

[
1
L

∑
y∈[L]d τyf(η)

∣∣∣η, c]. We use Lemma 4.3 in order to write, for all323

x ∈ Zd and α ∈ {1, . . . , d}, denoting M eα = {ηt(η), xt(η), et(η)}Tt=0,324

∇0,eατxf =
T∑
t=1

∇xt,xt+etτxf(ηt) =
T∑
t=1

τxt ∇0,etτx−xtf(ηt). (4.4)

We also note that the total particle flow (defined as the change in
∑

x xη(x)) can be decom-325

posed along the T -step move. In more details, using the fact that η0 and ηT agree outside326

{0, eα},327 ∑
x

x(η0(x)− ηT (x)) = Leα (η(eα)− η(0)) .

On the other hand, at step t the configuration changes only at xt and xt + et, therefore328 ∑
x

x(ηt−1(x)− ηt(x)) = et(ηt(x
t)− ηt(xt + et)) = etτxt(ηt(0)− ηt(et)),
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implying329 ∑
x

x(η0(x)− ηT (x)) =
T∑
t=1

∑
x

x(ηt−1(x)− ηt(x)) =
T∑
t=1

etτxt(ηt(0)− ηt(et)).

That is,330

Leα (η(eα)− η(0)) =
T∑
t=1

etτxt
(
ηt(et)− ηt(0)

)
. (4.5)

Using these two identities, the Cauchy-Schwarz inequality, and the properties of the move,331

we obtain332

d∑
α=1

µ⊗ µ̂

c0,eα

e1 · eα(η(eα)− η(0))−
∑
i∈ZdL

∇0,eα g(τiη, τic)

2
≤ 1

L2

d∑
α=1

µ

c0,eα

e1 · Leα(η(e1)− η(0))−
∑
i∈ZdL

∇0,eα

∑
y∈[L]d

τi+yf(η)

2
=

1

L2

d∑
α=1

µ

c0,eα

(
e1 ·

T∑
t=1

etτxt
(
ηt(e

t)− ηt(0)
)
−
∑
x∈Zd

T∑
t=1

τxt ∇0,etτx−xtf(ηt)

)2


≤ T

L2

T∑
t=1

d∑
α=1

µ

c0,eατxt c0,et(ηt)

(
e1 · et

(
ηt(e

t)− ηt(0)
)
−
∑
x∈Zd
∇0,etτxf(ηt)

)2


≤ T

L2

T∑
t=1

d∑
α=1

∑
η∈Ω

µ(η)
∑
η′∈Ω

1η′=ηt

d∑
β=1

1eβ=etc0,eβ(η′)

(
e1 · eβ (η′(eβ)− η′(0))−

∑
x∈Zd
∇0,eβτxf(η′)

)2

≤ T 2

L2

d∑
α=1

2Loss(Meα )
∑
η′∈Ω

µ(η′)
d∑

β=1

c0,eβ(η′)

(
e1 · eβ (η′(eβ)− η′(0))−

∑
x∈Zd
∇0,eβτxf(η′)

)2

.

The result follows by inserting the bounds for T and Loss(M) given in Lemma 4.3. �333

The proof of the lower bound (4.1) follows from Proposition 4.8, Corollary 4.7, and the334

variational characterization of D(0) in equation (2.5). �335

5. Proof of the upper bound336

In order to find the upper bound we will use a process tightly related to the Kob-Andersen337

model, called the k-neighbor bootstrap percolation (see, e.g., [19]). We start by defining this338

process, and describing some of its basic properties.339

5.1. Bootstrap percolation.340
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Definition 5.1 (bootstrap percolation). Fix V ⊆ Zd and A ⊆ Zd. The bootstrap percolation in341

V starting from A is a deterministic process defined for t = 0, 1, 2, . . . as342

A0 = A ∩ V,

At+1 = At ∪ {x ∈ V : #{y ∈ At such that y ∼ x} ≥ k}.

The limit ∪t≥0At is called the span of A in V , and denoted by [A]V . We say that two sites x343

and y are connected for the bootstrap percolation in V starting from A if they are connected in344

[A]V (thought of as the subgraph of Zd induced by the set [A]V ), that is, if there is a nearest345

neighbor path x = x1, . . . , xn = y such that x1, . . . xn ∈ [A]V .346

For η ∈ Ω, we define347

Aη = {x ∈ Zd : ηx = 0}.

We may refer to the bootstrap percolation in V starting from Aη as the bootstrap percolation348

starting from η. When context allows we omit the explicit mention of V , A, or both.349

We continue with several properties of bootstrap percolation.350

Observation 5.2. (monotonicity). Let U ⊆ V ⊆ Zd, and fix A ⊆ B ⊆ Zd. Then [A]U ⊆ [A]V351

and [A]U ⊆ [B]U .352

The following observation reveals the the connection between bootstrap percolation and353

the Kob-Andersen model:354

Observation 5.3. Fix η ∈ Ω, and consider a set V ⊂ Zd. Assume that, for two neighboring355

sites x, y ∈ V , the constraint cx,y is satisfied in V , that is, cx,y(η′) = 1 for any η′ that agrees356

with η on V . Then [Aη]
V = [Aηx,y ]

V .357

Proof. Assume without loss of generality that η(x) = 1 and η(y) = 0, and note that [Aη]
V ⊆358

[Aη ∪ {x}]V . On the other hand, since cx,y = 1 in V , the site x will be added to Aη after359

a single step of the bootstrap percolation. Denoting the set after that single step by A′,360

[Aη ∪ {x}]V ⊆ [A′]V = [Aη]
V . Therefore [Aη]

V = [Aη ∪ {x}]V . The same argument shows that361

[Aηx,y ]
V = [Aη ∪ {x}]V . �362

Observation 5.4. Fix A ⊂ Zd, V ⊂ Zd, and x ∈ V . Let U be the set of sites connected to x in363

[A]V . Then [A]U = U .364

Proof. Let (At)t≥0 denote the bootstrap percolation in V starting with A, and assume by con-365

tradiction [A]U ( U . Since U ⊆ [A]V , there exists a first time t for which some y ∈ U \ [A]U366

is contained in At. By minimality, At−1 ∩ U ⊆ [A]U , and since y /∈ [A]U it has at most k − 1367

neighbors in At−1∩U . On the other hand, it has at least k neighbors in At. Therefore, it must368

have at least one neighbor in V \U . This is a contradiction, since U is a connected component369

containing y. �370
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Claim 5.5. Fix A ⊂ Zd. Consider two sets B ⊂ B′ ⊂ Zd, a site z ∈ B, and any S ⊂ Zd.371

