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Abstract

We introduce a novel learning-based method to recover shapes from their Laplacian spectra, based on establishing and
exploring connections in a learned latent space. The core of our approach consists in a cycle-consistent module that maps
between a learned latent space and sequences of eigenvalues. This module provides an efficient and effective link between the
shape geometry, encoded in a latent vector, and its Laplacian spectrum. Our proposed data-driven approach replaces the need
for ad-hoc regularizers required by prior methods, while providing more accurate results at a fraction of the computational cost.
Moreover, these latent space connections enable novel applications for both analyzing and controlling the spectral properties
of deformable shapes, especially in the context of a shape collection. Our learning model and the associated analysis apply
without modifications across different dimensions (2D and 3D shapes alike), representations (meshes, contours and point
clouds), nature of the latent space (generated by an auto-encoder or a parametric model), as well as across different shape
classes, and admits arbitrary resolution of the input spectrum without affecting complexity. The increased flexibility allows
us to address notoriously difficult tasks in 3D vision and geometry processing within a unified framework, including shape
generation from spectrum, latent space exploration and analysis, mesh super-resolution, shape exploration, style transfer,
spectrum estimation for point clouds, segmentation transfer and non-rigid shape matching.

Keywords Shape from spectrum - Spectral geometry - Shape analysis - Representation learning - Geometry processing

1 Introduction

Constructing compact encodings of geometric shapes lies
at the heart of 2D and 3D Computer Vision. While earlier
approaches have concentrated on handcrafted representa-
tions, with the advent of geometric deep learning (Bronstein
et al. 2017; Masci et al. 2016), data-driven learned feature
encodings have gained prominence. A desirable property in
many applications, such as shape exploration and synthesis,
is to be able to recover the shape from its (latent) encoding
or to control the object deformations in a parametric fashion.
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Various data-driven parametric models (Loper et al. 2015;
Zuffi et al. 2017; Romero et al. 2017; Pavlakos et al. 2019)
and auto-encoder architectures have been designed to solve
this problem (Achlioptas et al. 2018; Litany et al. 2018; Mo
et al. 2019; Gao et al. 2019). Despite significant progress
in this area, the structure of the latent vectors is arduous
to control. For example, the dimensions of the latent vec-
tors typically lack a canonical ordering, while invariance to
various geometric deformations is often only learned by data
augmentation or complex constraints on the intermediate fea-
tures.

At the same time, a classical approach in spectral geome-
try is to encode a shape using the set of increasingly ordered
eigenvalues (spectrum) of its Laplacian operator. This repre-
sentation is useful since: (1) it does not require any training,
(2) it can be computed on various data representations, such
as point clouds or meshes, regardless of sampling density, (3)
it enjoys well-known theoretical properties such as a natural
ordering of its elements and invariance to isometries, and (4)
as shown recently (Cosmo et al. 2019; Rampini et al. 2019),
alignment of eigenvalues often promotes near-isometries,
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Fig. 1 Our spectral reconstruction enables correspondence-free style
transfer. Given pose and style “donors” (left and middle columns respec-
tively), we synthesize a new shape with the pose of the former and
the style of the latter. The generation is driven by a learning-based
eigenvalues alignment (rightmost plots). Our approach handles different
resolutions (middle row) and representations (bottom row; the surface
underlying the point cloud is for visualization purposes only)

which is useful in multiple tasks such as non-rigid shape
retrieval and matching problems.

Unfortunately, although encoding shapes via their Lapla-
cian spectra can be straightforward (at least for meshes),
the inverse problem of recovering the shape is very difficult.
Indeed, it is well-known that certain pairs of non-isometric
shapes can have the same spectrum, or in other words “one
cannot hear the shape of a drum” (Gordon et al. 1992).
At the same time, recent evidence suggests that such cases
are pathological and that in practice it might be possible to
recover a shape from its spectrum (Cosmo et al. 2019). Never-
theless, existing approaches (Cosmo et al. 2019), while able
to deform a shape into another with a given spectrum, can
produce highly unrealistic shapes with strong artifacts failing
in a large number of cases.

In this paper, we combine the strengths of data-driven
latent representations with those of spectral methods. Our
key idea is to construct a connection between the space of
Laplacian spectra and a learned latent space. This connec-
tion allows us to synthesize shapes from either their learned
latent codes or their Laplacian eigenvalues, and further pro-
vides us with a way to explore the latent space by an intuitive
manipulation of eigenvalues. Moreover, we demonstrate that
this process endows the latent space with certain desirable
properties that are missing in standard auto-encoder archi-
tectures. Our shape-from-spectrum solution is very efficient
since it requires a single pass through a trained network,
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Fig.2 Comparison in estimating a shape from its Laplacian spectrum
between the state-of-the-art method (Cosmo et al. 2019) (middle) and
ours (right) for a mesh and a point cloud. The shapes recovered by our
method are significantly closer to the target

unlike expensive iterative optimization methods with ad-
hoc regularizers (Cosmo et al. 2019; Rampini et al. 2019).
Furthermore, our trainable module acts as a proxy to differ-
entiable eigendecomposition, while encouraging geometric
consistency within the network. Overall, our key contribu-
tions can be summarized as follows:

— We propose the first learning-based model to robustly
recover shapes from Laplacian spectra in a single pass;

— For the first time, we provide a bidirectional connec-
tion between learned latent spaces and spectral geometric
properties of 3D shapes, giving rise to new tools for the
analysis of geometric data;

— Our model is general, in that it applies with no modifica-
tions to different classes even across different geometric
representations and dimensions, and generalizes to rep-
resentations not available at training time;

— Our connections can be applied to different kinds of
latent representation, such as the ones provided by auto-
encoders or from parametric models;

— We showcase our approach in multiple applications (e.g.,
Fig. 1), and show significant improvement over the state
of the art; see Fig. 2 for an example.

2 Related Work

Spectral quantities and in particular the eigenvalues of the
Laplace-Beltrami operator provide an informative summary
of the intrinsic geometry. For example, closed-form estimates
and analytical bounds for surface area, genus and curvature
in terms of the Laplacian eigenvalues have been obtained
(Chavel 1984). Given these properties, spectral shape analy-
sis has been exploited in many computer vision and computer
graphics tasks such as shape retrieval (Reuter et al. 2005),
description and matching (Sun et al. 2009; Aubry et al. 2011,
Bronstein et al. 2011; Ovsjanikov et al. 2012), mesh seg-
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mentation (Reuter 2010), sampling (Oztireli et al. 2010) and
compression (Karni and Gotsman 2000) among many others.
Typically, the intrinsic properties of the shape are computed
from its explicit representation and are used to encode com-
pact geometric features invariant to isometric deformations.

