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Abstract: In this report, sparse stealth attack constructions that minimize the mutual infor-
mation between the state variables and the observations are proposed. The attack construction
is formulated as the design of a multivariate Gaussian distribution aiming to minimize the mu-
tual information while limiting the Kullback-Leibler divergence between the distribution of the
observations under attack and the distribution of the observations without attack. The sparsity
constraint is incorporated as a support constraint of the attack distribution. Two heuristic greedy
algorithms for the attack construction are proposed. The first algorithm assumes that the attack
vector consists of independent entries, and therefore, requires no communication between different
attacked locations. The second algorithm considers correlations between the attack vector entries,
which results in larger disruption and smaller probability of detection. A performance analysis of
the proposed attack constructions on IEEE test systems is presented. Using a numerical example,
it is shown that it is feasible to construct stealth attacks that generate significant disruption with
a low number of compromised sensors.
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Résumé : Dans ce rapport, des constructions d’attaques furtives ciblant un sous-ensemble
des capteurs qui minimisent l’information mutuelle entre les variables d’état et les observations
sont proposées. La construction d’attaque est formulée comme la conception d’une distribution
gaussienne multivariée visant à minimiser l’information mutuelle tout en limitant la divergence
de Kullback-Leibler entre la distribution des observations sous attaque et la distribution des
observations sans attaque. La contrainte pour modeliser le fait que l’attaque cible uniquement
un sous-ensemble des capteurs est incorporée en tant que contrainte sur le support de la distri-
bution de probabilité de l’attaque. Deux algorithmes heuristiques gloutons pour la construction
d’attaques sont proposés. Le premier algorithme suppose que le vecteur d’attaque se compose
d’entrées indépendantes et, par conséquent, ne nécessite aucune communication entre les dif-
férents emplacements attaqués. Le deuxième algorithme prend en compte les corrélations entre
les entrées du vecteur d’attaque, ce qui entraîne une perturbation plus importante et une probabil-
ité de détection plus faible. Une analyse des performances des constructions d’attaque proposées
sur les systèmes de test IEEE est présentée. À l’aide d’un exemple numérique, il est démontré
qu’il est possible de construire des attaques furtives qui génèrent des perturbations importantes
avec un faible nombre de capteurs compromis.

Mots-clés : Attaques par injection de données, cybersécurité, contraintes parcimonieuses,
réseau intelligent, théorie de l’information
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1 Introduction
Monitoring and controlling processes that are supported by Supervisory Control and Data Ac-
quisition (SCADA) systems facilitate an economic and reliable operation of the power system [1].
The integration between the physical layer of the power system and the cyber layer enables effi-
cient, scalable, and secure operation of the system [2]. While advanced communication systems
that acquire and transmit observations to a state estimator provide reliable and low-latency state
information [3], this cyber layer also exposes the system to malicious attacks. One of the main
cybersecurity threats faced by modern power systems are data injection attacks (DIAs), which
were first introduced in [4]. DIAs alter the state estimate of the system obtained from different
estimation methods by compromising the system observations without triggering bad data de-
tection mechanisms set by the system operator [5]. A large body of literature studies the case
in which attack detection is performed by a residual test [6] under the assumption that state
estimation is deterministic both in centralized and decentralized scenarios [7–10]. In this setting,
attack construction that requires access to a small set of observations yields l0-norm minimiza-
tion problems, which are in general hard to solve. In [11], it is shown that the operator can
secure a small fraction of observations to make undetectable attack constructions significantly
harder.

The unprecedented data acquisition capabilities that are now available to cyberphysical systems
promote the efficient operation of the smart grid but also increase the threat posed by DIAs
because accurate stochastic models of the system can be generated. This problem is cast in a
Bayesian framework in [12]. In this Bayesian paradigm, the attack detection can be formulated
as the likelihood ratio test [13] or alternatively machine learning methods [14] can be employed
to learn the geometry of the data generated by the system. Data analytics are increasingly
important in the operation of modern power systems and they are central to the advanced
estimation, control, and management of the smart grid [15]. For this reason, it is essential to
study attack constructions in fundamental terms to understand the impact over a wide range of
data analysis paradigms.