Assume that z is connected to S for the bootstrap percolation in B′, but not for the bootstrap372

percolation in B. Then z is connected to ∂B for the bootstrap percolation in B′.373

Proof. Assume that z is not connected to ∂B for the bootstrap percolation in B′, so in partic-374

ular its connected component in [A]B
′, denoted U , is entirely contained in B. By Observation375

5.4 and monotonicity of the bootstrap percolation, U = [A]U ⊆ [A]B. This is a contradiction,376

since by assumption U ∩ S 6= ∅ but [A]B ∩ S = ∅. �377

5.2. Analysis of the test function. We will prove the upper bound by estimating the expres-378

sion inside the infimum in equation (2.5) for a carefully chosen function f .379

Recall q = 1− ρ. The test function we will construct will depend on a scale380

l =
⌊
expk−2(λq−

1
d−k+1 )

⌋
. (5.1)

Throughout the section λ and C denote generic positive constants.381

Definition 5.6 (relevant sites). Fix η ∈ Ω. A site x ∈ [−2l, 2l]d is called relevant if it is not382

connected to {0, 1} × [−2l, 2l]d−1 for the bootstrap percolation in [−2l, 2l]d; and otherwise it383

is called irrelevant. Denote the set of relevant sites by R(η).384

We divide the box [−l, l]d in two parts – the left part Λ− = [−l, 0]× [−l, l]d−1, and the right385

part Λ+ = [1, l]× [−l, l]d−1 (see Figure 5.1). The test function we consider is386

f(η) =
1

2 (2l + 1)d−1

 ∑
x∈Λ+∩R

η(x)−
∑

x∈Λ−∩R

η(x)

 . (5.2)

Hence, the purpose of this section is to prove that for ε small enough387

µ

 d∑
α=1

c
(ε)
0,eα

(
δα,1 (η(e1)− η(0))−

∑
x∈Zd
∇0,eατxf

)2
 ≤ e−λl.

Remark 5.7. The choice of f in equation (5.2) seems mysterious at first sight – Observation388

5.3 explains the use of bootstrap percolation, but the introduction of relevant sites and the389

exact form of f are not that clear.390

One way to gain more intuition on this choice of f is to look more carefully at the varia-391

tional principle (2.5). Ignoring the contribution of f , we are left with the term392

c0,eα (δα,1 (η(e1)− η(0)))2 .

This could be though of as a contribution of the instantaneous current between the origin and393

e1. The appearance of this term is not surprising – if typically the system has large currents,394

it is natural to expect the diffusion coefficient to be large.395

However, the typical instantaneous current is not sufficient to understand the behavior of396

the diffusion coefficient – correlations in space and time could also have an important effect.397
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For example, take the Kob-Andersen model with k = d = 2, and consider a configuration398

in which the sites e1,e2 and e1 + e2 are empty, and all other sites (in a large neighborhood399

of the origin) are occupied. The particle at the origin could jump one step to the right, but400

any attempt to jump further is not allowed by the constraint. Therefore, if we wait for some401

time it is likely to jump back to the left. Thus, we see that an instantaneous right current can402

cause at a later time a current to the left. The role of the function f in equation (2.5) is to403

compensate for this effect, by adding to δα,1 (η(e1)− η(0)) an effective current in the opposite404

direction.405

The example of the last paragraph demonstrates the following heuristic picture – typically,406

most particles are confined to a very small region; they can move back and forth but never407

too far. Assume for simplicity that the origin is occupied, and consider the particle there.408

In view of the heuristic described above, this particle will remain for a very long time in a409

certain region that we may refer to as the attainable region. Recalling Observation 5.3, it is410

reasonable to approximate this attainable region by the set of sites connected to the origin411

for the bootstrap percolation in some (large) box. Hence, being relevant roughly represents412

a small attainable region.413

As long is this attainable region remains small, we expect that any instantaneous current414

to the right caused by the particle at the origin will be canceled shortly after by a jump to the415

left. For a good choice of f , this fact (assuming c0,e1(η) = 1) should be expressed as416

η(e1)− η(0) ≈
∑
x∈Zd
∇0,e1τxf(η).

In the following we will see that the function f defined in equation (5.2) satisfies this417

approximated relation. The error term corresponds to the possibility that the attainable re-418

gion is, in fact, large. When the notion of "small" or "large" attainable region is determined419

according to the scale l given in equation (5.1), we obtain the upper bound of D.420

First, observe that since f depends on (4l+ 1)d sites and its maximum is smaller than l+ 1,421

µ

 d∑
α=1

ε

(
δα,1 (η(e1)− η(0))−

∑
x∈Zd
∇0,eατxf

)2
 ≤ dε(1 + (4l + 1)d(l + 1))2 = O(ε).

Therefore, since c(ε)
0,eα = (1− ε)c0,eα + ε, it suffices to prove422

µ

 d∑
α=1

c0,eα

(
δα,1 (η(e1)− η(0))−

∑
x∈Zd
∇0,eατxf

)2
 ≤ e−λl. (5.3)

Since the analysis of f will require us to understand when particles enter or exit different423

boxes (and in particular Λ±), we will need to introduce some notation. First, for a set Λ ⊂ Zd,424

we say that an (undirected) edge (x, y) is on the boundary of Λ, and write (x, y) ∈ ∂Λ, if one425
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FIGURE 5.1. A sketch of the different sets in Λl in two dimensions. The left
part Λ− are the red vertices; the right part Λ+ consists of the blue vertices; the
boundary ∂Λ is given by the gray edges; the inner boundary ∂Λ contains the
sites circled in gray; the boundary in the e1 direction ∂1Λ is circled in orange;
and the set Λ1

l is represented by the green line crossing the box. In this picture,
for any x0 ∈ Λ1

l (i.e., on the green line), the site x+1
0 is the orange circle to its

right (at distance l + 1); and the site x−1
0 is the orange circle to its left (at

distance l).

vertex is in Λ and the other outside Λ. The (inner) boundary ∂Λ are the sites in Λ that have a426

neighbor outside Λ.427

For α = 1, . . . , d we define the boundary in the eα direction428

∂αΛ =
{
x : (x, x− eα) ∈ ∂Λ

}
.

We will write Λl = [−l, l]d (and Λ2l = [−2l, 2l]d), as well as429

Λα
l = [−l, l]α−1 × {0} × [−l, l]d−α .

Finally, for x0 ∈ Λα
l , we denote the two boundary sites above and below x0 as430

x+α
0 = x0 + (l + 1) eα,

x−α0 = x0 − leα.