Recently, several works have started to address the inverse
problem: namely, recovering an extrinsic embedding from
the intrinsic encoding (Boscaini et al. 2015; Cosmo et al.
2019). This is closely related to the fundamental theoreti-
cal question of “hearing the shape of the drum” (Kac 1966;
Gordon et al. 1992). Although counter-examples have been
proposed to show that in certain scenarios multiple shapes
might have the same spectrum, there is recent work that
proposes effective practical solutions to this problem. In
Boscaini et al. (2015) the shape-from-operator method was
proposed, aiming at obtaining the extrinsic shape from a
Laplacian matrix where the 3D reconstruction was recovered
after the estimation of the Riemannian metric in terms of edge
lengths. In Corman et al. (2017) the intrinsic and extrinsic
relations of geometric objects have been extensively defined
and evaluated from both theoretical and practical aspects.
The authors revised the framework of functional shape dif-
ferences (Rustamov et al. 2013) to account for extrinsic
structure, extending the reconstruction task to non-isometric
shapes and models obtained from physical simulation and
animation. Several works have also been proposed to recover
shapes purely from Laplacian eigenvalues (Chu and Golub
2005; Aasen et al. 2013; Panine and Kempf 2016) or with
mild additional information such as excitation amplitude in
the case of musical key design (Bharaj et al. 2015). Most
closely related to ours in this area is the recent isopectraliza-
tion approach introduced in Cosmo et al. (2019), that aims
directly to estimate the 3D shape from the spectrum. This
approach works well in the vicinity of a good solution but
is both computationally expensive and, as we show below,
can quickly produce unrealistic instances, failing in a large
number of cases in 3D, as shown in Fig. 2 for two examples.

In this paper we contribute to this line of work, and propose
to replace the heuristics used in previous methods, such as
Cosmo et al. (2019), with a purely data-driven approach for
the first time. Our key idea is to design a deep neural network,
that both constraints the space of solutions based on the set
of shapes given at training, and at the same time, allows us
to solve the isospectralization problem with a single forward
pass, thus avoiding expensive and error-prone optimization.

We note that a related idea has been recently proposed
in Huang et al. (2019) via the so-called OperatorNet archi-
tecture. However, that work is based on shape difference
operators (Rustamov et al. 2013) and as such requires a
fixed source shape and functional maps to each shape in
the dataset to properly synthesize a shape. Our approach is
based on Laplacian eigenvalues alone, and thus is completely
correspondence-free.

Our approach also builds upon the recent work on learning
generative shape models. A range of techniques have been
proposed using volumetric representations (Wu et al. 2016),
parametric models (Loper et al. 2015; Pavlakos et al. 2019;
Zuffi et al. 2017), point cloud auto-encoders (Aumentado-
Armstrong et al. 2019; Achlioptas et al. 2018), generative
models based on meshes and implicit functions (Sinha et al.
2017; Groueix et al. 2018; Litany et al. 2018; Kostrikov et al.
2018; Chen and Zhang 2019), and part structures (Li et al.
2017; Moetal. 2019; Gao et al. 2019; Wu et al. 2019), among
many others. Although generative models, and auto-enco-
ders in particular, have shown impressive performance, the
structure of the latent space is typically difficult to control
or analyze directly. To address this problem, some methods
proposed a disentanglement of the latent space (Wu et al.
2019; Aumentado-Armstrong et al. 2019) to split it in more
semantic regions. Perhaps most closely related to ours in this
domain, is the work in Aumentado-Armstrong et al. (2019),
where the shape spectrum is used to promote disentanglement
of the latent space into intrinsic and extrinsic components,
that can be controlled separately. Nevertheless, the result-
ing network does not allow to synthesize shapes from their
spectra.

Extending the studies of these approaches, our work pro-
vides the first way to connect the learned latent space to the
spectral one, thus inheriting the benefits and providing the
versatility of moving across the two representations. This
allows our network to synthesize shapes from their spectra,
and also to relate shapes with very different input structure
(e.g., meshes and point clouds) across a vastness of sampling
densities, enabling several novel applications.

This paper is an extended version of the work presented
in Marin et al. (2020). Compared to the former version, our
contribution is as follows: (i) We investigate different types
of latent space, including those generated by an auto-encoder
model as well as parametric spaces associated with mor-
phable models, and study different parametrizations thereof;
(i1) we include human bodies among the classes of analyzed
shapes; (iii) we further develop the tools provided by our
model for a meaningful exploration of the latent space, show-
ing how the spectral prior contributes to the interpretability
of latent codes, and enabling the disentanglement of intrinsic
and extrinsic geometry as a novel application (Sect. 6); (iv)
we introduce non-rigid matching as a new application of the
shape-from-spectrum paradigm (Sect. 7).

3 Background
We model shapes as connected 2-dimensional Riemannian
manifolds X embedded in R3, possibly with boundary 9.,

equipped with the standard metric. On each shape X we
consider its positive semi-definite Laplace-Beltrami operator

@ Springer
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Fig.3 Reconstruction examples of our shape-from-spectrum pipeline.
We show the results obtained with two different inputs: the eigenvalues
of the Laplacian discretized with linear FEM, and those of the cubic
FEM discretization. The heatmap encodes point-wise reconstruction
error, growing from white to dark red

Ay, generalizing the classical notion of Laplacian from the
Euclidean setting to curved surfaces.
Laplacian spectrum. Ay admits an eigendecomposition

Axdi(x) = Lipi (x)
(Voi(x),n(x)) =0

x € int(X) (1)
x edXx (2

into eigenvalues {A;} and associated eigenfunctions {¢; H.

The Laplacian eigenvalues of &’ (its spectrum) form a dis-
crete set, which is canonically ordered into a non-decreasing
sequence

Spec(X) :={0=20 <A1 <Ap <---}. 3)

In the special case where X is an interval in R, the
eigenvalues A; correspond to the (squares of) oscillation fre-
quencies of Fourier basis functions ¢;. This provides us with
a connection to classical Fourier analysis, and with a natural
notion of hierarchy induced by the ordering of the eigenval-
ues. In the light of this analogy, in practice, one is usually
interested in a limited bandwidth consisting of the first k
eigenvalues; typical values in geometry processing applica-
tions range from k = 30 to 100.

Furthermore, the spectrum is isometry-invariant, i.e., it

does not change with deformations of the shape that preserve
geodesic distances (e.g., changes in pose).
Discretization. In the discrete setting, we represent shapes
as triangle meshes X = (V,T) with n vertices V and m
triangular faces 7'; depending on the application, we will
also consider unorganized point clouds. Vertex coordinates
in both cases are represented by a matrix X € R"*3,

The Laplace-Beltrami operator A y is discretized asan xn
matrix via the finite element method (FEM) (Ciarlet 2002).
In the simplest setting (i.e., linear finite elements), this dis-
cretization corresponds to the cotangent Laplacian (Pinkall
and Polthier 1993); however, in this paper we consider both
quadratic FEM and cubic FEM (see, e.g., (Reuter 2010,

1 Similarly to Cosmo et al. (2019) we use homogeneous Neumann
boundary conditions; see Eq. (2), where 71(x) denotes the outward nor-
mal to the boundary.