Stealth data injection attacks within Bayesian framework were first introduced in [16] and then
generalized in [17]. In this research, the attack construction uses information theoretic measures,
that is, Mutual Information and Kullback-Leibler (KL) divergence, to characterize the funda-
mental limits of the attack [18]. In [12, 16, 17, 19], the state variables are assumed to follow a
Gaussian distribution. From a practical point of view, the adoption of Gaussian random vectors
as the data injection attack vectors is validated by real data [20, 21]. However, both the stealth
attacks constructed in [16] and [17] require that the attacker tampers with all the observations
in the system, which is not feasible in most scenarios. Information theoretic attack constructions
that incorporate sparsity constraints are first proposed in [19] and studied in [22]. However,
the construction of attack vectors that effectively exploits the correlation between attack vari-
ables is still an open problem that requires novel approaches. In this paper, we present novel
sparse stealth attack constructions that leverage the coordination between different attacked
observations to attain a better attack disruption to stealth tradeoff.

The rest of the paper is organized as follows: In Section 2, we introduce a Bayesian framework
with linearized dynamics for DIAs. Stealth attacks incorporating sparsity constraints are pre-
sented in Section 3. Independent sparse stealth attacks and correlated sparse stealth attacks are
presented in Section 4 and Section 5, respectively. In Section 6, we evaluate the performance of
the proposed attack constructions for both independent and correlated scenarios on IEEE test
systems. The paper closes with conclusions in Section 7.

RR n° 9481
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The main contributions of this paper follow: (1) A novel stealth attack construction with sparsity
constraints in Bayesian framework is proposed where the sparse attack is constructed as random
attacks. (2) Information measures are firstly used to construct sparse attacks. Precisely, the
attack construction jointly minimizes mutual information and KL divergence. (3) We tackle the
challenge of the combinatorial character of identifying the support of the sparse attack vector by
incorporating an additional sensor that yields a sequential sensor selection problem. (4) Both
independent attacks and correlated attacks are considered. In the first case, the random attack
requires no communication between locations because its entries are independent. On the other
hand, there is correlation between entries in the second case which leads to a better attack
performance at the expense of communication. The convexity of the resulting optimization
problems in both cases are provided and the insight obtained from incorporating an additional
sensor has been distilled to propose heuristic greedy algorithms, accordingly.

Notation: We denote the number of state variables on a given IEEE test system by n and the
number of the observations bym. The set of positive semidefinite matrices of size n×n is denoted
by Sn+. The n-dimensional identity matrix is denoted as In. The elementary vector ei ∈ Rn is a
vector of zeros with a one in the i-th entry. Random variables are denoted by capital letters and
their realizations by the corresponding lower case, e.g. x is a realization of the random variable
X. Vectors of n random variables are denoted by a superscript, e.g. Xn = (X1, . . . , Xn)T with
corresponding realizations denoted by x. Given an n-dimensional vector µ ∈ Rn and a matrix
Σ ∈ Sn+, we denote by N (µ,Σ) the multivariate Gaussian distribution of dimension n with
mean µ and covariance matrix Σ. The mutual information between random variables X and
Y is denoted by I(X;Y ) and the Kullback-Leibler (KL) divergence between the distributions P
and Q is denoted by D(P‖Q).

2 System model

2.1 Observation Model and Attack Setting
The operation state of a power system is described by a vector x ∈ Rn containing the voltages
and phases at all the generation and load buses. The state vector x is observed through the
acquisition function F : Rn → Rm. When a linearized observation model is considered for state
estimation, it yields an observation model of the form

Y m = Hx + Zm, (1)

where H ∈ Rm×n is the Jacobian of the function F at a given operating point and is determined
by the system entries and the topology of the network. The vector Y m containing the observations
is corrupted by additive white Gaussian noise introduced by the sensors, c.f., [2] and [3]. Such
noise is modelled by the vector Zm in (1), which follows a multivariate Gaussian distribution.
That is,

Zm ∼ N (0, σ2Im), (2)

where σ2 is the noise variance.

