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Abstract
We propose a novel discrete solver for optimizing functional map-based energies, including descriptor preservation and pro-
moting structural properties such as area-preservation, bijectivity and Laplacian commutativity among others. Unlike the
commonly-used continuous optimization methods, our approach enforces the functional map to be associated with a pointwise
correspondence as a hard constraint, which provides a stronger link between optimized properties of functional and point-to-
point maps. Under this hard constraint, our solver obtains functional maps with lower energy values compared to the standard
continuous strategies. Perhaps more importantly, the recovered pointwise maps from our discrete solver preserve the optimized
for functional properties and are thus of higher overall quality. We demonstrate the advantages of our discrete solver on a
range of energies and shape categories, compared to existing techniques for promoting pointwise maps within the functional
map framework. Finally, with this solver in hand, we introduce a novel Effective Functional Map Refinement (EFMR) method
which achieves the state-of-the-art accuracy on the SHREC’19 benchmark.
CCS Concepts
• Computing methodologies ! Shape analysis; • Theory of computation ! Computational geometry;

1. Introduction

Non-rigid shape matching is a classical problem in geometry pro-
cessing and related fields. Given a pair of 3D shapes, the objective
is to find a mapping that associates points on the two shapes ac-
cording to some quality criteria. Once such a high-quality mapping
is computed, it can then be used in a wide variety of downstream
tasks, ranging from statistical shape analysis [BRLB14] to defor-
mation transfer [SP04].

This problem is challenging because the space of possible maps
is typically non-linear and most common objectives result in com-
plex non-convex optimization problems. For example, it is well-
known that optimizing the standard geodesic distortion energy over
the space of permutation matrices leads to NP-hard quadratic as-
signment problems [LdABN⇤07].

To address this challenge, most correspondence approaches use
relaxation techniques replacing discrete constraints on the permu-
tation matrices with spaces more amenable to optimization. This
includes optimizing over the space of doubly stochastic matrices
[FJBd13, SPKS16, DML17], using spectral relaxation, which con-
strains the Frobenius norm of the matrices [LH05], or using the
functional map relaxation, which uses a low rank spectral repre-
sentation [OBCS⇤12]. These methods lead to continuous (often
convex) optimization problems that can be solved efficiently, but
then require potentially costly or error-prone projection steps to re-
cover an integer solution. Finally, state-of-the-art generic provably
tight relaxation techniques [DML17, BTM18] are only applicable
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Figure 1: Overview of our approach. The standard functional map
framework uses a continuous solver to optimize for a functional
map by minimizing a given energy E(·) and projecting to a point-
wise map during post-processing. In contrast, our discrete solver
directly optimizes in the space of “proper” functional maps and
thus leads to better final pointwise correspondences.

to shapes or graphs with hundreds of points making them impracti-
cal for dense meshes.

In this paper, we focus on the functional map relaxation for
shape matching. The standard functional map pipeline first de-
fines an energy E(·), typically based on preservation of descrip-
tors coupled with promoting structural map properties. An op-
timal functional map is then computed by optimizing this en-
ergy with a continuous solver usually in an unconstrained set-
ting. Finally, in most practical scenarios this functional map is
then projected to recover a pointwise map. Note that the pro-
jection step is usually independent of the defined energy E, and
can thus destroy the optimized map properties, see Fig. 1 (top
right, blue box) for an illustration. In most cases, the recovered
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pointwise maps are then further refined using a post-processing
method [OBCS⇤12, VLR⇤17, RPWO18, MRR⇤19, ESBC19].

While simple and efficient, the functional map pipeline has two
major issues: (1) there is no guarantee that the optimized functional
map is associated with any point-to-point correspondence (2) al-
though prior works have introduced powerful functional map ob-
jectives, the pointwise map conversion and refinement steps discard
those carefully designed energies and adopt other heuristics/crite-
rion to promote the pointwise maps.

In this paper, we show how to resolve these conflicts by exploit-
ing the link between functional and pointwise maps. First, we in-
troduce the concept of the proper functional maps. A functional
map is called proper if it arises from some underlying pointwise
map. We then propose to minimize functional map-based ener-
gies in the space of proper functional maps. This problem is much
harder to solve than the unconstrained one since the search space
becomes non-convex and discrete. To address this, we propose a
general discrete solver which is simple and can optimize a range
of energies with the proper functional map constraint. For exam-
ple, in Fig. 1 we use our discrete solver to optimize the energy
proposed in [NO17] and obtain a proper functional map C3 which
leads to a more accurate underlying pointwise map, despite the en-
ergy in [NO17] being designed to explicitly promote point-to-point
correspondences.

Our main contributions include the problem formulation with
the proper functional map constraint and a general discrete solver
which can be used to optimize a large set of functional map based
energies under that constraint. We compare our approach to exist-
ing techniques for promoting pointwise maps, e.g., [NO17], and
show that our method is both more flexible and leads to higher ac-
curacy. We also demonstrate that the recently-proposed standard
and bijective ZoomOut method [MRR⇤19, RMOW20] are special
cases of applying our discrete solver to different energies. Finally,
we apply our discrete solver to a new functional map energy that
combines a range of different objectives and achieves state-of-the-
art accuracy on the SHREC’19 benchmark. To summarize, our
main contributions include:

1. Introducing the proper functional map hard constraint to opti-
mization that involves functional map based energies, which can
lead to better and more desirable local minima.

2. A general discrete optimizer capable of optimizing a large class
of functional map energies.

2. Related Work

Below, we briefly review work that is most related to ours, while
focusing on shape matching and spectral methods.

Shape Matching Our framework is closely related to the problem
of shape matching, and thus to methods that look for dense corre-
spondences between non-rigid 3D shapes. For an in-depth review
of this area we refer the readers to [BCBB16, TCL⇤13]. Several
approaches to shape matching directly solve for correspondences
between points on the two surfaces by minimizing an explicit en-
ergy, e.g., [BBK06, HAWG08, OMMG10]. The main limitation
of these methods is that they often lead to complex combinatorial

problems. An alternative is to first map the shapes to a canonical
domain (e.g. a sphere), and then solve for the correspondence be-
tween these parametric representations [LF09, APL15, AL16], or
blend across multiple such maps [KLF11].

One successful strategy for shape matching is to relax the search
space from permutation matrices to a space more amenable to
continuous optimization, e.g., doubly stochastic matrices [FJBd13,
SPKS16, DML17], but also other successful relaxations ex-
ist [LH05, SNB⇤12, KKBL15, MDK⇤16, ADG19]. This, however,
requires a possibly error-prone projection step to compute an inte-
ger solution, while provably tight relaxations do not scale well to
complex meshes.

Shape Matching with Functional Maps Our approach is based
on the functional map representation [OBCS⇤12]. The vast major-
ity of methods that use this framework for shape matching start
with a set of descriptor functions, derived from point signatures or
from landmarks, and use them jointly with global map quality cri-
teria to compute a correspondence [KBB⇤13, AK13, NO17] (we
refer to [OCB⇤17] for an overview). While computing a functional
map reduces to solving a least-squares system, the conversion from
a functional map to a point-wise map is not trivial and can lead
to inaccuracy and noise [RMC15, EBC17]. To improve accuracy,
several desirable map attributes have been promoted via regulariz-
ers for the functional map estimation first using geometric insights
[ERGB16,RCB⇤17,NO17,LRBB17,BDK17,WLZT18,RPWO18,
WGBS18, GBKS18, NMR⇤18, SVBC19], and more recently using
learning-based techniques [LRR⇤17, HLR⇤19, RSO19]. Neverthe-
less, despite significant progress, the reliance on descriptors and
decoupling of continuous optimization and pointwise map conver-
sion remains common to all existing methods.

Map Refinement A common strategy for improving estimated
correspondences consists in iterative map refinement as a post-
processing step, e.g. [SPKS16,MCSK⇤17,VLR⇤17,VLB⇤17]. The
simplest refinement in the functional maps framework is the Itera-
tive Closest Point algorithm in the spectral domain [OBCS⇤12].
Recently, other more advanced refinement methods for both func-
tional and pointwise maps have been proposed in [ESBC19,
RPWO18], that, respectively, try to minimize the bi-directional
geodesic Dirichlet energy, and promote the bijectivity, smoothness
and coverage of the correspondences. When shape collections are
considered, a common strategy is to use cycle consistency con-
straints [WHG13, HWG14, WS13]. Most closely related to ours,
is the ZOOMOUT method proposed in [MRR⇤19], and based on
iterative conversion between functional and pointwise maps. This
approach was recently extended and incorporated in a strategy to
analyze the space of maps between shapes in [RMOW20]. Without
any initialization, this method explores the space of maps between
shapes exploiting their functional representations and providing as
output a set of maps encoding all the different symmetries between
two objects (or eventually from an object and itself). We signifi-
cantly enrich this approach, generalizing the possible energies min-
imized during the process.

submitted to Eurographics Symposium on Geometry Processing (2021)



J. Ren, S. Melzi, P. Wonka, & M. Ovsjanikov / Discrete Optimization for Shape Matching 3

Descriptors FMap Energy
E(C)

Continuous Optimization

C

Discrete Conversion

P Post-processing

[OMMG10]
[ASC11]
· · ·

[OBCS⇤12]
[NO17]
[HO17]

[RPWO18]
· · ·

ICP [OBCS⇤12]
PMF [VLR⇤17]
RHM [ESBC19]

BCICP [RPWO18]
ZoomOut [MRR⇤19]
· · ·

Functional Map Initialization Pointwise Map Refinement

Figure 2: Standard functional map pipeline for shape matching.
Given some input descriptors, a functional map energy E is for-
mulated, and the optimal functional map C is optimized for in the
continuous setting. This functional map is then converted to a point-
wise map P. A post-processing step is applied to further improve
the quality of the pointwise map.