Note that x±α0 ∈ ∂αΛl. See Figure 5.1.431

We are now ready to start the analysis of f . In the next proposition we will see, for fixed432

x, what is the contribution of ∇0,e1τxf :433

Proposition 5.8. Fix an edge (x, x− e) and configuration η such that c0,e = 1 and ∇0,eτxf 6= 0.434

Then one of the following holds:435

(1) 0 ∈ x + (Λ2l+1 \ Λ2l−2) (equivalently x ∈ Λ2l+1 \ Λ2l−2), and there exists y ∈ x + ∂Λl436

such that the bootstrap percolation in x + Λ2l connects y to x + ∂Λ2l−2, either for η or437

η0,e. In this case |∇0,eτxf | ≤ C l. See Figure 5.2.438
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x

FIGURE 5.2. Illustration of the first case in Proposition 5.8. x + Λ2l is filled in
gray. The origin is on one of the three red lines, which represent x+Λ2l+1\Λ2l−2.
The blue square is x+∂Λl and the green square is x+∂Λ2l−2. These two squares
must be connected for the bootstrap percolation.

(2) (0, e) ∈ x+ ∂Λl (equivalently (x, x− e) ∈ ∂Λl) and −x is relevant for τxη. In this case439

∇0,eτxf =
η(e)− η(0)

2(2l + 1)d−1
×


1 0 ∈ x+ Λ+ ∩ ∂ [−l, l]d

−1 e ∈ x+ Λ+ ∩ ∂ [−l, l]d

−1 0 ∈ x+ Λ− ∩ ∂ [−l, l]d

1 e ∈ x+ Λ− ∩ ∂ [−l, l]d

=
η(e)− η(0)

2(2l + 1)d−1
×


1 x ∈ Λ− ∩ ∂ [−l, l]d

−1 x− e ∈ Λ− ∩ ∂ [−l, l]d

−1 x ∈ Λ+ ∩ ∂ [−l, l]d

1 x− e ∈ Λ+ ∩ ∂ [−l, l]d

. (5.4)

Proof. f could only change when the set of relevant sites changes, or when a relevant site440

changes its occupation.441

The first case corresponds to point 1 – for the set of relevant sites for τxη to change, [Aη]
x+Λ2l442

must change, and by Observation 5.3 this is only possible if c0,e is only satisfied with the help443

of sites outside x + Λ2l. This means that at least one of the vertices 0 or e is in x + ∂Λ2l, and444

in particular 0 ∈ x+ (Λ2l+1 \ Λ2l−2).445

To understand the second implication, we may assume without loss of generality that there446

is some site z ∈ Λl which is connected to {0, 1}× [−2l, 2l]d−1 in [Aη]
x+Λ2l but not in [Aη0,e ]

x+Λ2l.447

By monotonicity of bootstrap percolation and using again Observation 5.3, z cannot be con-448

nected to {0, 1} × [−2l, 2l]d−1 in [Aη]
Λ2l−2. Then, by Claim 5.5, z is connected to ∂Λ2l−2 in449

[Aη]
x+Λ2l. To finish the first point, we only need the rough bound |f(η)| ≤ |Λ+|+|Λ−|

2(2l+1)d−1 .450

In the second case, we note first if a particle jumps inside Λl, and it is originally in Λ+ ∩R,451

then it will remain in Λ+ ∩ R (and analogously for Λ−). Therefore, f could only change if452

a particle jumps into or out of Λl, so for τxf to change we must require (0, e) ∈ x + ∂Λl.453
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Moreover, its (shifted) position −x must be relevant for the shifted configuration τxη. Then,454

∇(0,e)τxf is given by following carefully the four options: moving into Λ+, out of Λ+, into Λ−,455

or out of Λ−. �456

In order to control the contribution coming from the first case of Proposition 5.8, we give457

a name to the event that appears there:458

Definition 5.9. Fix an edge (x, x − e). Then Ex,x−e is the event, that there exist y ∈ x + ∂Λl459

and z ∈ x+ ∂Λ2l−2 such that the bootstrap percolation in x+ Λ2l connects y to z, either for η460

or η0,e.461

An important tool we will use in order to bound the probability of this event is the following462

lemma:463

Lemma 5.10 ([7, Lemma 5.1]). Let l′ < 10l, and fix y, z ∈ Λl′. Then, assuming that the464

constant λ in equation (5.1) is small enough,465

µ(z connected to y in [Aη]
Λl′ ) ≤

(
C ‖z − y‖d−1

∞ q
)λ‖z−y‖∞

k = 2,

µ(z connected to y in [Aη]
Λl′ ) ≤ qλ‖z−y‖∞ k ≥ 3.

Claim 5.11. Fix an edge (x, x− e). Then466

µ(Ex,x−e) ≤ Ce−λl.

Proof. First, note that there are Cld−1 possible choices of y and Cld−1 choices of z. Note that467

‖z − y‖∞ ≥ l − 2. By Lemma 5.10, the probability for y to be connected to z is bounded by468

(Cld−1q)λl for k = 2 and qλl for k ≥ 3; both of which are, indeed, smaller than Ce−λl. �469

The last claim covers the first case of Proposition 5.8, and we now move to the second.470

When considering this case, we will use certain cancellations in directions perpendicular471

to e1. More precisely, a particle jumping from 0 to eα (for α 6= 1) will enter x + Λl (for an472

appropriate choice of x) but exit x′ + Λl (for an appropriate choice of x′). We then expect473

that ∇0,eατxf and ∇0,eατx′f will cancel out, which is indeed the case unless one of the sites is474

relevant and the other irrelevant. We therefore introduce the following event:475

Definition 5.12. Fix α ∈ {2, . . . , d} and x0 ∈ Λα
l . Let Eα(x0) be the event, that either −x+α

0 is476

relevant for τx+α0
η, or −x−α0 is relevant for τx−α0

η, but not both.477

Claim 5.13. Fix α ∈ {2, . . . , d} and x0 ∈ Λα
l . Then for all η ∈ Eα(x0), the origin is connected478

to ∂Λl in [Aη]
Λ3l. Moreover,479

µ(Eα(x0)) ≤ Ce−λl.