In a Bayesian estimation framework, the state variables are described by a random vector Xn

with a given distribution. In this study, the random vectorXn is assumed to follow a multivariate
Gaussian distribution with a null mean vector and covariance matrix

ΣXX ∈ Sn+. (3)

RR n° 9481
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Hence, the vector of observations Y m in (1) follows a multivariate Gaussian distribution with
null mean vector and a covariance matrix ΣYY satisfying that

ΣYY , HΣXXHT + σ2Im. (4)

The resulting observations are corrupted by a malicious attack vector Am ∼ PAm , where PAm is
the distribution of the random vector Am. In the following, PAm is assumed to be a multivariate
Gaussian distribution that satisfies

Am ∼ N (µA,ΣAA), (5)

where µA ∈ Rm and ΣAA ∈ Sm+ are the mean vector and the covariance matrix of the random
vector Am.

The choice in (5) is justified by the fact that when Zm +Am in (6) follows a Gaussian distribu-
tion, the mutual information between the state variables Xn and the compromised observations
Y mA , denoted by I(Xn;Y mA ), is minimized [23]. Hence, from the Lévy-Cramér decomposition
theorem [24] [25], it holds that for the sum Zm+Am to be Gaussian, given that Zm satisfies (2),
then, Am must be Gaussian. This choice is further discussed in Section 3.1.

Consequently, the compromised observations denoted by Y mA are given by

Y mA = HXn + Zm +Am, (6)

where Y mA follows a multivariate Gaussian distribution given by

Y mA ∼ N (µA,ΣYAYA
) (7)

with
ΣYAYA

∆
= HΣXXHT + σ2Im + ΣAA. (8)

2.2 Attack Detection
As a part of a security strategy, the operator implements an attack detection procedure prior to
performing state estimation. Detection is cast as a hypothesis testing problem given by

H0 : There is no attack, (9a)
H1 : Observations are compromised. (9b)

At time step i ∈ N, the system operator acquires a vector of observations Ȳ mi and decides
whether the vector of observations Ȳ mi is produced following a no attack scenario as described
in (1) or is the result of the attack as described in (6). In our setting, the hypothesis test can
be recast in terms of the probability density functions induced by the state variables, the system
noise, and the attack onto the observations Ȳ m. Hence, the hypotheses in (9) become

H0 : Ȳ m ∼ PYm , (10a)
H1 : Ȳ m ∼ PYm

A
. (10b)

A test to determine what distribution generates the observation data is a deterministic test
T : Rm → {0, 1}. Given an observation vector ȳ, let T (ȳ) = 0 denote the case in which the test
decides H0 upon the observation of ȳ; and T (ȳ) = 1 the case in which the test decides H1. The
performance of the test is assessed in terms of the Type-I error, denoted by α ∆

= P
[
T
(
Ȳ m
)

= 1
]
,

RR n° 9481
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with Ȳ m ∼ PYm ; and the Type-II error, denoted by β
∆
= P

[
T
(
Ȳ m
)

= 0
]
, with Ȳ m ∼ PYm

A
.

Given the requirement that the Type-I error satisfies α ≤ α′, with α′ ∈ [0, 1], the likelihood
ratio test (LRT) is optimal in the sense that it induces the smallest Type-II error β [26]. In this
setting, the LRT is given by

T (ȳ) = 1{L(ȳ)>τ}, (11)

with L(ȳ) is the likelihood ratio, that is,

L(ȳ) =
fYm

A
(ȳ)

fYm(ȳ)
, (12)

where the functions fYm
A

and fYm are respectively the probability density function (pdf) of Y mA
in (6) and the pdf of Y m in (1); and τ ∈ R+ in (11) is the decision threshold. Note that changing
the value of τ is equivalent to change the tradeoff between Type-I and Type-II errors.