3. Notation, Background & Motivation

Notation Given a pair of shapes S1 and S2 represented as trian-
gle meshes with respectively n1 and n2 vertices, we compute the
cotangent Laplace-Beltrami operator [MDSB03] of each shape Si
and collect the first k eigenfunctions as columns in a matrix de-
noted by Fi =

⇥
jSi

1 ,j
Si
2 , · · · ,j

Si
k
⇤

and the corresponding eigenval-
ues in a diagonal matrix denoted as Di. The eigenfunctions are or-
thonormal with respect to the mass (area) matrices of the shapes:
FT

i AiFi = Id. A pointwise map Ti j : Si! S j, associates each vertex
on shape Si to a vertex on shape S j (e.g. the p-th vertex on Si cor-
responds to the Ti j(p)-th vertex on S j). The map Ti j can be repre-
sented as a binary matrix Pi j , such that Pi j(p,q) = 1 if Ti j(p) = q
and 0 otherwise. The subscript (i, j) indicates the map direction.
Throughout our discussion below we will always use P to denote
point-to-point maps.

Our work is based on the functional map representation, intro-
duced in [OBCS⇤12], that encodes a correspondence as a linear
transformation in a functional basis. Given a point-to-point corre-
spondence P21, its associated functional map is a k2⇥ k1 matrix,
given as: C12 = F†

2P21F1. Note that C12 maps functions in a reduced
basis from S1 to S2.

In the standard functional map pipeline [OCB⇤17], any matrix
with the appropriate size w.r.t. the reduced basis, is considered a
valid functional map. This greatly simplifies many optimization
problems by enabling the use of unconstrained continuous opti-
mization techniques. In practice, however, additional regularizers
are introduced to ensure that the recovered map is associated with
a pointwise map [NO17]. Furthermore, in the standard pipeline,
pointwise map recovery is performed a posteriori, potentially in-
troducing errors and inconsistencies.

Proper Functional Maps In our paper, we consider a subset of the
space of functional maps, restricted to those that encode pointwise
correspondences:

Definition 3.1 The proper functional map space P is the set of
functional maps that arise from pointwise correspondences. Partic-
ularly, we call a functional map C12 proper if there exists a point-
wise map P21 such that C12 = F†

2P21F1.

In other words, C12 is called proper if and only if there exists
a binary matrix P21 with exactly one value 1 per row, so that

C12 = F†
2P21F1. The space P12 of proper functional maps between

S1 and S2 is denoted as:

P12 =
�

C12 | 9P21, s.t. C12 = F†
2P21F1

 
(1)

Unlike the commonly used unconstrained functional map space
Rk2⇥k1 , we can observe that the proper functional map space is
discrete and has a finite size with at most n1

n2 elements.

Functional Map Computation Pipeline Fig. 2 illustrates the
standard functional map pipeline, which consists of the following
two major steps (see Chapter 2 in [OCB⇤17]):

1. Formulate an energy E(·) based on preservation of geometric
properties, and optimize for a functional map in an unconstrained
setting. E.g.,:

min
C122R k2⇥k1

��C12F1�F2
��2

F + g
��C12D1�D2C12

��2
F . (2)

Here, the first term corresponds to preservation of descriptors,
while the second promotes commutativity with the Laplacian,
which is based on the common near-isometry assumption.

2. Convert the functional map computed in Step 1. to a point-
wise map, potentially applying post-processing and refinement
[EBC17, VLR⇤17, MRR⇤19].

The main advantage of this pipeline is that the unconstrained
optimization problem in Step 1 has only k1k2 unknowns, indepen-
dently of the size of the underlying meshes, and it can be solved
with a standard least squares solver. Unfortunately, this comes at
a price, since there is no guarantee that the recovered functional
map will be proper, which can induce significant errors during the
pointwise conversion step. Previous works have aimed to remedy
this problem by introducing regularizers promoting pointwise maps
[NO17], considering more sophisticated functional map objectives,
e.g., [HO17,PSO18,WGBS18,GBKS18], or using learned descrip-
tors that lead to more accurate maps [LRR⇤17, HLR⇤19, DSO20]
among many others. Unfortunately, despite significant progress,
the underlying problem of decoupling functional map optimization
and pointwise map conversion is present in all existing approaches.
We note that this problem is exacerbated further in post-processing
methods [EBC17,VLR⇤17,MRR⇤19], as the carefully crafted geo-
metric energies used in Step 1. are typically abandoned completely
and each post-processing method uses its own set of objectives or
heuristics.

4. Method Description

Rather than solving an unconstrained optimization problem as is
done in virtually all existing functional maps based methods, we
propose to constrain the optimization to the space of proper func-
tional maps introduced above.

Problem Formulation Our general approach consists in optimiz-
ing a given energy E(C12) over the space of proper functional maps:

min
C122P12

E(C12), (3)

instead of optimizing E(C12) in an unconstrained setting. In full
generality, this is a very difficult problem, and can potentially
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even include quadratic assignment as a special case. Our main ob-
servation, however, is that certain energies, including the one in
Eq. (2), admit a particular decomposition, in which the functional
and point-to-point maps can be solved for in an alternating fashion,
where each sub-problem has a simple or even closed form solution.

Approach overview Our overall strategy mimics the Augmented
Lagrangian methods with variable splitting [GM76, BPC⇤11],
which are commonly used to solve constrained problems. Specifi-
cally, our approach consists of the following general steps:

1. Given a functional map energy, reformulate it by replacing some
terms C12 with F†

2P21F1.
2. Add a coupling term to the energy and make the functional map

C12 and pointwise map P21 independent free variables of the
resulting problem.

3. Alternate between computing the optimal functional and point-
to-point maps, while fixing the other representation.

Our main observation is that for many energies, the resulting prob-
lem in Step 3. for each representation can be solved in closed form,
as long as the other representation is fixed. Crucially, unlike the
standard pipeline, our pointwise map recovery in Step 3. at every
iteration is informed by the original functional map objective.

To make this pipeline possible, the key step is to relax the orig-
inal energy in a way that would allow efficient point-to-point map
recovery in Step 3. For this, we will make repeated use of the fol-
lowing lemma:

Lemma 4.1 Given arbitrary matrices X ,Y , and a reduced ba-
sis F, s.t. FT AF = Id, then the following two problems: (i)
minP

��F†PX�Y
��2

F +
��(Id�FF†)PX

��2
A; (ii) minP

��PX�FY
��2

F ;
are equivalent. Moreover problem ii) is row-separable and can be
solved in closed form through nearest neighbor search.

The second term in problem (i) of this lemma is a regularizer that
penalizes the image of X that lies outside of the span of F. A spe-
cial case this of lemma appeared in [EBC17], and we include a
proof in Appendix A for completeness. In our method, we exploit
Lemma 4.1 extensively for various pairs X ,Y , to transform any
optimization problem of the form minP

��F†PX�Y
��2

F to the form
minP

��PX�FY
��2

F by implicitly adding the appropriate regularizer.

Example As an example, consider the energy in Eq. (2). First re-
mark that C12 = 0 is a global minimizer for the Laplacian commuta-
tivity term in the unconstrained setting, while it is well-known that
in the space of proper functional maps, in the full basis Elap = 0,
only for discrete isometries [ZGLG12, MRR⇤19].