Proof. We will prove that the origin is connected to ∂Λl in [Aη]
Λ3l for the case where −x+α

0 is480

relevant for τx+α0
η, but −x−α0 is irrelevant for τx−α0

η. The complementing case as analogous.481
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Let S = x0 + {0, 1} × Zd−1,B− = x−α0 + Λ2l,B+ = x+α
0 + Λ2l. Saying that −x+α

0 is relevant482

for τx+α0
η is the same as saying that 0 is connected to B+ ∩ S in [Aη]

B+; and saying that −x−α0483

is irrelevant for τx−α0
η is the same as saying that that 0 is not connected to B− ∩ S in [Aη]

B−.484

In particular, setting z = 0, B = B− and B′ = Λ3l, Aη satisfies the conditions of Claim 5.5.485

Therefore 0 is connected to ∂B− in [Aη]
B′, which implies the result since 0 ∈ Λl ⊂ B−.486

The probability estimate follows from Lemma 5.10. �487

Claim 5.14. Fix α ∈ {2, . . . , d}, and a configuration η such that η /∈
⋃
x0∈Λαl

Eα(x0) and488

c0,eα(η) = 1. Then489 ∑
x∈∂αΛl

∇0,eατxf = 0.

Proof. We split the sum according to the projection of x on Λα
l –490 ∑

x∈∂αΛl

∇0,eατxf =
∑
x0∈Λαl

(
∇0,eατx+α0

f +∇0,eατx−α0
f
)
.

Fix one of these summands. If −x+α
0 is irrelevant for τx+α0

η and −x−α0 is irrelevant for τx−α0
η,491

then by the Proposition 5.8492

∇0,eατx+α0
f = ∇0,eατx−α0

f = 0.

Otherwise, since η /∈ Eα(x0), both must be relevant, hence493

∇0,eατx+α0
f =

η(eα)− η(0)

2 (2l + 1)d−1
×

−1 x0 ∈ Λ−,

1 x0 ∈ Λ+;

∇0,eατx−α0
f =

η(eα)− η(0)

2 (2l + 1)d−1
×

1 x0 ∈ Λ−,

−1 x0 ∈ Λ+;

and their sum is 0. �494

Claim 5.15. Fix α ∈ {2, . . . , d}. Then495

µ

c0,eα

(∑
x∈Zd
∇0,eατxf

)2
 ≤ Ce−λl.

Proof. We split in the different cases described in Proposition 5.8:496

µ

c0,eα

(∑
x∈Zd
∇0,eατxf

)2
 ≤ 2µ

c0,eα

 ∑
x∈Λ2l+1\Λ2l−2

∇0,eατxf

2+2µ

c0,eα

( ∑
x∈∂αΛl

∇0,eατxf

)2
 .

We can bound the first term using Claim 5.11:497

µ

c0,eα

 ∑
x∈Λ2l+1\Λ2l−2

1E(x,x−eα)Cl

2 ≤ Cldµ

[∑
x

1E(x,x−eα)

]
≤ Ce−λl.
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The second term, according to Claim 5.14, vanishes unless η ∈ Eα(x0) for some x0 ∈ Λα
l , so498

we are left with an error term which by Claim 5.13 is bounded by499

µ

( |∂αΛl|
2(2l + 1)d−1

)2 ∑
x0∈Λαl

1Eα(x0)

 ≤ Ce−λl. �

The next step is to consider the direction e1:500

Claim 5.16. Fix x ∈ ∂1 [−l, l]d. Then −x is irrelevant for τxη with probability smaller than501

Ce−λl.502

Proof. For −x to be irrelevant it must be connected to one of 2(4l + 1)d−1 sites on {0, 1} ×503

[−2l, 2l]d−1. All of these sites are at distance at least l − 2 from x, and the statement follows504

by direct application of Lemma 5.10. �505

Claim 5.17. For e = e1,506

µ

c0,e

(
η(e)− η(0)−

∑
x∈Zd
∇0,eτxf

)2
 ≤ Ce−λl.

Proof. The proof of the claim consists in showing that each site on ∂1Λl contributes η(e)−η(0)
|∂1Λl|

507

to the sum, up to a small error term.508

First, using Proposition 5.8, we write509

µ

c0,e

(
η(e)− η(0)−

∑
x∈Zd
∇0,eτxf

)2
 ≤2µ

c0,e

 ∑
x∈Λ2l+1\Λ2l−2

∇0,eτxf

2
+ 2µ

c0,e

η(e)− η(0)−
∑
x∈∂1Λl

∇0,eτxf

2 .
The first term, just as in the proof of Claim 5.15, is bounded by Ce−λl according to Claim510

5.11.511

In order to bound the second term, we start by assuming that all sites of−∂1Λl are relevant.512

In this case,513 ∑
x∈∂1Λl

∇0,eτxf =
∑
x∈∂1Λl

η(e)− η(0)

2(2l + 1)d−1
= η(e)− η(0),

so514

µ

c0,e

η(e)− η(0)−
∑
x∈∂1Λl

∇0,eτxf

2

1−∂1Λl⊆R

 = 0.

Finally, by Claim 5.16 the probability that ∂1Λl contains irrelevant sites is smaller than Ce−λl:515

µ

c0,e

η(e)− η(0)−
∑
x∈∂1Λl

∇0,eτxf

2

1−∂1Λl 6⊆R

 ≤ Ce−λl.
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The claim thus follows by summing the contribution of the three terms. �516

All that is left is to combine Claims 5.15 and 5.17, proving inequality (5.3) and hence the517

second part of Theorem 2.3. �518

6. Further problems519

• Prove convergence to a hydrodynamic limit without the soft constraint from a more520

restricted family of initial states (as in [13]).521

• Improve the bounds on the diffusion coefficient, and in particular find matching up-522

per and lower bound without a logarithmic correction. In the case of the closely523

related Fredrickson-Andersen model, where similar bounds have been obtained for524

the spectral gap ([18]), the logarithmic correction could be removed, and, moreover,525

the exact constant multiplying 1/(1− ρ)d−k+1 could be identified [14].526

• Study qualitative properties of the diffusion coefficient – is it decreasing in ρ? Is it527

continuous? Smooth? Is D(0) = D?528

• Understand the hydrodynamic limit of more KCLGs. The comparison argument of529

Section 4 could be used in order to estimate the diffusion coefficient whenever an ap-530

propriate multistep move could be constructed, and may be useful in lager generality531

than presented here.532

• The bounds on the diffusion coefficient may have consequences other than the hy-533

drodynamic limit – in general, we expect the correlation µ(η(0)etLη(x)) − ρ2 to be-534

have like ρ(1 − ρ)(4πtD)−d/2 e−
x2

4tD (see, e.g., [23]). It has been shown in [6] that535

in the Kob-Andersen model, for x = 0, this correlation decays at least as fast as536

C (log t)5/t for some unidentified constant C. Any progress towards the predicted537

ρ(1 − ρ)(4πtD)−d/2 e−
x2

4tD (for D is as in equation (2.6)) would be an interesting re-538

sult.539
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Appendix A. The gradient condition in cooperative models544

In this appendix we will see that cooperative kinetically constrained lattice gas models545