3 Sparse Stealth Attacks

3.1 Information Theoretic Metric
The aim of the attacker is twofold. First, it aims to inflict a data integrity attack that disrupts
all processes that use the observations of the system; and second, to guarantee a stealthy attack.
Hence, instead of assuming a particular state estimation procedure, we adopt the methodology
in [17] to construct stealth attacks that minimize the amount of information acquired by the
observations about the state variables. In doing so, the attacker targets a universal utility metric
consisting in a weighted sum of two terms [27]: (a) the mutual information between the state
variables and the observations; and (b) the KL divergence between the probability distribution
functions of the observations with and without attack. By minimizing this metric, the attacker
guarantees a stealthy attack that impinges upon any procedure using the observations. The
following proposition presents the analytical expression of mutual information with Xn in (3)
and Y mA in (6).

Proposition 3.1.1. The mutual information between the random variable Xn ∼ N (0,ΣXX)
and Y mA ∼ N (µA,ΣYAYA

) is

I(Xn;Y mA ) =
1

2
log
|ΣXX ||ΣYAYA

|
|Σ|

, (13)

where the matrix ΣXX is in (3), the matrix ΣYAYA
is in (8) and the matrix Σ is the covariance

matrix of the joint distribution of Xn and Y mA , that is, (Xn;Y mA ) ∼ N (0,Σ) with

Σ
∆
=

Å
ΣXX ΣXXHT

HΣXX HΣXXHT + σ2Im + ΣAA

ã
. (14)

Proof. The proof is presented in Appendix A.

Corollary 3.1. The mutual information between the vector of random variables Xn ∼ N (0,ΣXX)
and YAm ∼ N (0,ΣYAYA

)

I(Xn;Y mA ) =
1

2
log
|ΣXX ||ΣYAYA

|
|Σ|

, (15)

where the matrix ΣXX is in (3), the matrix ΣYAYA
is in (8) and the matrix Σ is in (14).

RR n° 9481
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The KL divergence term guarantees a stealthy attack in the sense that its minimization leads to
minimizing the absolute difference between the probability of false alarm and the probability of
attack detection, that is, |α− (1− β)| [26,28]. The following proposition presents the analytical
expression of KL divergence.

Proposition 3.1.2. The KL divergence between Y mA ∼ N (µA,ΣYAYA
) and Y m ∼ N (0,ΣYY ) is

D(PYm
A
‖PYm) =

1

2

Å
log
|ΣYY |
|ΣYAYA

|
−m+ tr

(
Σ−1
YY ΣYAYA

)
+ tr

(
Σ−1
YY µAµ

T
A

)ã
, (16)

where the mean vector µA and the matrix ΣYAYA
are in (8), the matrix ΣYY is in (4).

Proof. The proof of Proposition 3.1.2 is presented in Appendix B.

Corollary 3.2. The KL divergence between m-dimension multivariate Gaussian distribution
YAm ∼ N (0,ΣYAYA

) and Y m ∼ N (0,ΣYY ) is given by

D(PYm
A
‖PYm) =

1

2

Å
log
|ΣYY |
|ΣYAYA

|
−m+ tr(Σ−1

YY ΣYAYA
)

ã
, (17)

where the matrix ΣYY and ΣYAYA
are in (4) and (8), respectively.

The following lemma shows that the optimal mean vector µA of the Gaussian attack construction
in (5) is a null vector.

Lemma 3.3. The optimal Gaussian attack construction is with a null mean vector, that is,

Am ∼ N (0,ΣAA), (18)

where ΣAA ∈ Sm+ .