@ Springer

Sec. 4.1) for a clear treatment). These yield a more accurate
discretization as shown in Fig. 3 and evaluated in Table 2.
Differently from Cosmo et al. (2019), Rampini et al. (2019),
this comes at virtually no additional cost for our pipeline, as
we will show. On point clouds, Ay can be discretized using
the approach described in Clarenz et al. (2004), Boscaini et
al. (2016).

4 Method

Our main contribution is a deep learning model for recover-
ing shapes from Laplacian eigenvalues. Our model operates
in an end-to-end fashion: given a spectrum as input, it directly
yields a shape with a single forward pass, thus avoiding
expensive test-time optimization.

Motivation. Our rationale lies in the observation that shape
semantics can be learned from the data, rather than by
relying upon the definition of ad-hoc regularizers (Cosmo
et al. 2019), often resulting in unrealistic reconstructions.
For example, a sheet of paper can be isometrically crum-
pled or folded into an airplane (see inset figure). Since both
embeddings have exactly the same eigenvalues, the desired
reconstruction must be imposed as a prior. By taking a data-
driven approach, we make our method aware of the “space of
realistic shapes”, yielding both a dramatic improvement in
accuracy and efficiency, and enabling new interactive appli-
cations.

4.1 Latent Space Connections for Auto-encoders

Our first key contribution is to construct an auto-encoder
(AE) neural network architecture, augmented by explicitly
modeling the connections between the latent space of the
AE and the Laplacian spectrum of the input shape; see Fig. 4
for an illustration of this learning model.

Loosely speaking, our approach can be seen as implement-
ing a coupling between two latent spaces: a learned one that
operates on the shape embedding &X', and the one provided
by the eigenvalues Spec(X). In the former case, the encoder
E is trainable, whereas the mapping X — Spec(X) is pro-
vided via the eigen-decomposition and fixed a priori. Further,
we introduce the two coupling mappings 7, p, trained with a
bidirectional loss, to both enable communication across the
latent spaces and to tune the learned space by endowing it
with structure contained in Spec(X).

We phrase our overall training loss as follows:

=Ly +al,, with “)
1

tx = —IDEX) - X|% Q)
1

tr =2 (r @) — EX)3+ Ilo(EX) —Al13) (6)
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Fig. 4 Our network model. The input shape X and its Laplacian
spectrum Spec(X) are passed, respectively, through an AE enforc-
ing X ~ X, and an invertible module (7, p) mapping the eigenvalue
sequence to a latent vector v. The two branches are trained simultane-
ously, forcing v to be updated accordingly. The trained model allows
to recover the shape purely from its eigenvalues via the composition
D(mr(Spec(X))) ~ X

where A is a vector containing the first k (positive) eigenval-
ues in Spec(X'), X is the matrix of point coordinates, E is the
encoder, D is the decoder (Fig. 4), | - ||  denotes the Frobe-
nius norm, and @ = 10~* controls the relative strengths of the
reconstruction loss £y and the spectral term ¢;. The blocks
D, E, m, and p are learnable and parametrized by neural
networks (see the supplementary material for the implemen-
tation details). Eq. (6) enforces p ~ 71 in other words, 7
and p form a translation block between the latent vector and
the spectral encoding of the shape.

At test time, we recover a shape from a given spec-
trum Spec(X) simply via the composition D (;r (Spec(X)))
(Sect. 5). For additional applications we refer to Sect. 8.
Shape representation. We consider two different settings:
triangle meshes in point-to-point correspondence at train-
ing time (typical in graphics and geometry processing), and
unorganized point clouds without a consistent vertex labeling
(typical in 3D computer vision).

Auto-encoder architecture. Our model can be built with
potentially any AE. In our applications we chose relatively
simple ones to deal with meshes and unorganized point
clouds, although more powerful generative methods would
be equally possible.

Remark. Our architecture takes Spec(X’) as an input, i.e., the
eigenvalues are not computed at training time. By learning
an invertible mapping to the latent space, we avoid expensive
backpropagation steps through the spectral decomposition of
the Laplacian A y. In this sense, the mapping p acts as an
efficient proxy to differentiable eigendecomposition, which
we exploit in several applications below.

Since eigenvalue computation is only incurred as an offline
cost, it can be performed with arbitrary accuracy (we use
cubic FEM, see Fig. 3 and Table 2) without sacrificing effi-
ciency. We refer to the supplementary material for details
about the architecture, both in the case of meshes and
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Fig.5 In the morphable model setting, the latent space (i.e., the space
of deformation parameters) is given together with its decoder D; both
are fixed at training time

point clouds. In all our experiments, we set the latent space
dimension k equal to the number of eigenvalues Spec(X),
specifically k£ = 30. In Sect. 5.2, we compare the results for
different choices of k.

4.2 Latent Space Connections for Parametric Models

Our second key idea is to connect the Laplacian spectrum
with the space of parameters of a given morphable model.
We illustrate this construction in Fig. 5. This approach is
similar to the previous one, with two important differences:
1) there is no encoder involved in the loop; 2) the latent space
is also given as input, i.e., it is not learned during training. As
before, we establish the connection between the two given
representations by training the networks 7 and p with a bidi-
rectional loss, which is similar to Eq. (6):

~ 1 2 5
b= Ur @) = vl + 1o (V) = Ally) (N

where all the symbols have the same meaning as in the previ-
ous losses. The equation above can be obtained from Eq. (6)
by replacing E(X) with v, and replacing the learned encoded
representation with a fixed one.

Parametric models. We consider two different paramet-
ric models, namely, the seminal model SMPL (Loper et al.
2015), and its updated version SMPL-X (Pavlakos et al.
2019). Despite dealing with similar data (human bodies),
these two models have very different parametric spaces.

5 Results and analysis
In this section we report the results on our core application

of shape from spectrum recovery, together with an analysis
of the various parameters and timing.