(KCLGs) are non-gradient.546

A general KCLG is a Markov process with configuration space Ω = {0, 1}Z
d

, determined547

by a set of constraints giving each edge (x, y) ∈ E(Zd) a rate cx,y(η) ∈ {0} ∪ [1,∞), for any548

configuration η ∈ Ω. We will make the following assumptions:549

(1) The model is homogeneous, i.e., the constraint is translation invariant.550
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(2) The constraint cx,y depends only on the configuration outside x and y.551

(3) The constraints have finite range, i.e., cx,y depends only on the occupation of sites in552

the box x+ ΛR, where R is called the range.553

(4) The constraint is non-degenerate, i.e., for every edge (x, y) of Zd there exist a config-554

uration η such that cx,y(η) > 0 and η′ such that cx,y(η′) = 0.555

(5) For fixed x, y the constraint cx,y(η) is a decreasing function of η, i.e., adding more556

empty sites could only help the constraint to be satisfied.557

With such constraints, the process is given by a generator as in equation (2.2).558

Definition A.1 (connected configurations). Fix a KCLG and two configurations η, η′. We say559

that η′ is connected to η if there exists a sequence of configuration η0, . . . , ηT such that η0 = η,560

ηT = η′, and for all t ∈ {0, . . . , T − 1} there exist xt+1 ∼ yt+1 such that ηt+1 = η
xt+1,yt+1

t ,561

with cxt+1,yt+1(ηt) ≥ 1. For any fixed e ∈ {±e1, . . . ,±ed}, we say that η′ is e-connected to η562

if, in addition, yt+1 = xt+1 + e and ηt(xt) = 0, namely, all transitions move a vacancy in the563

direction e (or, equivalently, a particle in the direction −e). Note that η′ is connected to η if564

and only if η is connected to η′; and η′ is e-connected to η if and only if η is (−e)-connected565

to η′.566

Definition A.2. Let A ⊆ Zd. The configuration ηA is defined as567

ηA(x) =

0 x ∈ A,

1 otherwise.

KCLGs could be either cooperative or non-cooperative (see [6, Definition 1.1]). We remind568

here that a non-cooperative model is a model in which there exists a mobile cluster, defined569

as follows:570

Definition A.3 (mobile cluster). Let A be a finite non-empty subset of Zd. We say that A is a571

mobile cluster if:572

(1) For all z ∈ Zd, the configuration ηA is connected to the configuration ηz+A.573

(2) For every edge (x, y), there exists a translation z ∈ Zd such that cx,y(ηz+A) ≥ 1.574

Gradient models, in our context, are interacting particle systems with conserved number of575

particles, in which the current is a gradient of some local function. This property significantly576

simplifies the analysis of their hydrodynamic limits (see, e.g., [15, Definition 2.5]). The577

purpose of this appendix is to prove the following result:578

Theorem A.4. Cooperative KCLGs are non-gradient.579

In order to prove that a model is non-gradient, we will consider the model on a torus, and580

show that the integral of the current does not always vanish:581
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Lemma A.5. Consider a KCLG, and assume that for N large enough, there exists a configuration582

on the torus η ∈ {0, 1}T
d
N , such that583 ∑

x,y∈TdN

(x− y)(η(x)− η(y))cx,y(η) 6= 0.

Then the model is non-gradient.584

Proof. Assume that the model is gradient. That is, by [15, Definition 2.5], for some n0 ∈ N,585

for any 1 ≤ i ≤ d, 1 ≤ n ≤ n0 there exist a cylinder function hi,n and a finite range function586

pi,n satisfying
∑

x∈TdN
pi,n(x) = 0, such that the current is given by587

W0,ei(η) =

n0∑
n=1

∑
x∈TdN

pi,n(x)τxhi,n(η)

for every i.588

Then for any e ∈ {e1, . . . , ed}589 ∑
y∈TdN

Wy,y+e(η) =
∑
y∈TdN

τ−y

n0∑
n=1

∑
x∈TdN

pi,n(x)τxhi,n(η)

=
∑
x∈TdN

∑
z∈TdN

n0∑
n=1

pi,n(x)τzhi,n(η)

= 0.

This concludes the proof, recalling590

Wx,x+e(η) = (η(x)− η(x+ e))cx,y(η). �

The construction of such η for a cooperative KCLG is based on the notion of reachable sites:591

Definition A.6 (reachable sites and e-stretch). We say that a site is reachable from a configu-592

ration η if it is empty for some η′ which is connected to η. For e ∈ {±e1, . . . ,±ed} we say that593

a site is e-reachable for a configuration η if it is empty for some η′ which is e-connected to η.594

The e-stretch of η is defined as595

sup {e · x : x is e-reachable} .

By the definition of non-cooperative models, it is immediate that if η contains a mobile596

cluster then for every site x there exists η′ connected to η for which η′(x) = 0. In the next597

proposition we will see that if we require e-connectivity the converse is also true –598

Proposition A.7. Assume that for all e ∈ {±e1, . . . ,±ed} there exists a finite subset Ae of Zd,599

such that the e-stretch of ηAe is infinite. Then the model is non-cooperative.600
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Before proving this proposition, we will see how it implies Theorem A.4. Consider a coop-601

erative KCLG, so by Proposition A.7 for some e ∈ {±e1, . . . ,±ed} and any L ∈ N, configura-602

tions that are entirely filled outside ΛL have finite e-stretch. We will assume without loss of603

generality that e = e1.604

Since the model is non-degenerate, there exists a configuration η0 for which c0,e1(η0) = 1.605

Since the model has finite range R, we may assume that this configuration is entirely filled606

outside ΛR; and since the constraint does not depend on the occupation at 0 and e1 we assume607

η0(0) = 0 and η0(e1) = 1. We will now construct a sequence of configuration starting at η0, so608

that ηi+1 is obtained from ηi by moving a 0 to the right, i.e., ηi+1 = ηxi,xi+e1i for some xi such609

that cxi,xi+e1(ηi) > 0, ηi(xi) = 0, and ηi(xi + e1) = 1. When, for some i, more than one such610

choice of x is possible, we choose one arbitrarily. We stop when none of the sites satisfy the611

required conditions.612

Since the e1-stretch of η0 is finite the construction must stop at some step n < ∞. On the613

other hand, we chose η0 such that c0,e1(η0) ≥ 1, η0(0) = 0, and η0(e1) = 1, so n ≥ 1. Hence,614

for the configuration η = ηn, for all x ∈ Zd615

cx,x+e1(η)(1− η(x))η(x+ e1) = 0,

but for x∗ = xn−1 (using cx∗,x∗+e1(ηn) = cx∗,x∗+e1(ηn−1) = 1), we know that616

cx∗,x∗+e1(η)η(x∗)(1− η(x∗ + e1)) ≥ 1.