Relaxation In our relaxation, we start by replacing some terms
C12 in the original energy using the hard constraint C12 = F†

2P21F1.
This leads to the following modified energy for Eq. (2):

Emod =
��F†

2P21F1F1�F2
��2

F + g
��F†

2P21F1D1�D2C12
��2

F , (4)

Note that Emod�C12,P21
�

is equivalent to the problem in Eq. (2)
under the hard constraint C12 = F†

2P21F1. However, we can now
relax Emod by making it a problem in two independent variables
C12,P21 and solving for them in an alternating fashion. Lemma 4.1
then allows us to optimize for P21 through the implicit use of a
regularizer. This leads to the following iterative algorithm:

Source

g

Function transfer C(k)g over iteration k Pointwise
map

C

D
(Ours)

Figure 3: Minimizing the orientation-reversing energy on a panda
shape from random initialization. We visualize how the function g
gets transferred by the optimized functional map C(k) from the con-
tinuous solver C and our discrete solver D over iterations. We also
visualize the computed pointwise map in the last column, where our
discrete solver outputs a high-quality self-symmetric map.

1. C12= argminC12
Emod�C12 |P21

�

2. P21= argminP21

��P21F1F1�F2F2
��2

F + g
��P21F1D1�F2D2C12

��2
F .

Note that the problem in step 2 above results from applying Lemma
4.1 to the energy Emod. Crucially, this new problem is row sepa-
rable and the optimal P21 can be computed via nearest neighbor
search efficiently.

Different Coupling Strategies In the relaxation above we pro-
ceeded in two stages: first, rewriting the original energy in modified
form, that enabled the use of Lemma 4.1, and second, by removing
the hard constraint and optimizing for C12 and P21 in an alternating
fashion. While this may be the simplest option, it typically does not
work well in practice and a coupling term is necessary to link the
two sets of variables and improve the overall energy optimization.

Common coupling strategies for relaxing constrained optimiza-
tion problems include introducing a soft penalty or using an aug-
mented Lagrangian approach, such as ADMM. Due to the special
continuous-discrete nature of our setting that uses spectral and pri-
mal domains, the best choice of coupling is problem-dependent.
See Appendix B for more detailed discussions of various coupling
strategies in our setting. We have observed that for most energies
that we tested, the following coupling term leads to the best re-
sults:

��F†
2P21F1CT

12� Id
��2

F . Below we demonstrate that the result-
ing strategy is efficient, flexible that can handle different energies,
recovering good pointwise maps even from random initializations.

Applicability Our method is based on applying Lemma 4.1 to
rewrite functional maps-based energy in a way that leads to closed-
form expressions for pointwise map recovery. Our overall strat-
egy is therefore applicable to energies that can be written in a
specific format (see Appendix C for full details on different en-
ergies). Interestingly, as we remark below, this covers a wide range
of commonly-used functional map energies, and even allows effec-
tive approximation of energies that do not fit in that format. Be-
low provide expressions for reformulating several commonly-used
functional map-based energies

1. Descriptor preserving energy A standard energy in func-
tional map computations, introduced in [OBCS⇤12] is based
on preservation of descriptors, which can be written as:
E(C12) =

��C12F1�F2
��2

F . As mentioned above, we can write this
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Source

(Ini)

Input descriptor Transferred descriptor Ck fi over iter k Ti
k = 1 k = 3 k = 5 k = 25 k = 50f1 g1

f2 g2

f3 g3

Figure 4: For a sphere shape, we use our discrete solver to mini-
mize the descriptor-preserving energy defined on ( fi,gi), a pair of
descriptors we would like to enforce the correspondence. Here we
show three examples of the corresponding descriptors (blue box)
and visualize how the descriptor fi is transported over iterations
(red box). We also show the corresponding output pointwise maps
Ti in the last column.

energy Emod =
��F†

2P21F1F1�F2
��2

F . Lemma 4.1 can then be ap-
plied directly to this modified energy.

2. Operator commutativity energy Another commonly used
energy is based on penalizing lack of commutativity of
the sought functional map with some other operators
E(C12) =

��C12W1�W2C12
��2

F . Here, Wi can be the Laplacian oper-
ator Di which promotes isometric correspondences [OBCS⇤12],
or multiplicative operators introduced in [NO17] promoting
preservation of function products and thus pointwise maps in a
soft way. Wi can also represent orientation-preserving/reversing
operators introduced in [RPWO18]. See Fig. 3 for an exam-
ple. In all of these cases, the corresponding modified energy is:
Emod =

��F2P21F1W1�W2C12
��2

F . Again, the modified energy can
be optimized for both C12 (via least squares) if P21 is fixed. Con-
versely, by using Lemma 4.1, P21 can be computed via nearest
neighbor search if C12 is fixed.

3. Orthogonality energy It is well-known that locally area-
preserving correspondences lead to orthonormal functional
maps [OBCS⇤12, ROA⇤13]. This prior has been used
as a hard constraint by optimizing on the Stiefel man-
ifold of orthonormal matrices [KGB16, LRBB17]. The
standard functional map energy has the following form:
E(C12) =

��CT
12C12� Id

��2
F =

��C12CT
12� Id

��2
F . We re-write it sim-

ply asEmod =
��F†

2P21F1CT
12� Id

��2
F . This form allows efficient

optimization for both C12 and P21 whenever the other set of
variables is fixed.

4. Conformal energy A point-to-point map is conformal if and
only if the functional map preserves H1 inner products of
functions. As was shown in [ROA⇤13] this is equivalent to
the following condition: E(C12) =

��CT
12D2C12�D1

��2
F . Note that

this energy does not follow the format that we used above.
We therefore approximate it by a different surrogate energy:
E(C12) =

��C12D1CT
12�D2

��2
F . Though not equivalent to the orig-

inal energy, it is strongly related to the original energy (see de-
tailed discussion in Sec. 5.3). This latter energy can be re-written
as: Emod =

��F†
2P21F1D1CT

12�D2
��2

F , again, enabling the use of
Lemma 4.1 for optimization of pointwise maps P.

5. Bijectivity energy Instead of optimizing the functional
map only in one direction it can also be convenient to

Teaaaaaaaaxt

Teaaaaaaasxt

min
C2P

E
�
C
�

min
C,P

Erel�C,P
�

C P

argmin
P

Erel�P |C
�

C = F†
S2

PFS1

Problem Relaxation Discrete Optimization

Random
Ini

Output

Figure 5: Overview of our problem relaxation and discrete opti-
mization through iterative conversion (Erel is short for Erelaxed).

couple maps in both directions, thereby promoting in-
vertibility (bijectivity) of the recovered correspondences.
This energy, originally introduced in [ERGB16] can be
stated as: E(C12,C21) =

��C12C21� Id
��2

F +
��C21C12� Id

��2
F .

Note that this energy involves the functional maps from
both directions. We can there introduce the correspond-
ing pointwise maps P12 and P21 and rewrite this energy:
Emod =

��F†
2P21F1C21� Id

��2
F +

��F†
1P12F2C12� Id

��2
F . Note that

in this particular case, we have four sets of independent variables
C12,C21,P12,P21 to optimize.

5. Practical Algorithm of Discrete Optimization

As mentioned above, our approach starts with a given functional
map-based energy. We then re-write it in a modified form as de-
scribed above, make the functional and pointwise maps indepen-
dent variables that can be optimized in an alternating fashion.

In practice, we make several modifications that we have observed
improve the speed and robustness of the resulting algorithm (1)
we add a coupling term

��F†
2P21F1CT

12� Id
��2

F that links the point-
wise and functional maps and, as regularizes the optimization espe-
cially in difficult settings; (2) instead of optimizing the functional
map from the relaxed energy, we simply compute it from the opti-
mized pointwise map by setting C12 = F†

2P21F1 after optimizing
for P21, (3) we adopt the progressive upsampling technique pro-
posed in [MRR⇤19] in our solver. In the following, we introduce
our discrete solver with full details.

5.1. Discrete Solver

Compared to its unconstrained setting (Eq. (2)), Eq. (3) is hard to
solve since the energy E(·) can be non-convex, and the search space
constrained by P is discrete and finite. Our discrete solver tackles
these challenges by relaxing the problem and utilizing an alternat-
ing scheme to optimize the energy and promote the proper func-
tional map property in an efficient way.

Reformulation by Replacement For a given energy E(C) (that
might contain multiple terms), we first reformulate it in the form of
E(C) = Âi wi

��CAi�Bi
��2

F as described in the previous section. Note
that Ai and Bi can be constant matrices or be dependent on C. We
then rewrite this energy by replacing C with F†

2P21F1 to obtain:

Emod�C12,P21
�
= Âi wi

��F†
2P21F1Ai�Bi

��2
F (5)
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C Proper Functional Map Space P ProjP (C)

(Source)

(1)

(2)

(3)

Figure 6: Projection into proper functional map space. We show
the proper functional map space P of a pair of head meshes in the
middle, where each function map in P has an underlying point-
wise map (visualized on top right at each functional map). For any
arbitrary functional map C we can project them into P to find its
nearest proper functional map ProjP (C). Here we show three ex-
ample functional maps before (on the left) and after (on the right)
projection: (1) the ground-truth functional map; (2) a random ma-
trix; (3) the optimized functional map as proposed in [RPWO18].