@ Springer
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Table 1 Shape-from-spectrum reconstruction comparisons with NN
(nearest neighbors between spectra) and the state of the art (Cosmo
et al. 2019); we report an average error over 100 shapes of an unseen
subject from COMA (Ranjan et al. 2018). Best results are obtained with
our full pipeline

full res 1000 500 200
Ours 1.61 1.62 1.71 213
Ours without p 1.89 1.82 2.06 2.42
NN 4.45 4.63 4.01 2.65
Cosmo et al. (2019) — 16.4 7.11 4.08

‘—’ denotes out of memory; all errors must be rescaled by 1073

5.1 Shape-from-spectrum recovery

To evaluate our method, we trained our model on 1853 3D
shapes from the CoMA dataset (Ranjan et al. 2018) of human
faces; 100 shapes of an unseen subject are used for the test
set. We repeated this test at four different mesh resolutions:
~4K (full resolution), 1K, 500, and 200 vertices respectively.
For each resolution, we independently compute the Laplacian
spectrum and use these spectra to recover the shape.
Comparison. We compared our method in terms of recon-
struction accuracy to the state-of-the-art isospectralization
method of Cosmo et al. (2019), as well as to a nearest-
neighbors baseline, consisting in picking the shape of the
training set with the closest spectrum to the target one. In
addition, we trained two separate architectures (with and
without the p block) and compared them. The test without
this network component is an ablation study we carry out to
validate the importance of the invertible module connecting
the spectral encoding to the learned latent codes.

The quantitative results are reported in Table 1 as the
mean squared error between the reconstructed shape and
the ground-truth. Figures 2 and 6 further show qualitative
comparisons with the different baselines on different shape
representations. In Fig. 6, for the sake of illustration and
similarly to Cosmo et al. (2019), Rampini et al. (2019),
we also include 2D contours discretized as regular cycle
graphs. As the results suggest, the p block both contributes
to reduce the reconstruction error, and to enable novel appli-
cations (we explore them in depth in Sec. §). Our method
achieves a significant improvement over nearest neighbors
in terms of accuracy, and an order of magnitude improve-
ment over isospectralization Cosmo et al. (2019). Also, the
latter approach consists in an expensive optimization which
requires hours to run, while our method is instantaneous at
test time.

We perform further experiments on the human bodies cat-
egory, by training our model on a set of 3014 shapes (in
T-Pose) from the SURREAL dataset Varol et al. (2017). The
quantitative evaluation is reported on different test sets in the

@ Springer
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Fig. 6 Shape reconstruction from eigenvalues using our approach on
different representations (i.e. 2D contours, 3D meshes and point clouds).
The eigenvalues of the shapes on the left are fed into our network,
which outputs the shapes in the middle. For each representation, the
eigenvalues are computed on the appropriate Laplacian discretization
as per Sect. 3. The NN column shows the nearest-neighbor solution
sought in the training set

fifth column of Table 2, and qualitatively in Figures 7 and 8.
In the qualitative examples, the shapes have been remeshed
to have a different connectivity from the ones seen at training
time. The numbers reported in the legend encode the relative
error Zi(kft —1)?/ (Xft)z, where X:.ét are the ground-truth
eigenvalues, while A; are the eigenvalues of the shapes as
labeled in the figures (the smaller, the better).

Finally, in Figure 9, we test our model on shapes that are
outside the training distribution. In the first row, two target
human shapes selected from the SHREC19 benchmark Melzi
et al. (2019). In the second row, an example on animals for a
shape from SHREC20 Dyke et al. (2020). Even if the input
geometry is far from the training distribution, our model
is able to provide meaningful results that respect the main
semantic features of the target shape. For example, with the
hippo shape in the bottom row, several features of the target
shape are missing in our result, but we are able to retrieve the
global geometry and the correct class among the ones present
in the training set. We remark that these shapes are very chal-
lenging, since they come from different datasets, represent
different subjects, different poses, and are discretized with
completely different meshes.

5.2 Ablation Study

We conducted an in-depth ablation study on the human body
category, for which we can easily compare across the dif-
ferent latent spaces introduced in the previous Section. In
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Table 2 Quantitative ablation study on different test sets (one per row), with different variants of our model (one per column)

O  Ois 0% 0% Oxn Ox Po NNy  Sio SXis  SXz  SXep VAE
SURREAL 20.34 20.12 2.92 2.88 1.68 1.52 2.38 15.96 27.24 42.02 41.08 4431 1.34
SURREAL rem 20.64 20.17 13.85 7.13 2.32 2.46 2.84 17.90 25.09 42.95 41.92 46.30 1.97
SURREAL uni 230 180 340 280 200 270 370 240 480 320 240 170 205
FAUST 397 442 535 509 385 364 373 369 450 197 200 200 377
FAUST rem 390 434 533 434 378 362 364 365 439 198 200 200 371
FAUST uni 787 539 517 419 445 444 665 915 263 198 200 200 383

Oy are based on an AE for meshes, P, adopts the AE for pointcloud, VAE exploits a variational AE, Sy and SX} use the latent space from the
parametric models SMPL and SMPL-X respectively. Parameter k is the dimension of the latent space and the number of strictly positive eigenvalues.
The indices 1 and 2 denote the linear and quadratic FEM respectively, otherwise we use the cubic FEM. N N is the baseline that returns the shape
in the training set that has the most similar spectrum to the input one. All the results are scaled by 10° for easier reading

ot Ours NN eigenvalues
F T T
‘ S SRS B
I ]
| |
—_— gt input 0.12 === Ours 0.086 - -- NN 0.27

Fig. 7 Shape-from-spectrum reconstruction of a test shape from the
SURREAL dataset (Varol et al. 2017). The subject was not seen at
training time, and has a different discretization than the training shapes

Ours eigenvalues
<5 =
— Ot input 0.97 === Ours 0.56 - -- NN 0.97

Fig. 8 Shape-from-spectrum reconstruction of a test shape from the
FAUST dataset (Bogo et al. 2014). The input mesh has different con-
nectivity as well as different pose from the shapes in the training set

mesh  target Ours mesh target Ours
$ $_ <3 , .
f/‘"\ B - N T H
/ v ! “
A A
o
mesh target Ours

Fig. 9 Shape-from-spectrum reconstruction of test shapes outside the
training distribution. First row: two human shapes from SHREC19;
second row: a hippo from SHREC20. From left to right of each block,
the target shape with its overlaid mesh, the target surface, and the output
of our model

Table 2 we compare different variants of our learning mod-
els:

— Oy is our AE-based model (Fig. 4) for meshes;

— Py is the same as Oy, but for point clouds;

— VAE is a probabilistic variant of our AE-based model,
obtained by replacing the deterministic AE with a varia-
tional autoencoder with the same architecture;

— Sk and S X are based on the parametric models SMPL
and SMPL-X, respectively (Fig. 5);

— NN is the baseline; for every input spectrum, it outputs
the training shape with the most similar spectrum (we use
the Euclidean distance).