That is,617 ∑
x∈Zd

(η(x)− η(x+ e1))cx,x+e1(η) ≥ 1.

Since η is filled outside ΛR+n, we may as well sum over x in a large enough torus Td100R+n.618

Therefore, by Lemma A.5, the model is indeed non-gradient. �619

620

We return to the proof of Proposition A.7.621

Claim A.8. Fix a finite non-empty A ⊂ Zd, and e ∈ {±e1, . . . ,±ed}. Assume that the e-stretch622

of ηA is infinite. Then there exists a finite non-empty A′ ⊂ Zd and a strictly positive integer623

n, such that ηA′ is e-connected to ηne+A′.624

Proof. First, we may assume without loss of generality that A has the minimal possible size,625

among sets for which the e-stretch of ηA is infinite; and for notational convenience we also626

assume e = e1. Set k = |A|, and fix L such that A ⊂ ΛL.627

We will start by showing the following property:628

Claim A.9. For all j < k, there exists s(j) such that for all B ⊂ (−∞, 0]×Zd−1 with |B| = j, the629

e1-stretch of ηB is at most s(j). In particular, there exists L(j) such that the maximal possible630

e1-stretch for such a set is obtained for some B ⊂ [−L(j), 0]× Zd−1.631
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Proof. For j = 1 choosing s(1) = L(1) = 0 suffices since no particle could move. For j > 1,632

let L(j) = j(h(j−1) + R) and s(j) the maximal e1-stretch of ηB for any B ⊂ [−L(j), 0] × Zd−1.633

Note that s(j) is well defined since particles cannot move in directions orthogonal to e1, so we634

may assume without loss of generality that B ⊂ [−L(j), 0]× [−jR, jR]d−1; and it is finite since635

j < k.636

Assume now that for some B ⊂ (−∞, 0] × Zd−1 of size j the e1-stretch of ηB is more than637

s(j). We can assume without loss of generality that 0 ∈ B, and by construction there must be638

a site x ∈ B outside [−L(j), 0]× Zd−1. Due to our choice of L(j), the set B could be separated639

by a strip of width h(j−1) +R, namely, there exists n ∈ Z such that640

B = B− ∪B+,

B− ⊂ (−∞, n]× Zd,

B+ ⊂ (n+ h(j−1) +R, 0]× Zd.

However, since the e1-stretch of ηB− is at most h(j−1), it would never be able to influence641

transitions to the right of n + h(j−1) + R, thus the e1-stretch of B cannot be larger than that642

of B−, which is a contradiction. �643

As a result of this claim, there exists s <∞, such that for any set B of size strictly less than644

k, the e1-stretch of B is at most s plus its maximal e1 coordinate.645

Since the e1-stretch of ηA is infinite, there exists an e1-reachable site xwith e·x >
(

(2L+1)d−1k(s+R)
k

)
+646

s + 1. Consider a sequence of T flips which empties that site. We denote the set of empty647

sites at step t by At, so that A0 = A and AT 3 x; and at denotes the rightmost coordinate648

of At (i.e., at = maxy∈At{e1 · y}). Assume now that at some time t we are able to identify a649

non-empty set Ãt whose rightmost coordinate is ãt, such that all sites of At \ Ãt are at least650

s + R to the right of ãt, i.e., at < e1 · y − s− R for all y ∈ At \ Ãt. We then know that the 0’s651

coming from Ãt will never be able to reach distance R from the sites of At \ Ãt, thus the set652

At \ Ãt moves as if these sites were filled. In particular, it could not go further than distance653

s, hence at >
(

(2L+1)d−1k(h+s)
k

)
+ 1. That means that for at least

(
(2L+1)d−1k(s+R)

k

)
+ 1 times t654

with different values of at,655

At ⊂ [at − k(s+R), at]× [−L,L]d−1 .

This box has volume (2L + 1)d−1k(s + R), so by the pigeonhole principle there exist t and t′656

with at < at′ such that At− ate1 = At′ − at′e1. This finishes the proof by taking A′ = At− ate1657

and n = at′ − at, and using the translation invariance of the model. �658

Claim A.10. Fix any finite B ⊂ Zd and e ∈ Zd, and assume that there exists a finite non-empty659

A ⊂ Zd such that the e-stretch of ηA is infinite. Then there exist a finite non-empty set A′ ⊂ Zd660

such that for all m ∈ N, the configuration ηA′ is e-connected to a configuration ηm in which661

all the sites of me+B are empty. Moreover, we can assume that no site after me+B is empty,662

i.e., ηm(x) = 1 whenever x · e > m+ supy∈B y · e.663
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Proof. By the Claim A.8 there exists L ∈ N, A′′ ⊂ ΛL, and n ∈ N, such that ηA′′ is e-connected664

to ηne+A′′. Note that we may, equivalently, choose any A′′ which is a translation of Aη for any665

η in the path connecting ηA′′ with ηne+A′′. We will therefore assume without loss of generality666

that 0 ∈ A′′, but e · x < 0 for all x ∈ A \ {0}.667

Denote B = {b1, . . . , bk}, with e · b1 ≥ · · · ≥ e · bk, and consider the union668

A0 =
k⋃
i=1

(bi + A′′ − inLe) .

This union is disjoint, since A′′ ⊂ ΛL, and by repeating L times the sequence of flips required669

to move A′′ to ne + A′′, we can move b1 + A′′ − nLe to b1 + A′′, reaching a configuration in670

which b1 is empty. Then, repeating this sequence again 2L times we can move b2 +A′′− 2nLe671

to b2 +A′′. This is allowed since during the first sequence we do not changes the configuration672

at the sites of b2 +A′′− 2nLe; and the in the resulting configuration both b1 and b2 are empty.673

We continue in the same manner, until we reach a configuration η′0 in which the sites of B674

are all empty.675

Consider now for j = 0, . . . , n− 1 the set676

Aj = A0 − knLje+ je.