Relaxation with Coupling The reformulation by replacement step
helps to simplify the optimization with independent variables. To
address the hard constraint, we add another coupling term between
C12 and P21 to the modified energy while maintaining the simplic-
ity of the energy:

Erelax�C12,P21
�
= Emod�C12,P21

�
+a

��F†
2P21F1CT

12� Id
��2

F (6)

Instead of using a soft penalty
��C12�F†

2P21F1
��2

F , we used the
coupling term

��F†
2P21F1CT

12� Id
��2

F that is based on orthogonal-
ity, which in practice can lead to better results when we have poor
initializations or the original energy is under-constrained (e.g., the
descriptor-preserving energy as shown in Fig. 4).

Alternating Optimization with Progressive Upsampling With
the relaxed energy in hand, our approach for solving the prob-
lem in Eq. (3) consists of the following simple procedure: al-
ternatively optimizing a pointwise map P21 and constructing a
proper functional map C12 until convergence or reaching other
stopping criterion. Throughout the discussion above, we have as-
sumed that the functional maps are of fixed size, determined by
the number of basis functions on each shape. In most previous
work this number is chosen a priori and ranges between 60-200
[OBCS⇤12, KBB⇤13, NO17, EBC17]. However, a recent work has
shown that progressively increasing the dimensionality of func-
tional maps can be very beneficial for improving accuracy and ro-
bustness [MRR⇤19]. We therefore incorporate the progressive up-
sampling technique into our discrete solver:

1. Construct the basis with size k: F1 = F(k)
1 ,F2 = F(k)

2
2. Optimize the pointwise map: P⇤

21 = argminP21
Erelax�P21|C12

�
;

3. Construct proper functional map: C12 = F†
2P⇤

21F1.
4. Repeat step 2-3 for N times
5. k k+1, go to step 1.

See Fig. 5 for an overview of our discrete solver. Thanks to the
energy reformulation and the relaxed energy construction step, the

Table 1: Comparing our solution to the exact solution and the ap-
proximate solution on minimizing the orthogonality energy on the
synthetic shapes with size n = 3,4,5,6 (one per row).

n
Runtime (s) Eortho(C⇤)

Exact Approx. Ours Exact Approx. Ours

3 0.0039 0.0233 0.0024 0.4722 1.4727 0.4722
4 0.0129 0.0089 0.0039 0.0139 1.4283 1.4005
5 0.1252 0.0105 0.0049 1.0058 2.4786 1.0058
6 3.0243 0.0275 0.0067 0.1664 1.7843 1.0275

optimization in Step 1 can be reduced to a nearest-neighbor search-
ing in a closed form according to Lemma 4.1.

5.2. Baselines

Projection into Proper Functional Map Space Before we dis-
cuss alternative solutions to solve Eq. (3), we first introduce a useful
technique: a proper projector ProjP12

�
·
�

that maps an arbitrary func-
tional map in Rk2⇥k1 to a proper functional map in P12 ⇢ Rk2⇥k1 :

Definition 5.1 The proper projector ProjP12

�
·
�

maps an ar-
bitrary functional map to its nearest neighbor in P12 in
Frobinus-norm distance metric. Specifically, for any C12 we have
ProjP12

�
C12

�
= argminC2P12

��C�C12
��2

F .

We use the Frobenius norm to compare functional maps as done in
many previous works, e.g., [OCB⇤17, RPWO19], and since it can
be shown, e.g., that the difference between two functional maps in
that norm can be used to bound the geodesic difference between
the corresponding underlying pointwise maps (See Theorem 4.1.
[RMOW20]).

Remark 5.1 With an additional regularizer
��(Id�F1F†

1)P21C12
��2

A
as discussed in Lemma 4.1, we can redefine the proper projector to
have a closed form solution:

ProjP12

�
C12

�
= F†

2

⇣
argminP21

��F2C12�P21F1
��2

F

⌘
F1 (7)

See Appendix A for a simple proof. Fig. 6 shows some examples of
projecting functional maps into the proper functional map space P .
With this technique in hand, we individuate two straight-forward
baselines to solve Eq. (3):

1. Exact solution. We can plug in the hard constraint into the orig-
inal energy and obtain Ep(P21) = E

�
F†

2P21F1
�
, where the new

energy Ep is solely defined on a pointwise map P21. We can then
first solve for P⇤

21 = argminP21
Ep(P21) using a discrete optimizer.

Finally, we can obtain the C⇤
21 = F†

2F⇤
21F1

2. Approx. solution. We can first solve C12 = argminC12
E(C12) in

unconstrained setting, then project C12 to P12 to satisfy the hard
constraint. I.e., C⇤

12 = ProjP12

�
C12

�
.

We can see that the solution 1 gives the exact minimizer of
Eq. (3). However, for most of the commonly-used functional
map energies, it is very hard to find the global minimizer of
P⇤

21 = argminP21
Ep(P21). Take the orthogonality for an example, we

have E(C12) =
��C12CT

12� Id
��2

F where Id is an identity matrix with
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Figure 7: We compare the modified conformality energy to the
standard conformality energy on the proper functional maps of 50
SMAL shape pairs (obtained by minimizing the modified confor-
mality using our discrete optimizer).

Source

Ini

C

D

Figure 8: Minimizing conformality using the continuous solver C
and our discrete solver D on deformed bunny pairs from random
initializations. We visualize the obtained pointwise map via texture
transfer. See Fig. 20 for the corresponding color transfer visualiza-
tion.

proper size. As discussed in the solution 1, we can plug in the hard
constraint to obtain an energy defined on the point-wise map P21,
i.e., Ep(P21) =

��F†
2P21F1

�
F†

2P21F1
�T � Id

��2
F . It is hard to find the

global minimizer over the large and discrete search space of all pos-
sible pointwise maps. As a comparison, the solution 2 is much eas-
ier to obtain. However, as illustrated in Fig. 6, the projected proper
functional map C⇤

12 can be far from the optimized C12 in the uncon-
strained setting. Therefore, it is very likely that the solution C⇤

12 is
far from a local minimizer of the original E(C12).

As a comparison, our solution combines the advantages of both
two baselines. See Table 1 for a comparison between our solution
and the two baselines on minimizing the orthogonality. We test on
synthetic data (see Fig. 14 in Appendix C) where we can explore
the complete proper functional map space and find the exact solu-
tion. We can see that, the exact solution can find the global mini-
mum, but the computation complexity is exponential w.r.t. the mesh
size. Note that it is impossible to enumerate the search space P12
when n > 10. The approximate solution is much more efficient.
However, the output functional map still has large error. As a com-
parison, our discrete solver, is more efficient and accurate than the
approximate solution. For n = 3,5 we even obtain the global mini-
mum from a random initialization.

Table 2: For the tested bunny pairs in Fig. 8, we measure the con-
formality of the optimized functional maps and of the recovered
pointwise maps obtained from the continuous solver C and our dis-
crete solver D.

Shape Pair IDConformality

Metric
Solver

1 2 3 4 5 6 7

C 275.9 281.2 280.8 315.4 282.1 307.4 411.2Functional

map D 118.2 262.9 257.7 258.1 268.0 251.7 276.7

C 21.05 21.09 20.59 24.03 20.95 25.84 22.31Pointwise

map D 0.308 1.049 0.753 0.471 0.731 1.150 1.742

10 20 30 40 50
0

20

40

iter

Energy

C C(proj.) D(Ours)
Source

f1

C D (Ours)

C f1

T1

Figure 9: For the input descriptor ( f1,g1) in Fig. 4, we compare
our discrete solver (D) to the continuous solver (C). We visual-
ize the transported descriptor and the recovered pointwise map on
the right. See Fig. 15 and 16 in Appendix C for the corresponding
results of the other two pairs of descriptors.

5.3. Examples

In this section, we discuss how to apply our discrete solver to
optimize the conformality energy as an example. Please see Ap-
pendix C for detailed discussions on other functional map based
energies such as descriptor preserving energy, (multiplicative, ori-
entation preserving/reversing, Laplacian) operator commutativity
energy, orthogonality, and bijectivity energy.