Proof. From Proposition 3.1.1, the mutual information in (13) does not depend on the mean
vector µA. From Proposition 3.1.2, the following holds

D(PYm
A
‖PYm) =

1

2

Å
log
|ΣYY |
|ΣYAYA

|
−m+ tr

(
Σ−1
YY ΣYAYA

)
+ tr

(
Σ−1
YY µAµ

T
A

)ã
(19)

=
1

2

Å
log
|ΣYY |
|ΣYAYA

|
−m+ tr

(
Σ−1
YY ΣYAYA

)
+ µT

AΣ−1
YY µA

ã
(20)

≥1

2

Å
log
|ΣYY |
|ΣYAYA

|
−m+ tr

(
Σ−1
YY ΣYAYA

)ã
(21)

where the equality in (20) follows from the fact that

tr
(
Σ−1
YY µAµ

T
A

)
= tr

(
µT
AΣ−1

YY µA
)

= µT
AΣ−1

YY µA, (22)

and the equality in (21) follows from Σ−1
YY ∈ Sm+ . Note that the equality in (21) holds only when

µA = 0. Therefore, for all ΣAA ∈ Sm+ , the optimal mean vector for Gaussian attack construction
is µA = 0. This completes the proof.

Within this framework, stealth attacks are constructed as random vectors Am ∼ N (0,ΣAA)
whose probability distribution functions are the solution to the following optimization prob-
lem:

min
PAm

I(Xn;Y mA ) + λD(PYm
A
‖PYm), (23)

RR n° 9481



Stealth Data Injection Attacks with Sparsity Constraints 9

where the optimization domain is the set of all possible m-dimensional Gaussian probability
distributions; and λ ≥ 1 is a weighting parameter that determines the tradeoff between the
attack disruption and probability of attack detection.

The solution to the optimization in (23) is a multivariate Gaussian distribution for the attack
vector. It is shown in [17] that the optimal Gaussian attack is given by

P̄Am ∼ N (0, Σ̄), (24)

with
Σ̄ = λ−1/2HΣXXHT. (25)

Note that the optimal Gaussian stealth attacks in (24) yields a stealth attack vector that is not
sparse, indeed all the entries of the attack realizations are nonzero with probability one, that is,
P [|supp(Am)| = m] = 1, where we define the support of the attack vector Am as

supp(Am)
∆
= {i : P [Ai = 0] = 0} . (26)

3.2 Sparse Stealth Attack Formulation
The attack implementation requires access to the sensing infrastructure of the Industrial Control
System (ICS) operating the power system. Data injection attacks usually exploit the vulnera-
bilities existing in the field zone by comprising remote terminal units or local secondary level
control systems, or alternatively, by getting access to the SCADA system coordinating the con-
trol zone of the ICS. For that reason, attack constructions that are required to intrude the least
amount of monitoring and data acquisition infrastructure are particularly interesting. In view
of this, we study sparse attacks that require access to a limited number of sensors, that is, we
pose the attack construction problem with sparsity constraints by setting the domain as the set
of distributions over the attack vector that put non-zero mass on at most k ≤ m attack vector
entries.

In the formulation, this is reflected by an additional optimization constraint of the form |supp(Am)|
= k, for some given k 6 m. Hence, the attacker chooses the distribution over the set of multi-
variate Gaussian distributions given by

Pk
∆
=
{
PAm ∼ N (0, Σ̄) : |supp(Am)| = k

}
. (27)

The resulting k-sparse stealth attack construction is therefore posed as the optimization prob-
lem:

min
PAm∈Pk

I(Xn;Y mA ) + λD(PYm
A
‖PYm). (28)

The optimization domain including the sparsity constraint in (27) implies an additional difficulty
in the construction of stealth attacks with respect to the construction proposed in [17]. This
additional difficulty lies on the combinatorial problem arising from the selection of at most k out
of m dimensions of the vector attack to form the support of Am. To tackle this difficulty, we
exploit the structure that the Gaussian attack embeds into the sparse attack problem formulation
to propose novel attack construction algorithms with verifiable performance guarantees.