As before, applying repeatedly the sequence that allowed us to move A′′ we can reach a677

configuration ηj (connected to η′Aj) in which the sites of je + B are empty. Furthermore, Aj678

and Aj′ are disjoint for j 6= j′, so, indeed, taking679

A′ =
n−1⋃
j=0

Aj,

for j = 0, . . . , n − 1, the configuration ηA′ is e-connected to a configuration ηj for which the680

sites of je+B are empty. Finally, since A′ is a disjoint union of copies of A′′, we can translate681

each of them by ne, and if we do that in the right order (starting with b1 + A′′ − nLe and682

ending with bk + A′′ − knL(n − 1)e + (n − 1e)) they will never intersect. Hence ηne+A′ is683

e-connected to ηA′, and the result follows. �684

Claim A.11. Fix e ∈ {±e1, . . . ,±ed} and L ∈ N. Assume that there exists a finite non-empty685

A ⊂ Zd such that the e-stretch of ηA is infinite. Then there exists L′ and A′ ⊂ ΛL′ such that686

for all x ∈ [L′,∞]× [−L,L]d−1 and every configuration η for which the sites of A′ are empty,687

η is connected to ηx,x+e.688

Proof. We assume without loss of generality that e = e1. The first observation needed in order689

to prove this claim, is that there is a configuration for which the constraint cx,x+e1 is satisfied,690

but none of the sites to the right of x are empty, i.e., x + [1,∞] × Zd−1 is entirely occupied.691

This is true since, if the e1-stretch of ηA is infinite for finite A, at some point the rightmost 0692

has to move to the right.693
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We then find a finite non-empty B0 ⊂ [−∞, 0]× Zd−1 \ {0} such that c0,e1(ηB0) = 1. Let694

B =
⋃

z∈{0}×[−L,L]d−1

(z +B0) .

Then, in particular, cx,x+e1(ηB) = 0 for x ∈ {0} × [−L,L]d−1.695

We now apply Claim A.10 to find a finite non-empty set A′ ⊂ Zd such that for all m ∈ N,696

the configuration ηA′ is e-connected to a configuration ηm in which all the sites of me+B are697

empty. We define L′ such that A′ ⊂ ΛL′, and then, for every x ∈ [L′,∞] × [−L,L]d−1, taking698

m = e1 · x yields cx,x+e1(ηm) = 1. Therefore, if we take any configuration η for which A′ is699

empty, by performing the same transitions that connected ηA′ to ηm, we reach a configuration700

for which cx,x+e1 = 1. Note that this is done without changing the configuration neither at x701

nor at x+ e1. We then exchange x and x+ e1, and fold back all the transitions we have done702

before, reaching the configuration ηx,x+e1. �703

Claim A.12. Assume that for all e ∈ {e1, . . . , ed} there exists a finite set Ae ⊂ Zd such that the704

e-stretch of ηAe is infinite, and fix e′ ∈ {e1, . . . , ed}. Then there exists L ∈ N and A ⊂ ΛL such705

that for any η in which the sites of A are empty, and any x ∈ [L+ 1,∞]d, the configuration706

ηx,x+e′ is connected to η.707

Proof. Without loss of generality we fix e = e1. By Claim A.11 we can define L1 ∈ N and708

A1 ⊂ ΛL1 be such that for all x1 ∈ [L1,∞] × {0}d−1 and every configuration η for which709

the sites of A1 are empty, η is connected to ηx1,x1+e1. Using Claim A.10 we can find L2 ∈710

N and A2 ∈ ΛL2 such that, for every x2 ∈ {0} × [L2,∞] × {0}d−1, the configuration ηA2711

is connected to a configuration η in which the sites of x2 + A1 are empty, and during the712

sequence of configurations connecting the two only edges of [−∞,−L2]d were flipped. We713

continue in the same manner, for i = 1, . . . , d, to construct Li and Ai ⊂ ΛLi such that for all714

xi ∈ {0}i−1 × [Li,∞]× {0}d−i, the configuration ηAi is connected to a configuration in which715

the sites of xi + Ai−1 are empty, and during the sequence of configurations connecting the716

two only edges of [−∞,−Li]d were flipped.717

Let L = Ld, A = Ad, and fix η in which the sites of A are empty and x ∈ [L+ 1,∞]d. We718

write x = x1 + · · · + xd for xi ∈ {0}i−1 × [Li,∞] × {0}d−i. By our construction of A, η is719

connected to a configuration η′ in which the set A1 + x2 + · · · + xd is empty, and during the720

sequence of configurations connecting the two the sites x and x + e1 remained untouched.721

Then, by the construction of A1, we can connect η′ to η′x,x+e1. All that is left is to rewind the722

steps leading to η′, and the proof is complete. �723

Claim A.13. Assume that for all e ∈ {e1, . . . , ed} there exists a finite set Ae ⊂ Zd such that the724

e-stretch of ηAe is infinite. Then there exists L ∈ N and A ⊂ ΛL such that for any η in which725

the sites of A are empty, any x ∈ [L+ 1,∞]d, and any e′ ∈ {e1, . . . , ed}, the configuration726

ηx,x+e′ is connected to η.727
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Proof. The only difference between this claim and Claim A.12 is that now e′ is chosen afterA is728

fixed. In order to achieve that, we apply Claim A.12 d times, with e′ = ei for all i ∈ {1, . . . , d},729

obtaining d numbers L1, . . . , Ld ∈ N and d sets A1 ∈ ΛL1 , . . . , Ad ∈ ΛLd. Taking L = maxi Li730

and A = ∪di=1Ai will suffice – fix η in which the sites of A are empty, every x ∈ [L+ 1,∞]d731

and i ∈ {1, . . . , d}. In particular x ∈ [Li + 1,∞]d, and that the sites of Ai are empty in η, so732

by construction of Ai we know that ηx,x+ei is connected to η. �733

We are now ready to prove Proposition A.7.734

Proof of Proposition A.7. We assume that for all e ∈ {±e1, . . . ,±ed} there exists a finite set735

Ae ⊂ Zd such that the e-stretch of ηAe is infinite, and construct a mobile cluster A.736

First, use Claim A.13 in order to find L+ ∈ N and A+ ⊂ ΛL+ such that for any η in which737

the sites of A+ are empty, any x ∈ [L+ + 1,∞]d, and any e ∈ {e1, . . . , ed}, the configuration738

ηx,x+e is connected to η. Similarly (by flipping Zd), we can find L− ∈ N and A− ⊂ ΛL−739

such that for any η in which the sites of A− are empty, any x ∈ [−∞,−L− − 1]d, and any740

e ∈ {−e1, . . . ,−ed}, the configuration ηx,x+e is connected to η. It will be more convenient to741

consider translations of these sets,742

A′+ = A+ − (L+ + 2)e1 − · · · − (L+ + 2)ed,

A′− = A− + (L− + 2)e1 + · · ·+ (L− + 2)ed.