Conformality We can construct the relaxed version for
the modified conformality energy as discussed in Sec. 4:
Erelax =

��F†
2P21F1D1CT

12�D2
��2

F +a
��F†

2P21F1CT
12� Id

��2
F

We can then update the pointwise map by (1)
P21 = argminP21

��P21F1
⇥
D1CT

12,aCT
12
⇤
�
⇥
F2D2,aF2

⇤��2
F , and

(2) C12 = F†
2P21F1. We show that the modified conformal energy

is strongly related to the standard conformal energy in Fig. 7.
Specifically, we use our method to optimize for proper functional
maps on 50 SMAL animal shapes [ZKJB17], obtained by min-
imizing the modified conformal energy. We then evaluate the
standard and the modified conformal energy on these obtained
proper functional maps. We can see that these two energies are
nearly linearly dependent: for the maps (the blue points) with
small modified conformal energy, their standard conformal energy
is also small. We show another example in Fig. 8, where we apply
the continuous solver to minimize the standard conformality
energy, and apply our discrete solver to minimize the modified
conformality energy on deformed bunnies. In Table 2 we report
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area-pres.

conformal

S1

S2

S3

RandIni Continuous solver C Discrete solver D (Ours)
min E1 min E2 min E1 min E2

Figure 10: Comparing our discrete solver D to the con-
tinuous solver C on minimizing the area-preserving energy
E1 =

��CCT � I
��2

F and the conformal energy E2 =
��CT D1C�D2

��2
F

on two shape pairs (S1,S2) and (S1,S3), where S2 has the same
area as S1 and S3 is conformal to S1.

f on S1 Ini C D (Ours)

C12 f
on S2

C21C12 f
on S1

k = 10 k = 20 k = 25 k = 50 k = 5 " 50

0 20 40 60 80 100
0

5

15

Iter

E b
i

Ini (random)
C(k = 50)
D (k = 5 " 50)
D (k = 10)
D (k = 20)
D (k = 25)
D (k = 50)

Figure 11: Top: for a pair of deformed spheres, we compare our
discrete solver D with different functional map size k to the con-
tinuous solver C on minimizing the bijectivity energy from random
initialization. Here k = 5 " 50 means running our solver with the
upsampling technique from size 5 to 50. Bottom: We show the bi-
jective energy over iterations of different results.

the standard conformality measured on both the functional maps
and the pointwise maps. We can see that the pointwise maps from
our discrete solver are more conformal and smooth.

Energy-aware optimization Fig. 4 already shows that our dis-
crete solver is energy-aware. With different input descriptors, the
pointwise maps obtained by our discrete solver satisfy the de-
scriptor preserving constraint respectively. We compare our dis-
crete solver to the continuous solver on preserving the descriptors
( f1,g1) in Fig. 9. We show another example in Fig. 10. We use the
continuous solver to minimize the area-preserving energy E1 and
the standard conformal energy E2 (shown in blue box). We then use
our discrete solver to minimize area-preserving energy E1 and the
modified conformal energy E2. We test on two shape pairs, where
the first pair (S1,S2) have the same surface area, and the second
shape pair (S1,S3) are conformal to each other. We can see that,
minimizing the area-preserving energy on the shape pair (S1,S2)
that have the same surface area leads to a better and smoother map
than minimizing the conformal energy. Similarly, minimizing the

Table 3: Comparing our discrete solver D to the continuous
solver C for minimizing different functional map energies on non-
isometric animal shapes from the SMAL dataset. We report the
statistics over 50 shape pairs including the minimum, average,
maximum, and standard deviation of the energy values Ei, i =
1,2,3,4.

Energies \ Stats. min. avg. max. std.

C 4.9924 5.1932 5.4530 0.0976
E1 =

��CCT � I
��

F D 0.6789 2.2557 3.0707 0.4801
C 1.0615 1.2261 1.4205 0.0900

E2 =
��CD1�D2C

��
F D 0.1575 0.8053 1.2197 0.2229

C 1.9219 2.1302 2.2884 0.1005
E3 =

��CD1CT �D2
��

F D 0.2972 1.3173 1.8223 0.3694
C 12.531 13.059 13.948 0.2645E4 =

��C12C21� I
��

F
+

��C21C12� I
��

F D 0.9355 4.1369 5.3564 1.0138

Source

Ini

C

D

Figure 12: We visualize the pointwise maps between SMAL shapes
obtained from optimizing the Laplacian Commutativity energy by
using the continuous solver (middle) or our discrete solver (bottom)
from random initialization (top). In the top row, we also visualize
the topology of the meshes.

conformal energy on the shape pair (S1,S3) that the two shapes are
conformal leads to a better and smoother map than minimizing the
area-preserving energy.

Progressive upsampling In Fig. 11 we compare our discrete
solver with fixed dimension k (dashed lines) to the setting with
upsampling technique(red solid line) on minimizing the bijective
energy. We can see that our discrete solver outperforms the contin-
uous solver (blue solid line) with different choices of k. Applying
the upsampling technique can further improve the performance of
our discrete solver.

Combined Functional Map Energy We also propose a new en-
ergy Enew

�
C12,C21

�
that combines the orthogonality, Laplacian

Commutativity, and bijectivity on functional maps from both di-
rections of a shape pair.

Enew
�
C12,C21

�
=w1Ebi

�
C12,C21

�
+w2Eortho

�
C12

�
+w2Eortho

�
C21

�

+w3Elap
�
C12

�
+w3Elap

�
C21

� (8)

Applying our discrete solver to this combined energy, we obtain
a new refinement method called Effective Functional Map refine-
ment (EFMR). In the supplementary materials, we discuss the ad-

submitted to Eurographics Symposium on Geometry Processing (2021)



J. Ren, S. Melzi, P. Wonka, & M. Ovsjanikov / Discrete Optimization for Shape Matching 9

Table 4: Comparing our discrete solver (D) to the standard con-
tinuous solver (C) on minimizing the multiplicative energy (E1)
and the orientation-preserving energy (E2) proposed in [NO17]
and [RPWO18] respectively. We measure the final energy on the
output functional maps ("Energy"), and measure the quality of re-
covered pointwise maps including the smoothness, conformal dis-
tortion, and map accuracy w.r.t. the ground-truth. We report the
statistics on 18 FAUST shapes, where the first 9 shapes are the
same person with different poses, and the rest shapes are differ-
ent persons with different poses. See Fig. 17 in Appendix C for the
test shapes and the computed maps.

Energies \stats min. avg. max. std.

C
�
E1
�

69.0 330 642 0.1696
D
�
E1
�

2.40 130 256 0.0777
C
�
E2
�

19.8 240 463 0.1360
E1

(⇥10�3)
D
�
E2
�

2.50 134 247 0.0780
C
�
E1
�

217 1017 1653 0.2855
D
�
E1
�

18.8 1722 1394 3.1232
C
�
E2
�

35.0 433 662 0.1574
E2

(⇥10�3)
D
�
E2
�

18.7 379 585 0.1434
C
�
E1
�

13.8 40.4 65.5 16.407
D
�
E1
�

8.25 9.78 11.9 0.9051
C
�
E2
�

9.13 25.1 48.9 12.304
Smoothness
(Dirichlet)

D
�
E2
�

7.87 9.56 13.3 1.3858
C
�
E1
�

2.78 6.83 10.7 2.1250
D
�
E1
�

1.17 2.18 3.21 0.4637
C
�
E1
�

2.11 5.55 8.32 1.6330
Conformal

D
�
E1
�

1.20 2.06 3.36 0.5518
C
�
E1
�

87.6 337 570 160.75
D
�
E1
�

15.4 309 649 278.81
C
�
E2
�

40.4 147 370 92.401

Accuracy
(direct)

(⇥10�3) D
�
E2
�

16.8 169 656 243.30
C
�
E1
�

48.1 118 268 52.468
D
�
E1
�

15.4 47.3 86.2 21.349
C
�
E2
�

40.0 87.6 208 35.824

Accuracy
(direct or

symmetry)
(⇥10�3) D

�
E2
�

16.8 45.3 93.2 22.851

vantages of the new energy and EFMR method with a thorough
investigation on synthetic datasets. For example, we show that the
new energy can better constrain a proper functional map with much
less local minima over the complete proper functional map search
space than other commonly used functional map energies. At the
same time, EFMR has a much stronger convergence power from
random initializations, and the terminating (converged) points of
EFMR are indeed local minima of the new energy. Please see the
supplementary materials for more details.

6. Results

In this section, we demonstrate the advantages of our discrete solver
over the continuous solver on different energies. We show that our
discrete solver is an alternative to the commonly used multiplica-
tive operator in the standard functional map pipeline. We also pro-
pose a new energy that combines some standard functional map
regularizers including the orthogonality, Laplacian commutativity,

0 100 200 300 400 500
0.01

0.1

1

10
E1 over iterations

C C (proj.)
D(Ours)

Source C (proj.) D(Ours)

Figure 13: Example shape pair in Table 4. We compare our discrete
solver to the continuous solver with multiplicative terms without
postprocessing. Left: the energy E1 on functional maps over iter-
ations; Right: we visualize the obtained pointwise maps via color
transfer.

and bijectivity. We then use our discrete solver to optimize this
new energy, which leads to a novel refinement method that achieves
the state-of-the-art accuracy on shape matching task on SHREC’19
benchmark.