RR n° 9481
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3.3 Gaussian Sparse Stealth Attack Construction
From Lemma 3.3, the probability distribution function of a random vector is determined by one
parameters, that is, the covariance matrix. Hence, from Corollary 3.1 and Corollary 3.2, writing
the objective function of the optimization problems in (23) and (28) in terms of the covariance
matrix of the attack random vector Am leads to observing that it is equal to the following
expression, up to a constant additive term,

J(ΣAA)
∆
= (1− λ) log |ΣYY + ΣAA| − log |σ2Im + ΣAA|+ λtr(Σ−1

YY ΣAA), (29)

where λ ≥ 1 is introduced in (23); and the matrix ΣYY is defined by (4). Hence, the optimization
problem in (23) is equivalent to the following optimization problem:

min
ΣAA∈Sm

+

J(ΣAA). (30)

In order to write the optimization domain of the problem in (28) in terms of the mean vec-
tor and covariance matrix of the attack random vector, it suffices to observe that the sparsity
constraint in (27) translates into a constraint on the number of nonzero entries in the diago-
nal of the covariance matrix of the attack vector. More specifically, the optimization domain
becomes:

Sk
∆
=
{
S ∈ Sm+ : ‖diag(S)‖0 = k

}
, (31)

where diag(S) denotes the vector formed by the diagonal entries of S. Solving (30) within the
optimization domain specified by (31) re-casts the equivalent k-sparse stealth attack construction
problem in (28) as:

min
ΣAA∈Sk

J(ΣAA). (32)

4 Independent Sparse Stealth Attacks

4.1 Independent Structure
We first tackle the case in which the attack vector entries are independent. More specifically,
the focus is on product probability measures of the form

PAm =

m∏
i=1

PAi , (33)

where, for all i ∈ {1, 2, . . . ,m}, the probability density function of the measure PAi
is Gaussian

with zero mean and variance vi.

The assumption of independence relaxes the correlation requirements between the entries of the
attack vector. As a result, the set of covariance matrices given by (31), with k 6 m, that arises
from considering Gaussian attacks is the set

S̃k
∆
=
⋃
K

{
S∈Sm+ : S=

∑
i∈K

vieie
T
i with vi∈R+

}
, (34)

where the union is over all subsets K ⊆ {1, 2, . . . ,m} with |K| = k ≤ m. Note that it holds that
S̃k ⊆ Sk.

RR n° 9481
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Under the independence assumption adopted in this section, the optimization problem in (30)
boils down to the following problem:

min
ΣAA∈S̃k

J(ΣAA), (35)

which is hard to solve due to the combinatorial character of identifying the support of the sparse
random attack vector. To circumvent this problem, we propose a greedy construction that
sequentially updates the set supp(Am) in (26) and determines the corresponding entry in the
diagonal of the matrix ΣAA in (5).

4.2 Greedy Independent Attack Construction
The proposed construction hinges on the idea that approaching the sensor selection problem in a
sequential fashion resembles the single sensor selection problem discussed in [19]. This enables us
to leverage the single sensor selection construction to analytically characterize the cost difference
induced by the addition of a new element to the set supp(Am) in (26).

More specifically, given the sparsity constraint in (31), for some k 6 m, the construction can
be divided into k epochs. At each epoch a new element is added to supp(Am). At epoch i, let
Σi ∈ Sm+ be the covariance matrix of the vector attack under construction. Let the set Ai be
the set of indices corresponding to the entries of the vector diag(Σi) that are different from zero.
That is,

Ai = {j ∈ {1, 2, . . . ,m} : eT
j Σiej > 0}. (36)

For all i ∈ {1, 2, . . . , k}, it is imposed that Ai ⊆ {1, 2, . . . ,m} and |Ai| = i. This implies that
A1 ⊂ A2 ⊂ . . . ⊂ Ak ⊂ {1, 2, . . . ,m}. Hence,

Σi = Σi−1 + veje
T
j , (37)

where Σ0 is a matrix of zeros; the integer j ∈ {1, 2, . . . ,m} \ Ai−1 is the index of the new entry
at epoch i and v > 0 is the value of such entry. For ease of presentation we denote the set of
indices available to the attacker to choose at epoch i, that is, the entries of the vector diag(Σi−1)
that are zero, as

Ac
i−1

∆
= {1, 2, . . . ,m} \ Ai−1. (38)

Our proposition to choose both j ∈ Ac
i−1 and v > 0 at epoch i as described in (37) is based on

the following optimization problem

min
(j,v)∈Ac

i−1×R+

J(Σi−1 + veje
T
j ). (39)

The following lemma sheds light on the solution to the optimization problem in (39).