Parameter k denotes the dimension of the latent space (equal
to the number of eigenvalues different from 0). The super-
script indices 1 and 2 denote whether the eigenvalues are
computed with a linear or quadratic FEM, respectively; in
all the other cases, we use cubic FEM. The main difference
between the two morphable models is in the dimension of the
parametric space: 10 for SMPL and 400 for SMPL-X. For
this reason, we can only select k = 10 for SMPL (S}¢), and
different values of k for SMPL-X (§X s, SX30, SXe0). We
report the performance of these models in the last 4 columns
of Table 2, and refer to the supplementary materials for fur-
ther details. These comparisons serve to motivate our choice
of taking a fully data-driven approach over more straightfor-
ward, parametric alternatives. The parametric space provided
by the morphable models is given, and not learned, together
with the maps p and 7. Moreover, in this case, the decoding
consists of a linear operation in contrast to the non-linear
decoder of our network. The lower performance of the
parametric model-based solutions show that non-linear oper-
ations achieve better results and that it is preferable to learn
the latent space together with the bi-directional linkage to the
space of spectra.

While the training set is fixed, we consider different test
sets with an increasing level of difficulty:
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— SURREAL: 755 shapes from the SURREAL dataset with
the same pose and connectivity as the training shapes, but
unseen subject;

— SURREAL rem: remeshed version of the former, ranging
from 25% to 70% of the original number of vertices (see
Fig. 7 for an example);

— SURREAL uni: remeshed version with uniform density,
causing loss of detail for several thin subparts (see the
top left shape of Fig. 16 for an example).

In these test sets, all the shapes are in the same pose and the
ground truth is available. We measure the mean squared error
between the 3D coordinates of the ground truth vertices and
those of the shape recovered from the spectrum.

Number of eigenvalues. The comparison in Table 2 is done
with different values of £ = 10, 15, 30, 60. This parameter
has a direct effect on reconstruction accuracy, since increas-
ing this number brings more high-frequency detail into the
representation. At the same time, the variations in the high
frequencies are more unstable and so less easy to model in the
data driven approach. The choice k = 30 empirically leads
to more stable results, confirming previous work in spectral
geometry processing (Cosmo etal. 2019; Rampini etal. 2019;
Roufosse et al. 2019). We use k = 30 in all the following
experiments, and report additional results for different k in
the supplementary material.

Robustness to different connectivity. Our method is robust
even under significant remeshing (uni), as shown in Figures 7,
8, and 16 (top left). This strong variation in the discretization
still causes geometric distortion, which motivates the larger
errors in the third row of Table 2. Despite the quantitative
results indicate larger numerical error, however, qualitatively
our approach still provides acceptable results in this challeng-
ing setting as shown in the Figures.

FEM order. We further compare the performance of our
method using FEM of different orders for the computation
of the eigenvalues: linear 0310, quadratic 0320 and cubic O3g.
The results in Table 2 confirm that higher order FEM leads
to more accurate results on all the test sets.

Autoencoder architectures. As mentioned in the previous
section, we can build our model on top of any autoencoder.
In Table 2 we compare two different architectures: one for
meshes (O3p) and one for unorganized point clouds (P3p).
The main difference is that P3g exploits PointNet (Qi et al.
2017) as an encoder, and does not use any connectivity
information between the vertices. More details about the
two architectures are reported in the supplementary mate-
rials. The mesh-based architecture O3 outperforms P3g, as
expected from the additional information brought in by mesh
connectivity. At the same time, P3o outperforms the baseline
N N30, as well as the mesh-based architectures with fewer
eigenvalues 019, O15 and the lower order FEM models 0310,
03%.
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Finally, we test a probabilistic version of our pipeline
involving a basic variational autoencoder (VAE). The result-
ing model is easily comparable with the other architectures
proposed in the paper. Our VAE shares the same architecture
of the AE with latent space of size k = 30, and we used cubic
FEM for the computation of eigenvalues of the training set.
In this case, the training loss becomes:

=0y +al), + BlkL, (8)

where £g; = Dgr(Q(v|X)|P(v)) is the Kullback-Leibler
divergence to promote a Gaussian distribution in the latent
space, with Q(v|X) being the posterior distribution given
an input shape X, and P(v) being the Gaussian prior. In
the last column of Table 2, we report the results obtained
with this model. We note a slight improvement of the recon-
struction error on all the considered benchmarks. This result
suggests that more complex probabilistic generative models
(e.g. exploiting the mesh hierarchy) and additional refine-
ment of our method for applications requiring a high level of
accuracy are promising directions for further investigation.
Generalization to different data. Finally, we tested on the
FAUST dataset (Bogo et al. 2014), which is a data distribu-
tion outside of the training data SURREAL. Also in this case,
we generated three different test sets: FAUST, FAUST rem
and FAUST uni (last 3 rows of Table 2). These shapes are
registrations of real human bodies, and are far from the ones
seen at training time in terms of pose and subject (see Fig. 8
for an example). The task here is to evaluate the generaliza-
tion capabilities of our model; given as input the eigenvalues
of a FAUST shape in arbitrary pose, we aim to recover the
FAUST shape in T-pose by using our model trained on SUR-
REAL data. For the evaluation, we are given the ground-truth
correspondence between the shapes from FAUST and SUR-
REAL, and use it to compute the metric distortion between
the two. This different error measure motivates the different
error scales in the last three rows of Table 2. However, qual-
itatively the reconstructions are still accurate, as shown in
Fig. 8.

This set of experiments shows that an AE-based model
trained on SURREAL does not generalize well. In fact, the
last4 columns for the FAUST experiments show better recon-
struction accuracy than the others, meaning that our learning
model based on a parametric latent space (S and SX) is
preferable in an out-of-distribution scenario.

On the other hand, the AE-based model is more appropri-
ate whenever the input spectra are sampled from the same
distribution as the training data, which is characteristic of
encoder-decoder models. This is confirmed by the SUR-
REAL tests in the Table, where O3g outperforms all the
SMPL-X based models by a large gap.
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5.3 Timing and Implementation Details

The experiments were run on a19-9820X 3.30GHz CPU, with
32GB of RAM and a RTX 2080 Ti GPU. In general, the run-
time depends on the number of vertices; for the data we used
in our tests, on average we observed that an epoch requires
20 to 30 seconds. We used fewer vertices for the PointNet
version of the network to compensate the computational cost
of Chamfer distance computation. In our configuration, a full
training requires 10 to 12 hours without any ad-hoc optimiza-
tion (e.g., early stopping). Our code is publicly available at
https://git.io/ JGJWE.

6 Application: Disentanglement

Our model naturally provides a tool to investigate the rela-
tionship between intrinsic and extrinsic geometric properties
of the shapes being analyzed. In particular, given a latent
vector v representing a shape, our model provides two dif-
ferentiable maps taking v as input (Fig. 4):

— the decoder D between v and the extrinsic geometry of
the shape, represented as vertex coordinates V;

— the network p, that maps v to the Laplacian spectrum,
which is an intrinsic quantity widely used as a proxy for
the shape metric.

These two maps allow us tolocally separate between extrinsic
and intrinsic shape information. Specifically, we can seek
for shape deformations directly in the latent space, driven by
either D or p. We first illustrate this mathematically, and then
give concrete examples in the following.