6.1. Evaluation of Our Discrete Solver

We compare our discrete solver to the standard continuous solver
on some commonly used energies on 50 animal shape pairs
from SMAL dataset. To remove the bias present due to iden-
tical mesh connectivity within the dataset, we use LRVD algo-
rithm [YBZW14] to remesh the shapes independently and each
remeshed shape contains approximately 5k vertices. We investi-
gate four functional map based energies including orthogonality
(area-preserving), Laplacian commutativity (isometric), modified
conformality (angle-preserving), and bijectivity. We report differ-
ent statistics of the corresponding objective values on the optimized
proper functional map using the continuous solver (C) or our dis-
crete solver (D) in Table 3 on 50 shape pairs where we highlight
the best average value with bold text. Fig. 12 shows some qualita-
tive results, where we visualize the output pointwise maps obtained
from the continuous solver and our discrete solver on minimizing
the Laplacian commutativity initialized by random maps. In sum-
mary, our discrete solver not only achieves smaller objective values
for different energies, but also outputs more desirable pointwise
map than the continuous solver.

6.2. Application 1: Alternative of Multiplicative Operators

Our discrete solver can also benefit the state-of-the-art functional
map optimization pipeline proposed in [NO17, RPWO18]. Specif-
ically, [NO17] also observed the limitation of the functional map
pipeline that the solved-for functional maps do not necessarily cor-
respond to a pointwise map. To address this issue, [NO17] proposed
multiplicative operators to by extracting extra information from the
input descriptors to guide the optimization towards functional maps
that are closer to pointwise maps, i.e., to proper functional maps in
our terms.

We quantitatively demonstrate that our discrete solver outper-
forms the multiplicative operators on finding proper functional
maps from input descriptors introduced in [NO17]. Specifically, we
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Table 5: SHREC’19 Challenge. We compare our method to dif-
ferent shape matching techniques including ICP, PMF, BCICP,
and ZOOMOUT on 430 shape pairs in SHREC’19. For PMF and
BCICP, we pick the sampling size (1k and 5k respectively) with the
best accuracy shown in [MRR⇤19] as our baselines.

Methods \ Metrics
Accuracy
�
⇥10�3�

Bijectivity
�
⇥10�3�

Runtime
(s)

Initialization 60.4 95.1 -
ICP 47.0 47.4 87.3
PMF (1k) 51.8 11.8 118.1
BCICP (5k) 30.1 12.7 437.9
RHM 42.6 13.5 2313
ZOOMOUT 28.8 26.1 1.5
Ours 27.3 15.1 8.17

test the state-of-the-art energies used in [NO17] and [RPWO18]
which involve the multiplicative operators constructed from the
wave kernel signatures [ASC11]. We then compare our discrete
solver to the continuous solver in the following ways: (1) we use
the standard continuous solver to optimize the originally proposed
energy as in [NO17, RPWO18]; (2) we use our discrete solver to
optimize the energies without the multiplicative energy term. We
then compare (1) and (2) with the same initialization and the same
parameters (as used in the original paper). We report the statistics
of the energy values on the proper functional maps solved by (1)
and (2) and evaluate the corresponding recovered pointwise maps
including the accuracy and smoothness metrics in Table 4 (where
we highlight the best two average values with bold text). Fig. 13
shows the optimization process on an example pair and Fig. 17
in Appendix C shows the recovered pointwise maps of the tested
shape pairs. We can see that our discrete solver can achieve better
objective values and better pointwise maps (i.e., more accurate and
smoother) than the multiplicative operators with continuous solver.

6.3. Application 2: Effective Functional Map Refinement

Here we show that our new refinement method EFMR, obtained
from applying our discrete solver to the new energy (Eq. (8)) that
combines the orthogonality, Laplacian Commutativity, and bijec-
tivity, achieves state-of-the-art accuracy on SHREC’19 benchmark
composed of human shapes with different connectivities and that
contains complex meshes obtained from real scans.

We run EFMR on SHREC’19 [MMR⇤19] for shape matching in
the same setting as reported in [MRR⇤19]. Specifically, we com-
pare our EFMR method to the other refinement methods on 430
shape pairs from the same initializations obtained from 5 land-
marks. In Table 5, we report the average map accuracy, map bi-
jectivity error, and runtime. We pick the best tested parameters for
the baseline methods PMF and BCICP, as reported in [MRR⇤19].
Compared with the best baseline ZOOMOUT, our method improves
the map accuracy by 5%, and the map bijectivity by 40% with a
comparable runtime complexity. Note that, PMF and BCICP ob-
tained better map bijectivity since they have explicit bijectivity con-

Table 6: The average runtime (sec) over 50 shape pairs of using
the continuous (C) or our discrete (D) solver to optimize different
energies as shown in Table 3.

Method \ Energy E1 E2 E3 E4

C 9.214 11.50 13.03 32.76
D (Ours) 5.786 5.898 6.090 22.89

straints on the pointwise maps, while our method only adds the bi-
jectivity to the functional maps with no extra constraints added to
the pointwise maps. See the supplementary materials to find more
justifications and evaluations of our EFMR method.

6.4. Implementation, Parameters & Runtime

We implemented the discrete solver and EFMR method in MAT-
LAB. We use the MATLAB build-in function "fminunc" as the
continuous solver C to optimize different energies in our experi-
ments. In most of our tests, we set k1 = k2 = 20 for both the con-
tinuous solver and our discrete solver. In [RPWO19], it was shown
that with the same input descriptors, increasing the size of the func-
tional map can degrade the quality of the optimized solution, since
the number of variables increases. At the same time, it was shown
in [MRR⇤19] that a functional map of size at least 15-20 is neces-
sary to resolve the main symmetries of most organic shapes (e.g.,
humans and animals) . These two reasons motivate our choice for
k1 and k2. For the synthetic examples with the number of vertices
n < 10, we mainly set ki = ni, i.e., setting the basis size to equal
to the number of vertices to avoid an empty feasibility region. We
mainly set N (the number of inner loops with fixed basis) to 5 or 10.
For the application of EFMR, we used the same set of parameters,
i.e., w1 = w2 = w3 = 1,N = 10 for all the tests ( except the ablation
study in the supplementary materials). In Table 6, we report the av-
erage runtime of the continuous solver and our discrete solver on
minimizing different functional map energies. We will release our
complete implementation for full reproducibility. †

7. Conclusion, Limitations & Future Work

In this paper, we propose to optimize functional map based ener-
gies in a constrained setting to obtain a functional map that has a
high-quality underlying pointwise map. To solve such a constrained
problem, we propose a general and novel discrete solver that is
energy-aware and efficient to solve for a proper functional map.
Our discrete solver is easy to use and can be adapted to differ-
ent functional map based energies. We present a large variety of
experiments demonstrating that our discrete solver is better than
the continuous solver in both terms of obtaining proper functional
maps with lower objective values and recovering pointwise maps
with better quality and accuracy. We further show two practical
applications of our discrete solver: (1) as an alternative choice of
the commonly-used multiplicative operators in standard functional

† Demo Code: https://github.com/llorz/SGP21_

discreteOptimization

submitted to Eurographics Symposium on Geometry Processing (2021)
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map optimization pipeline. (2) a new refinement method that has a
strong convergence power and can produce high-quality pointwise
map from random initialization. It also achieves state-of-the-art ac-
curacy on SHREC’19 benchmark.

Our method still has some limitations. First, our discrete solver
with the practical modifications has few theoretical guarantees on
the performance of optimization. For example, our discrete solver is
not guaranteed to monotonically decrease the original energy (See
Fig. 9 for an example). However, we observe that it works well
in practice. Second, using a Laplace-Beltrami discretization such
as [BSW09], our method could be directly generalized to point
clouds, but we did not investigate the performance in this setting.
Finally, one important step to maintain the applicability of our dis-
crete solver is to modify the energy in a way that fits our formula-
tion using Lemma 4.1. We have shown the efficiency and feasibility
of our discrete solver on a range of common functional map ener-
gies. However, for some functional map energies with complicated
formulations, e.g., using higher order terms, this strategy might not
work directly and more advanced solvers might be needed. More-
over, as shown in [PRM⇤21], other procedure such as Sinkhorn al-
gorithm can be used to solve for the pointwise map in the first step
of our discrete solver. We leave the exploration of different point-
wise map recovery methods as future work. In the future, we plan
to investigate the best coupling strategies, explore the full potential
of the augmented Lagrangian formulations, and extend our solver
to larger set of energies.
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Appendix A: Proofs

Proof of Lemma 4.1

Lemma A.1 Given arbitrary matrices X ,Y , and a re-
duced basis F, s.t. FT AF = Id, then problem (1):
minP kF+PX�Yk2

F +k(Id�FF+)PXk2
A is equivalent to prob-

lem (2): minP kPX�FYk2
F .

We follow the proof idea, used for a special case of this statement
shown in [EBC17] and adapted in [MRR⇤19]. We include the more
general result below for completeness, although the proof is virtu-
ally identical.