This way, for any η in which the sites of A′+ are empty, any x ∈ [2,∞]d, and any e ∈743

{±e1, . . . ,±ed}, the configuration ηx,x+e is connected to η; and for any η in which the sites744

of A′− are empty, any x ∈ [−∞,−2]d, and any e ∈ {±e1, . . . ,±ed}, the configuration ηx,x+e is745

connected to η. Let746

A = A′+ ∪ A′−
We will show that it is a mobile cluster. Since already A′+ allows us to flip edges is its vicinity,747

we only need to show that ηA is connected to ηe+A for all e ∈ {±e1, . . . ,±ed}. To do that,748

we note that, since the sites of A′− are all in [2,∞], the configuration ηA is connected to749

ηA′+∪(e+A′−). In this new configuration the sites of e + A′− are empty, and since the sites of A′+750

are all in [−∞,−2]d + e it is connected to η(e+A′+)∪(e+A′−) = ηe+A. �751

References752

[1] Chikashi Arita, P.L. Krapivsky, and Kirone Mallick. Bulk diffusion in a kinetically constrained lattice gas.753

Journal of Physics A: Mathematical and Theoretical, 51(12):125002, 2018.754

[2] Philippe Bénilan and Michael G. Crandall. The continuous dependence on ϕ of solutions of ut−∆ϕ(u) = 0.755

Indiana University Mathematics Journal, 30(2):161–177, 1981.756

[3] Cédric Bernardin. Regularity of the diffusion coefficient for lattice gas reversible under Bernoulli measures.757

Stochastic Process. Appl., 101(1):43–68, 2002.758

[4] Oriane Blondel, Patrícia Gonçalves, and Marielle Simon. Convergence to the stochastic Burgers equation759

from a degenerate microscopic dynamics. Electron. J. Probab., 21:Paper No. 69, 25, 2016.760



HYDRODYNAMIC LIMIT FOR THE KOB-ANDERSEN MODEL 31

[5] Oriane Blondel and Cristina Toninelli. Kinetically constrained lattice gases: tagged particle diffusion. Ann.761

Inst. Henri Poincaré Probab. Stat., 54(4):2335–2348, 2018.762

[6] Nicoletta Cancrini, Fabio Martinelli, Cyril Roberto, and Cristina Toninelli. Kinetically constrained lattice763

gases. Comm. Math. Phys., 297(2):299–344, 2010.764

[7] Raphaël Cerf and Francesco Manzo. The threshold regime of finite volume bootstrap percolation. Stochas-765

tic Process. Appl., 101(1):69–82, 2002.766

[8] A. De Masi, P. A. Ferrari, S. Goldstein, and W. D. Wick. An invariance principle for reversible Markov767

processes. Applications to random motions in random environments. J. Statist. Phys., 55(3-4):787–855,768

1989.769

[9] Anatole Ertul and Assaf Shapira. Self-diffusion coefficient in the Kob-Andersen model. Electronic Commu-770

nications in Probability, 26:1–12, 2021.771

[10] Alessandra Faggionato. Random walks and exclusion processes among random conductances on random772

infinite clusters: homogenization and hydrodynamic limit. Electron. J. Probab., 13:no. 73, 2217–2247,773

2008.774

[11] T. Funaki, K. Uchiyama, and H. T. Yau. Hydrodynamic limit for lattice gas reversible under Bernoulli775

measures. In Nonlinear stochastic PDEs (Minneapolis, MN, 1994), volume 77 of IMA Vol. Math. Appl., pages776

1–40. Springer, New York, 1996.777

[12] Juan P. Garrahan, Peter Sollich, and Cristina Toninelli. Kinetically constrained models. Dynamical hetero-778

geneities in glasses, colloids, and granular media, 150:111–137, 2011.779

[13] Patrícia Gonçalves, Claudio Landim, and Cristina Toninelli. Hydrodynamic limit for a particle system with780

degenerate rates. Ann. Inst. Henri Poincaré Probab. Stat., 45(4):887–909, 2009.781

[14] Ivailo Hartarsky, Fabio Martinelli, and Cristina Toninelli. Sharp threshold for the FA-2f kinetically con-782

strained model. arXiv preprint arXiv:2012.02557, 2020.783

[15] Claude Kipnis and Claudio Landim. Scaling limits of interacting particle systems, volume 320 of Grundlehren784

der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag,785

Berlin, 1999.786

[16] Walter Kob and Hans C. Andersen. Kinetic lattice-gas model of cage effects in high-density liquids and a787

test of mode-coupling theory of the ideal-glass transition. Physical Review E, 48(6):4364, 1993.788

[17] Fabio Martinelli, Assaf Shapira, and Cristina Toninelli. Diffusive scaling of the Kob-Andersen model in Zd.789

Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 56(3):2189–2210, 2020.790

[18] Fabio Martinelli and Cristina Toninelli. Towards a universality picture for the relaxation to equilibrium of791

kinetically constrained models. Ann. Probab., 47(1):324–361, 2019.792

[19] Robert Morris. Bootstrap percolation, and other automata. European J. Combin., 66:250–263, 2017.793

[20] F. Ritort and P. Sollich. Glassy dynamics of kinetically constrained models. Advances in Physics, 52(4):219–794

342, 2003.795

[21] Mauro Sellitto. Driven lattice gas as a ratchet and pawl machine. Physical Review E, 65(2):020101, 2002.796

[22] Herbert Spohn. Tracer diffusion in lattice gases. J. Statist. Phys., 59(5-6):1227–1239, 1990.797

[23] Herbert Spohn. Large Scale Dynamics of Interacting Particles. Springer-Verlag Berlin Heidelberg, 1991.798

[24] Eial Teomy and Yair Shokef. Hydrodynamics in kinetically constrained lattice-gas models. Physical Review799

E, 95(2):022124, 2017.800

[25] Cristina Toninelli, Giulio Biroli, and Daniel S. Fisher. Cooperative behavior of kinetically constrained lattice801

gas models of glassy dynamics. J. Stat. Phys., 120(1-2):167–238, 2005.802

[26] S.R.S. Varadhan and Horng-Tzer Yau. Diffusive limit of lattice gas with mixing conditions. Asian J. Math.,803

1(4):623–678, 1997.804



32 ASSAF SHAPIRA

[27] Juan Luis Vázquez. The porous medium equation: mathematical theory. Oxford University Press on De-805

mand, 2007.806

E-mail address: assaf.shapira@normalesup.org807

URL: assafshap.github.io808

mailto:assaf.shapira@normalesup.org
https://assafshap.github.io/

	1. Introduction
	2. Model and main result
	3. Proof of Proposition 2.1
	4. Proof of the lower bound
	5. Proof of the upper bound
	5.1. Bootstrap percolation
	5.2. Analysis of the test function

	6. Further problems
	Acknowledgments
	Appendix A. The gradient condition in cooperative models
	References