Starting from any given latent vector v, we can deform
the corresponding shape X by moving v in the direction d
that minimizes (or maximizes) the variation in the Laplacian
spectrum. This is done by considering the Jacobian matrix of
the network o, which we call J,,. The direction d of minimum
(maximum) variation of Spec(X’) is then given by the right-
singular vector of J, corresponding to the smallest (largest)
singular value, as explained in Section 7 of the Supplemen-
tary material. Thus, we can take an infinitesimal step along
d by the update rule v — v + «ad, with small «.

In the case of deformable shapes as the ones of CoMA
Ranjan et al. (2018), this results in the ability to continu-
ously deform a shape while keeping its metric unchanged,
i.e., to generate isometries. Examples of shapes generated
according to this criterion are reported in Figure 10. As we
can see, minimizing the spectral variation leads to approxi-
mately isometric deformations, resulting in a change of facial
expression of the shapes, while maximizing the spectral vari-
ation induces a change in both their pose and identity.

Alternatively, we can find the deformation of X that
changes the intrinsic metric while preventing its extrin-
sic distortion from being too large. This means to update
v by maximizing the spectral variation and, at the same
time, keeping the decoded shape vertices V' as constant as
possible. Conversely, we could enhance the extrinsic dis-
tortion in isometric deformations, in order to obtain more
pronounced changes of pose than the ones in Figure 10.
Similarly to the previous case, both deformations can be
achieved considering J, and the Jacobian of the decoder,
see Supplementary for the details. Therefore, two additional
types of latent space exploration paths driven by the spectral
prior are possible: maximum spectral variation plus mini-
mum extrinsic variation and vice-versa. Examples of these
latent space explorations on CoMA are reported in Figure 11.
They should correspond to the change of pose and change of
identity respectively. We stress that such paths should emu-
late a change of pose/identity in an approximate way, but are
not expected to produce high quality shape animations. In
fact, we move in the latent space making small steps around
the latent vector of an initial shape, but we are not guaran-
teed to be in the vicinity of a good solution in the first place.
More visually pleasant solutions might be achieved via fur-
ther post-processing in the vertex space.

7 Application: Shape correspondence

An important application in the field of 3D shape analysis is
establishing point-to-point correspondence between objects.
In particular, given two shapes X and ), we aim to find a
map Tyxy : X — Y that associates for each point of the
first shape a point of the latter. In this application, we exploit
two of the main advantages of our method: the capability to
recover a geometry from its spectrum, and the natural order
of points provided by the decoder. Given two input shapes
X and Y with their spectra A y and Ay), we can approximate
them computing Sy = D(z(Ay)) and Sy = D(r(ry)).
Being the outputs of our network discretized by a common
template, we naturally obtain a correspondence between Sy
and Sy . Given this correspondence, we can solve for the map
Txy inan alternative way: (1) we estimate Txs,, and Ts,,y,
which are easier to compute; (2) we compose these two maps
via Ts,, s, that is given by construction; (3) the composition
Txs, 0 Tsysy, o Ts,,y finally yields the desired correspon-
dence. We consider two different settings for this problem.
Single-pose matching, where we consider two objects that
share the same pose reconstructed by our model; Multi-pose
matching, where the two geometries have different poses
from the one seen at training time. We show how our approach
helps in both these settings.

Single-pose In this setting, X', V and Sy, Sy are all in
the same pose and location in 3D space, thus we can estab-
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max spectral variation

¢

min spectral variation T T

¥

Fig. 10 Latent space exploration using the spectral prior. Upper block
of two rows: Examples of paths obtained maximizing the eigenvalues
variation. The faces change both identities and poses. Lower block:
Paths obtained moving towards the direction of minimum spectral vari-
ation. Shapes go through isometries (change of facial expression). On
the right, the eigenvalues recomputed on each shape of the row are
reported

| |
10 20 30

Fig. 11 Latent space exploration using the spectral prior. First row is
obtained maximizing intrinsic variation while keeping vertices as con-
stant as possible, resulting in change of identity. Conversely, second row
is maximum extrinsic variation and minimum variation of eigenvalues,
inducing a change of pose

lish a mapping between each input and its reconstruction
via nearest-neighbor assignment in 3D. Then, exploiting the
common discretization of Sy and Sy, we obtain a sparse
correspondence between the two original shapes. In the case
of meshes, we then extend the sparse matching on all the
surface using the functional maps framework (Ovsjanikov
et al. 2012), while for point clouds we just propagate it
by nearest-neighbor. We remark that we obtain the corre-

@ Springer

Table3 Quantitative evaluation for the non-rigid shape matching appli-
cation, averaged over 10 shape pairs

FEM3 Ours FMAP Ours+Z0 FMAP+Z0
2-20 2.09e-2 2.46e-2 6.37e-3 6.58e-3
2-100 3.00e-2 3.57e-2 5.64e-3 9.41e-3
5-20 2.11e-2 2.41e-2 6.28¢e-3 6.71e-3
5-100 8.00e-3 9.30e-3 5.64e-3 9.41e-3

The results are the average geodesic errors reported in centimeters. Each
row represents a specific experiment varying the number of landmarks
(2 or 5), and the size of the estimated functional map (20 or 100)

100 Source Ours

0 0.1 02 y
Ours: 0.06 X
e [CP 1 0.093 o

Fig. 12 On the left, quantitative evaluation of matching (Kim et al.
2011) between 100 pairs of animals. On the right, a qualitative compar-
ison on texture and segmentation transfer

86, 88%
accuracy

75,18%
accuracy

spondence automatically from the spectra of the shapes. We
perform a quantitative evaluation on SMAL (Zuffi et al.
2017), testing on 100 non-isometric pairs of animals from
different classes. As a baseline we consider ICP (Besl and
McKay 1992) to rigidly align the two shapes (100 iterations),
followed by nearest-neighbor assignment to obtain a corre-
spondence. Two applications that benefit from our approach
are texture and segmentation transfer; we tested them respec-
tively on animals and segmented ShapeNet (Yi et al. 2017).
See Fig. 12 and the supplementary for further details.