Proof First note that if basis F is orthonormal with respect to
a matrix A, i.e. FT AF = Id, so that F+ = FT A, and kWk2

A =
tr(W T AW ), then for any matrix W : kWk2

A = kF+Wk2
F + k(I �

FF+)Wk2
A. This is simply because kF+Wk2

F = tr(W T AFFT AW )
while

k(I�FF+)Wk2
A= tr

⇣
W T (I�AFFT )A(I�FFT A)W

⌘

= tr
⇣

W T (A�AFFT A)W
⌘
.

Now we use this result with W = PX�FY to get

kPX�FYk2
A= kF+(PX�FY )k2

F +k(I�FF+)(PX�FY )k2
A

= kF+PX�Y )k2
F +k(I�FF+)PX)k2

A.

Finally, to show that kPX�FYk2
F is equivalent to kPX�FYk2

A note
that both problems reduce to nearest neighbor search whenever A
is diagonal.

Proof of Remark 5.1

Proof By definition 5.1 we have ProjP12

�
C12

�
= argmin

C2P12

��C�C12
��2

F .

To derive its close-form formulation, we are supposed to solve the
following problem:

minC2P12

��C�C12
��2

F , (9)

which can be equivalently reformulated as an unconstrained
problem: minP21

��F†
2P21F1�C12

��2
F . According to Lemma 4.1,

we can rewrite this equation (with an extra regularizer) as
P⇤

21 = argminP
��P21F1�F2C12

��2
F , which has row separable vari-

ables [EBC17]. Thus it can be solved in close form solution,
as a nearest-neighbor searching problem. Then the minimizer of
Eq. (9) is the proper functional map that arises from P⇤

21. There-
fore, ProjP12

�
C12

�
= F†

2P⇤
21F1 = F†

2

⇣
argminP21

��F2C12�P21F1
��2

F

⌘
F1.

Appendix B: Different Coupling Strategies

There are different solutions of coupling the pointwise maps with
the functional maps to relax the original problem with the hard con-
straint. Note that we are mainly interested in the coupling strategies

that can be solved efficiently using alternating scheme for optimiza-
tion. Here we give some example coupling strategies with algorith-
mic details to optimize the basic functional map energy Eq. (2) with
the proper functional map constraint.

a. ADMM We can introduce the dual variables Z,U to make the
variables independent of each other. We also add a soft penalty term
and obtain the following relaxed problem:

min
P21,C12,Z,U

��C12F1�F2
��2

F + g
��C12D1�D2Z

��2
F

+µ
��C12�Z +U

��2
F +a

��Z�F†
2P21F1

��2
F

(10)

We can then alternative update the four set of variables
C12,P21,Z,U with the following updating rules:

C12=
⇥
F2, gD2Z, µ(Z�U)

⇤
/
⇥
F1, gD1, µId

⇤

P21= knn
�
F1,F2C12

�

U = Z�C12

Z =
⇥
gD2, µId, a Id

⇤
\
⇥
XD1, g(X�U), aF†

2P21F1
⇤

where we use A\B to denote the minimizer of
��AX�B

��2
F , B/A to

denote the minimizer of
��XA�B

��2
F , knn

�
A,B

�
to return the index

of the nearest neighbor in A for each row in B. We can iteratively
update these four sets of variables until convergence.

b. Coupling by replacement We simply replace the functional
map C12 by the hard constraint for coupling and obtain the fol-
lowing relaxed energy:

min
C12,P21

��F†
2P21F1 f1�F2

��2
F + g

��F†
2P21F1D1�D2C12

��2
F (11)

We then have the following updating rules that alternatively solve
the functional map C12 and the pointwise map P21:

C12 = D2\
�
F†

2P21F1D1
�

P21 = knn
⇣⇥

F1F1, gF1D1
⇤
,
⇥
F2F2, gF2D2C12

⇤⌘

c. Replacement with soft penalty We add a soft penalty to the
solution b. and obtain:

min
C12,P21

��F†
2P21F1F1�F2

��2
F + g

��F†
2P21F1D1�D2C12

��2
F

+a
��C12�F†

2P21F1
��2

F

(12)

We can similarly derive the updating rules:

C12 =
⇥
gD1, a Id

⇤
\
⇥
gF†

2P21F1D1, aF†
2P21F1

⇤

P21 = knn
⇣⇥

F1F1, gF1D1, aF1
⇤
,
⇥
F2F2, gF2D2C12, aF2C12

⇤⌘

d. Replacement with orthogonal regularizer We add the orthog-
onal regularizer based penalty to the solution b. and obtain:

min
C12,P21

��F†
2P21F1F1�F2

��2
F + g

��F†
2P21F1D1�D2C12

��2
F

+a
��F†

2P21F1CT
12� Id

��2
F

(13)

Analogously, the updating rules for solving C12 and P21 are:

C12 =
⇥
gD2F†

2P21F1, a Id
⇤
/
⇥
gD1, a

�
F2P21F1

�T ⇤

P21 = knn
⇣⇥

F1F1, gF1D1, aF1CT
12
⇤
,
⇥
F2F2, gF2D2C12, aF2

⇤⌘
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ALGORITHM 1: Algorithm Outline for Discrete Optimization

Goal : min
C122P12

E
�
C12

�

Output: A proper functional map C12 that is a local minimum of E
Preprocess: Construct the relaxed energy Erelax�P21,C12

�

while Stopping Criterion Not Met do
F1 = F(k)

1 ,F2 = F(k)
2

for iter = 1:N do
P⇤

21 = argmin
P21

Erelax�P21 |C12
�

C12 = F†
2 P⇤

21F1

end
k k+1

end

n = 3 n = 4 n = 5 n = 6 n = 10 100 1K 5K

S1

S2

Figure 14: Synthetic shapes for quantitative evaluation that are
used in Table 1, Fig. 18, and Fig. 19.

Note that here, when we optimize for C12, we replaced the C12 that
besides D1 in the Laplacian commutativity energy to make it easier
for optimization.

Appendix C: Examples: Discrete Functional Map Optimization

In Sec. 5 we discussed our discrete solver with practical modifica-
tions. See Algorithm 1 for the general outline of minimizing a given
functional map energy E(C) over the proper functional map space
using our discrete solver. In this appendix, we show in details how
to construct the relaxed energy by coupling with replacement and
adding additional orthogonality regularizer for different functional
map based energies. We compare our discrete solver to the continu-
ous solver. We also compare to the exact solution which is feasible
only on synthetic shapes with small number of vertices. Fig. 14
shows some synthetic shape pairs we used. For example, for the
shapes with n = 3,4,5,6 vertices, we can enumerate the complete
proper functional map search space with size nn and find the exact
global minima of any given functional map energies.

Descriptor Preserving Energy

We first discuss the descriptor preserving energy which is com-
monly used in standard functional map computation pipeline.
Specifically, given a pair of corresponding descriptors such as
wave-kernel signatures [ASC11], ( fS1 , fS2) on shape pair (S1,S2),
we would like to find a functional map that preserves the
corresponding descriptors. This leads to the following energy
E(C12) =

��C12fS1 � fS2

��2
F , where fSi is the corresponding coefficient

vector of the descriptor fSi in the reduced basis FSi , i.e., fSi = F†
Si

fSi .
Given multiple pairs of input descriptors, we can define the energy
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0

20

40

iter

Energy

C C(proj.) D(Ours)
Source

f2

C D (Ours)
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Figure 15: For the input descriptor ( f2,g2) in Fig. 4, we compare
our discrete solver (D) to the continuous solver (C).
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Figure 16: For the input descriptor ( f3,g3) in Fig. 4, we compare
our discrete solver (D) to the continuous solver (C).

in a similar way E(C12) =
��C12FS1 �FS2

��2
F , where FSi is a matrix

that stores as columns the coefficient of different descriptors. To
apply our discrete solver, we first construct the relaxed energy as
discussed in Sec. 5:

Erelax(C12,P21) =
��F†

2P21F1FS1 �FS2

��2
F +a

��F†
2P21F1CT

12� Id
��2

F

=
��F†

2P21
⇥
F1FS1 ,aF1CT

12
⇤
�
⇥
FS2 ,a Id

⇤��2
F ,

where [A,B ] denotes concatenating two matrices A and B side-by-
side. According Lemma 4.1, we can obtain our algorithm for opti-
mizing the descriptor preserving energy: alternatively updating P21
and C12 with the upsampling technique.

P21= argminP21

��P21
⇥
F1FS1 ,aF1CT

12
⇤
�
⇥
F2FS2 ,aF2

⇤��2
F

= knn
⇣⇥

F1FS1 ,aF1CT
12
⇤
,
⇥
F2FS2 ,aF2

⇤⌘

C12= F†
2P21F1

(14)

In the following examples, we only give the updating rule for the
pointwise map since updating C12 is trivial.