Multi-pose matching We now consider two shapes that do
not share the same spatial pose, have a different connectivity,
and are also affected by non-rigid deformations. To find a cor-
respondence, we use again the functional maps framework
(Ovsjanikov et al. 2012) (FMAP). Such framework entirely
relies on the intrinsic geometry of the shapes, and so it is
robust to nearly-isometric changes of the subject, however, it
suffers in the presence of non-isometric deformations. Here
we consider 10 shape pairs (X, )), where X is one of the 10
different human identities from FAUST, and ) is the SMPL
template. Each shape X is non-isometric and in a different
pose than ). With our model, we compute Sy as a mesh
with the same connectivity and pose of SMPL that is isomet-
ric to X', while we let Sy) = ) be the SMPL template. Then,
we compute the correspondence between X' and Sy via the
FMAP implementation of Nogneng and Ovsjanikov (2017),
and obtain a matching between X and ) by composition
as explained above. We perform this test while varying two
important parameters of FMAP: the number of ground-truth
landmarks used as probe functions (2 or 5), and the dimen-
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Source FMAP FMAP+ZO

A3 : =~ W)

70

Our Source Ours+

Fig. 13 Qualitative comparison of non-rigid shape matching. Top row:
The source shape is a different subject than the target, and is in a different
pose; the last two columns show the matching results obtained with
standard methods. Bottom row: The source shape is recovered from
the spectrum of the target shape by using our model O3, making the
correspondence problem easier to solve. The geodesic error (in cm) is
encoded by color, growing from white to dark red

sion of the functional correspondence matrix (20 or 100).
To highlight the benefits introduced by our approach, we
compare against the baseline obtained applying the frame-
work (Nogneng and Ovsjanikov 2017) directly to the shape
pair (X, )). In the second and third columns of Table 3 we
report the results of our method and the baseline respectively.
We notice that by producing a more isometric template, we
obtain a significant improvement in performance. Further-
more, in the last two columns, we report the results obtained
with the ZoomOut refinement algorithm (Melzi et al. 2019),
applied with the parameters proposed in the original paper.
This procedure promotes isometric maps, which makes our
contribution even more crucial. A qualitative comparison is
depicted in Fig. 13.

8 Additional applications

Our general model enables several additional applications,
by exploiting the connection between spectral properties and
shape generation. Due to the limited space, we collect in the
supplementary materials the details of the training and test
sets and the parameters used in our experiments.

8.1 Shape exploration

The results of Sects. 5 and 6 suggest that eigenvalues can
be used to drive the exploration of the AE’s latent space
toward a desired direction. Another possibility is to regard the

Input: low resolution shapes

Fig. 14 Latent space interpolation of four low-resolution shapes with
different mesh connectivity (top row, unseen at training time). The spec-
tra of the input shapes are mapped via 7 to the latent space, where they
are bilinearly interpolated and then decoded to R3. The reconstructions
of the four input shapes are depicted at the four corners of the 4 x 4
grid

eigenvalues

low-pass
modification
-

input shape

Fig. 15 Exploring the space of shapes in real time via manipulation
of the spectrum. The low-pass modification (middle) decreases the first
12 eigenvalues of the input shape; the band-pass modification (right)
amplifies the last 12 eigenvalues. The damping of low eigenvalues leads
to more pronounced geometric features (e.g. longer legs and snout),
while amplification of mid-range eigenvalues affects the high-frequency
details (e.g. the ears and fingers); see the supplementary video for a
wall-clock demo

eigenvalues themselves as a parametric model for isometry
classes, and explore the “space of spectra” as is typically
done with latent spaces. Our bi-directional coupling between
spectra and latent codes makes this exploration feasible, as
remarked by the following property:
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input

Fig. 16 Latent space interpolation for the human bodies category. On
the left and right of each row, we depict the input shapes with differ-
ent connectivity. We map their spectra in the latent space, where we
linearly interpolate and then decode them via D, thus generating the
shapes in the five intermediate columns. First row: The input shapes

Property 1 Latent space connections provide both a means
for controlling the latent space, and vice-versa, enable
exploration of the space of Laplacian spectra.

Since eigenvalues change continuously with the manifold
metric (Bando and Urakawa 1983), a small variation in the
spectrum will give rise to a small change in the geometry.
We can visualize such variations in shape directly, by first
deforming a given spectrum (e.g., by a simple linear inter-
polation between two spectra) to obtain the new eigenvalue
sequence g, and then directly computing D (7 (p)).

In Fig. 14 we show a related experiment. Here we train the
network on 4,430 animal meshes generated with the SMAL
parametric model following the official protocol (Zuffi et al.
2017). Given four low-resolution shapes X; as input, we
first compute their spectra Spec(&;), map these to the latent
space via w(Spec(X;)), perform a bilinear interpolation of
the resulting latent vectors, and finally reconstruct the corre-
sponding shapes. We perform the same experiment on the
human bodies category by exploiting the model O3p. In
Fig. 16, we consider two meshes from the SURREAL test
set and two shapes from FAUST dataset. All the input shapes
have been remeshed with different densities. The linear inter-
polation of the latent vectors obtained through 7 produces
meaningful intermediate steps encoding the main intrinsic
variation of the subjects involved. We remark that the pose
variations of a human shape are close to isometric deforma-
tions and therefore do not affect the Laplacian spectrum. For
this reason, it is not possible to retrieve the pose of a human
body from its spectrum. In this spirit, we trained our model
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Interpolation of latent vectors

input

have been remeshed and have never been seen during training (SUR-
REAL dataset). Second row: The shapes have been remeshed and have
different poses, and belong to subjects that are not in the space spanned
by the SMPL morphable model (FAUST dataset). This shows the robust-
ness of our method to different subjects and different poses

style target  our result eigenvalues

pose 1.4 == our 0.76

Fig. 17 Examples of style transfer. The target style (middle) is applied
to the target pose (left) by solving problem (9) and then decoding the
resulting latent vector, obtaining the result shown on the right. For each
example we also report the corresponding eigenvalue alignment (right-
most plots). The black dotted line is the image of p. The numbers in
the legend denote the distance from the target “style” spectrum to the
source pose and to our generated shape; a small number suggests that
the generated shape is a near-isometry of the style target
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Fig. 18 Mesh super-resolution for inputs at decreasing resolution (top
row, left to right). Our method fits closely the original input shapes
(top left), while other approaches either predict the wrong pose (NN
baseline) or generate an unrealistic shape (Cosmo et al. (2019))

only on shapes in T-Pose, motivating the pose of the interpo-
lation steps in Fig. 16. Furthermore, our method is robust to
changes in connectivity, extrinsic pose and embedding (note
the rigid rotation between the initial and final input shapes in
the second row).

Finally, in Fig. 15 we show an example of interactive
spectrum-driven shape exploration for the animals class.
Given a shape and its Laplacian eigenvalues as input, we
navigate the space of shapes by directly modifying different
frequency bands with the aid of a simple user interface. The
modified spectra are then decoded by our network in real
time. The interactive nature of this application is enabled by
the efficiency of our shape from spectrum recovery (obtained
in a single forward pass) and would not be possible with
previous methods (Cosmo et al. 2019) that rely on costly
test-time optimization. We refer to the accompanying video
and the supplementary materials for additional illustrations.