Fig. 15 and Fig. 16 show the results of optimizing the descrip-
tor preserving energy with different input descriptors ( f2,g2) and
( f3,g3) as shown in Fig. 4. We compare our discrete solver D to
the continuous solver C. We can see that our discrete solver can
achieve lower objective values and obtain better pointwise maps.

Operation Commutative Energy

Operation Commutativity term is also commonly used in functional
map computation, including Laplacian Commutativity, multiplica-
tive operation energy [NO17], and orientation preserving/reversing
energy [RPWO18].
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Figure 17: The recovered pointwise maps by using the standard continuous solver (C) and our discrete solver (D) to minimize the mul-
tiplicative energy (E1) [NO17] and the orientation-preserving energy (E2) [RPWO18]. We report the quantitative evaluation of each
recovered pointwise in Table 4. The shapes are from FAUST dataset, where the source shape is tr_reg_000. The first 9 shapes are
tr_reg_00k(k = 1, · · · ,9), i.e., the same person as the source but with different poses; the last 9 shapes are tr_reg_0kk(k = 1, · · · ,9), i.e.,
different person with different pose.
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Figure 18: Convergence rate. Starting from 50 random initial
maps, we compare the approximate solution (left, blue lines) and
ours (right, red lines), in the minimization of the Laplacian Com-
mutativity energy. We can see that our solver converge much faster.
Meanwhile, starting from different initializations, our solver termi-
nates at two unique solutions.

Orientation-Reversing Energy Given a pair of symmetric de-
scriptor ( f1, f2) on shape pair (S1,S2), we can construct an orienta-
tion operator W fi (in the reduced basis FSi ) on shape Si, we can then
define the energy Eorient(C12) =

��C12W f1 +W f2C12
��2

F , which regular-
izes the functional map C12 to reverse the symmetry that is encoded
in the descriptors. We can apply our discrete solver to minimize
this energy to obtain symmetric map. We first construct the relaxed
energy:Erel

orient =
��F†

2P21F1W f1 +W f2C12
��2

F +a
��F†

2P21F1CT
12� Id

��2
F .

Then we have the updating rules for the pointwise map
P21 = knn

⇣
F1

⇥
W f1 ,aCT

12
⇤
,
⇥
�F2W f2C12,aF2

⇤⌘
.In Fig. 3 we

show an example of computing the self-symmetric map on
a panda shape from one WKS descriptor by minimizing the
orientation-reversing energy.

Multiplicative & Orientation-Preserving Energy Similarly,
we can construct the multiplicative operator or the orientation-
preserving operator W fi from input descriptors ( f1, f2) on
shape Si respectively. We then have the operator commuta-
tivity energy as E(C12) =

��C12W f1 �W f2C12
��2

F , with the relaxed
energy Erel

op =
��F†

2P21F1W f1 �W f2C12
��2

F +a
��F†

2P21F1CT
12� Id

��2
F .

The corresponding update rule for the pointwise map is:
P21 = knn

⇣
F1

⇥
W f1 ,aCT

12
⇤
,
⇥
F2W f2C12,aF2

⇤⌘
. Fig. 17 shows the

pointwise maps computed by our discrete solver and the continuous
solver on minimizing the energy proposed in [NO17] that involves
the multiplicative operator commutativity energy, and [RPWO18]
that involves the orientation-preserving energy.

Laplacian Commutativity Laplacian Commutativity is one of
the most popular functional map energies that can promote map
isometry. We can get the updating rules for the pointwise maps
easily by replace the operator W fi by the Laplacian operator DSi

directly: P21 = knn
⇣

F1
⇥
D1,aCT

12
⇤
,
⇥
F2D2C12,aF2

⇤⌘
. In Fig. 18, we

compare our solution to the approximate solution on the synthetic
shape pair with n = 6 vertices. Specifically, we start with 50 differ-
ent random initializations, and compare our discrete solver to the
approximate solution on minimizing the Laplacian commutativity.

Orthogonality: Area Preservation

Another popular functional map energy is the orthogonality energy,
which promotes the area-preserving property of the underlying
map: Eortho

�
C12

�
=
��CT

12C12� Id
��2

F =
��C12CT

12� Id
��2

F . We can con-
struct the relaxed energy as: Erelax

ortho = (1+a)
��F†

2P21F1CT
12� Id

��2
F .

Then we have the updating rules for our discrete solver (1)
P21 = knn

�
F1CT

12, F2
�

(2) C12 = F†
2P21F1. In table 1, starting with

the same random initialization, we compare our discrete solver to
the two baselines, the exact solution and the continuous solver, on
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Figure 19: For a pair of heart shapes with 6 vertices, we compare
our method (red solid line) to the approximate solution (blue solid
line) over iterations. The global minimum, i.e., the exact solution
is demonstrated by the yellow line. The blue dashed line shows the
orthogonality error of the intermediate functional maps during the
unconstrained optimization. We can see that our method converges
faster and achieves better result than the approximate solution.

synthetic shapes to minimize the orthogonality energy. In Fig. 19
we visualize the optimization process of minimizing the orthogo-
nality over iterations on the shape pair with 6 vertices. Specifically,
the exact solution is found among 66⇡ 46K proper functional maps
(color in yellow). We then find the approximate solution by min-
imizing the orthogonality error in an unconstrained setting from
a random proper functional map, and the optimizing process is
demonstrated by the blue dashed line. Note that, these intermedi-
ate functional maps are not proper. To satisfy the hard constraint,
we project these functional maps into the proper functional map
space P (blue solid line). We can see that there is a big gap be-
tween the continuous optimization and the corresponding discrete
conversion. As a comparison, our discrete solver (red solid line)
can quickly converge to a better local minimum (500 times faster
than the exact solution), and each intermediate functional map is
proper by construction.

Conformality

As discussed in Sec. 5.3, we reformulate the conformality energy
from E(C12) =

��CT
12D1C12�D2

��2
F to Emod =

��C12D2CT
12�D1

��2
F . This

reformulation can help to simplify the optimization of the pointwise
map. Specifically, if we construct a relaxed energy for the original
conformality energy directly, we need to replace one of the C12 by
F†

2P21F1 and add the soft regularizer. However, in this particular
case, no matter which one of the two C12 besides D2 gets replaced,
the resulting problem on P21 is not easy to solve (i.e., we do not
have close-form solution of the minimizer P21). As a comparison,
after reformulation, the update rule for the pointwise map P21 has
close-form solution and is efficient to obtain. In Fig. 20, we com-
pare our discrete solver on minimizing the modified conformality
to the continuous solver on minimizing the original conformality.

Bijectivity

We remark that our approach can also be applied to the set-
ting that involves multiple maps such as enforcing bijectivity
of the correspondences. Specifically, we consider the bijectiv-
ity of the functional maps C12 and C21 from both directions:

Source

Ini

C

D

Figure 20: Minimizing conformality using the continuous solver C
and our discrete solver D on deformed bunny pairs from random
initializations.

Ebi
�
C12,C21

�
=
��C12C21� Id

��2
F +

��C21C12� Id
��2

F . The goal is to
minimize the bijectivity error with the constraint that both C12 and
C21 are proper functional maps: minC122P12,C212P21 Ebi

�
C12,C21

�
. We

can similarly construct the relaxed energy:

Erel
bi =

��F†
2P21F1C21� Id

��2
F +a

��F†
2P21F1CT

12� Id
��2

F

+
��F†

1P12F2C12� Id
��2

F +a
��F†

1P12F2CT
21� Id

��2
F

(15)

where we add two soft regularizers to address the hard constraints.
We then have the following bidirectional updating rules:

P12 = argminP12

��P12F2
⇥
C12,aCT

21
⇤
�
⇥
F1,aF1

⇤��2
F

P21 = argminP21

��P21F1
⇥
C21,aCT

12
⇤
�
⇥
F2,aF2

⇤��2
F

C12 = F†
2P21F1, C21 = F†

1P12F2

(16)

Fig. 11 shows an example of optimizing the bijectivity error from
random initialization using our discrete solver in two different set-
tings (1) applying the updating rules in fixed basis with size k; (2)
applying the updating rules with the progressive upsampling tech-
nique. In both settings, our discrete solver outperforms the contin-
uous solver.

Summary

Our method can be applied to different types of functional map
based energies. We demonstrate the superior accuracy, convergence
power and efficiency of our discrete solver over the the approx-
imate solution using continuous solver. We illustrate that the re-
laxed energy is trivial to construct, and the corresponding dis-
crete solver is both efficient and effective with close-form solu-
tion. Also note that, the ZoomOut [MRR⇤19] and the bidirectional
ZoomOut [RMOW20] method can be regarded as a special case of
the algorithm with parameters N = 1. In our work, we extend this
idea to larger set of functional map based energies.
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