8.2 Style transfer

As shown in Fig. 1, we can use our trained network to transfer
the style of a shape Xjtyle to another shape X}ose having both
a different style and pose. This is done by a search in the

Here, the first term seeks a latent vector whose associ-
ated spectrum aligns with the eigenvalues of Xgyie; in other
words, we regard style as an intrinsic property of the shape,
and exploit the fact that the Laplacian spectrum is invari-
ant to pose deformations. The second term keeps the latent
vector close to that of the input pose (we initialize with
Vinit = E(Xpose)). We solve the optimization problem by
back-propagating the gradient of the cost function of Eq. (9)
with respect to v through p.

The sought shape is then given by a forward pass on
the resulting minimizer. In Fig. 17, we show four exam-
ples (others can be found in the supplementary material). We
emphasize here that the style is purely encoded in the input
eigenvalues, therefore it does not rely on the test shapes being
in point-to-point correspondence with the training set. This
leads to the following:

Property 2 Our method can be used in a correspondence-
free scenario. By taking eigenvalues as input, it enables
applications that traditionally require a correspondence, but
side-steps this requirement.

This observation was also mentioned in other spectrum-
based approaches (Cosmo et al. 2019; Rampini et al. 2019).
However, the data-driven nature of our method makes it more
robust, efficient and accurate, therefore greatly improving its
practical utility.

8.3 Super-resolution

A key feature that emerges from the experiment in Fig. 14 is
the perfect reconstruction of the low-resolution shapes once
their eigenvalues are mapped to the latent space via . This
brings us to a fundamental property of our approach:

Property 3 Since eigenvalues are largely insensitive to mesh
resolution and sampling, so is our trained network.

This fact is especially evident when using cubic FEM dis-

cretization, as we do in all our tests, since it more closely
approximates the continuous setting and is thus much less
affected by the surface discretization.
Remark. 1t is worth mentioning that existing methods can
employ cubic FEM as well; however, this soon becomes
prohibitively expensive due to the differentiation of spec-
tral decomposition required by their optimizations (Cosmo
et al. 2019; Rampini et al. 2019).

These properties allow us to use our network for the task
of mesh super-resolution. Given a low-resolution mesh as
input, our aim is to recover a higher resolution counterpart of
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eigenvalues eigenvalues

10 20 30 10 20

Fig. 19 Qualitative and quantitative evaluation of point cloud spectra
estimation. On the left we show the qualitative comparison for different
samplings on three classes (animals, human faces and objects). We show
the eigenvalues estimations alongside the input point cloud (depicted as

it. Furthermore, while the input mesh has arbitrary resolution
and is unknown to the network (and a correspondence with
the training models is not given), an additional desideratum
is for the new shape to be in dense point-to-point correspon-
dence with models from the training set. We do so in a single
shot, by predicting the decoded shape as:

Xhires = D (7 (Spec(Xiowres))) - (10

This simple approach exploits the resolution-independent
geometric information encoded in the spectrum along with
the power of a data-driven generative model.

In Fig. 18 we show a comparison with nearest-neighbors
between eigenvalues (among shapes in the training set), and
the isospectralization method of Cosmo et al. (2019). Since
we can exploit the cubic FEM, which is less sensitive to
the different resolutions, our solution closely reproduces
the high-resolution target. Isospectralization correctly aligns
the eigenvalues, but it recovers unrealistic shapes due to
ineffective regularization. This phenomenon highlights the
following

Property 4 Our data-driven approach replaces ad-hoc reg-
ularizers, that are difficult to model axiomatically, with
realistic priors learned from examples.

This is especially important for deformable objects;
shapes falling into the same isometry class are often hard
to disambiguate without using geometric priors.

8.4 Estimating point cloud spectra

As an additional experiment, we show how our network can
directly predict Laplacian eigenvalues for unorganized point
clouds. This task is particularly challenging due to the lack
of a structure in the point set, and existing approaches such as
(Clarenz et al. 2004; Belkin et al. 2009) often fail at approxi-
mating the eigenvalues of the underlying surface accurately.
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surface samplings), and the ground truth spectrum (in red). On the last
two columns, we report the average cumulative error curves evaluated
on the FLAME dataset for the two different distributions (F1 and F2)
and on ShapeNet (S)

The difficulty is even more pronounced when the point sets
are irregularly sampled, as we empirically show here. In our
case, estimation of the spectrum boils down to the single
forward pass:

Spec(X) = p(E(X)). (11)

To address this task we train our network by feeding
unorganized point clouds as input, together with the spectra
computed from the corresponding meshes (which are avail-
able at training time). As described in the supplementary
materials, for this setting we use a PointNet (Qi et al. 2017)
encoder and a fully connected decoder, and we replace the
reconstruction loss of Eq. (5) with the Chamfer distance. This
application highlights the generality of our model, which can
accommodate different representations of geometric data.

We consider two types of point clouds: (1) with similar
point density and regularity as in the training set (shown in
the supplementary materials), and (2) with randomized non-
uniform sampling. We compare the spectrum estimated via
p(E (X)) to axiomatic methods (Clarenz et al. 2004; Belkin
et al. 2009), and to the NN baseline (applied in the latent
space); see Fig. 19. The qualitative results are obtained by
training on SMAL (Zuffi et al. 2017) (left), COMA (Ranjan
et al. 2018) (middle) and ShapeNet watertight (Huang et al.
2018) (right). To highlight its generalization capability, the
network trained on COMA is tested on point clouds from the
FLAME dataset, while on ShapeNet we consider 4 different
classes (airplanes, boats, screens and chairs). We compute the
cumulative error curves of the distance between the eigenval-
ues from the meshes corresponding to the test point clouds.
The mean error across all test sets is also reported in the leg-
end. Our method leads to a significant improvement over the
closest state-of-the-art baseline (Belkin et al. 2009).



International Journal of Computer Vision (2021) 129:2745-2760

2759

9 Conclusions

We introduced the first data-driven method for shape gen-
eration from Laplacian spectra. Our approach consists in
enriching a standard AE with a pair of cycle-consistent
maps, associating ordered sequences of eigenvalues to latent
codes and vice-versa. This explicit coupling brings forth
key advantages of spectral methods to generative models,
enabling novel applications and a significant improvement
over existing approaches. These maps provide an effective
tool for a geometrically meaningful exploration of the latent
space, and further allow to disentangle the intrinsic from the
extrinsic information of the shapes. Our main limitations
are shared with other spectral methods in the computation
of a robust Laplacian discretization. Adopting the recent
approach (Sharp et al. 2019) for such borderline cases is a
promising possibility. Further, while the Laplacian is a clas-
sical choice due to its Fourier-like properties, the spectra of
other operators with different properties may lead to other
promising applications. Finally, considering more complex
and structured generative models (e.g. probabilistic or hier-
archical ones (Gao et al. 2019)) in our pipeline may give rise
to promising directions for further investigation.
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