Lemma 4.1. Let Σ1 ∈ Sm+ and Σ2 ∈ Sm+ be two matrices that satisfy Σ2 = Σ1 + ∆, with
∆ ∈ Rm×m. Then, the cost function J in (29) satisfies that

J(Σ2) = J(Σ1) + f(Σ1,∆), (40)

where the function f : Rm×m ×Rm×m → R is such that

f(Σ1,∆)=(1− λ) log
∣∣∣Im + (ΣYY + Σ1)

−1
∆
∣∣∣− log

∣∣∣Im +
(
σ2Im + Σ1

)−1
∆
∣∣∣

+λtr
(
Σ−1
YY ∆

)
, (41)

where the matrix ΣYY is defined by (4); and λ ≥ 1 is introduced in (23).
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Proof. The proof of Lemma 4.1 is presented in Appendix C.

The relevance of Lemma 4.1 is that it enables the selection of both j ∈ Ac
i−1 and v > 0 at epoch i

based on a simpler optimization problem than that in (39). Indeed, the selection problem results
in

min
(j,v)∈Ac

i−1×R+

f(Σi−1, veje
T
j ), (42)

where the function f is defined in (41). Theorem 4.1 provides the solution to the optimization
problem in (42).

Theorem 4.1. Let k satisfy 0 < k 6 m, and for all i ∈ {1, 2, . . . , k}, denote by (j?, v?) ∈
Ac
i−1 ×R+ the solution to the optimization problem in (39). Then, the following holds

j?=argmin
j∈Ac

i−1

J(Σi−1 + vjeje
T
j ) and (43)

v?=vj? , (44)

where, for all j ∈ Ac
i−1

vj∗ =

Å
βj − αj + βjαjσ

2

2βjαj

ãáÕ
1−

4βjαj

Å
βjσ

2 − αjσ2 − αjσ
2 + 1

λ

ã
(βj − αj + βjαjσ2)

2 − 1

ë
,

with

αj
∆
=tr
Ä
(ΣYY + Σi−1)

−1
ej∗eT

j∗

ä
, (45)

βj
∆
=tr

(
Σ−1
YY ej∗eT

j∗
)
, (46)

and the real σ > 0 in (45) is introduced in (2).

Proof. The proof of Theorem 4.1 is presented in Appendix D.

The proposed greedy construction is described in Algorithm 1.

5 Correlated Sparse Stealth Attacks

5.1 Correlation Structure
In this section, the assumption of independence in (33) is dropped. This case boils down to the
attack construction given in (32), that is, the optimization is carried over the set of covariance ma-
trices with non-zero off-diagonal entries that account for the correlation between different attack
entries. In this case the addition of a new index to the set of k attacked observations introduces
off-diagonal entries in the difference between covariance matrices described in Lemma 4.1. More
precisely, the difference introduced by selecting the index i is given by ∆i ∈ Di with

Di =
⋃

s∈Rm

{
D ∈ Rm×m : D = sT⊗ ei + s⊗ eT

i ,
}
. (47)
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Algorithm 1 k-sparse independent attack construction

Require: H in (1);
σ2 in (2);
ΣXX in (3);
λ in (28); and
k in (31).

Ensure: ΣAA in (5).
1: Set A0 = {∅}
2: Set Σ0 = 0
3: for j = 1 to k do
4: for ` ∈ Ac

i−1 do
5: Compute v` in (45)
6: end for
7: Compute j? in (43)
8: Compute v? in (44)
9: Set Aj = Aj−1 ∪ {j?}

10: Set Σj =
∑
i∈Aj

vieie
T
i

11: end for
12: ΣAA =

∑
i∈Ak

vieie
T
i

Note that the vector s determines the second order moments describing the covariance between
attacked observations. As in the independent case, characterizing the difference enables to formu-
late the optimization problem that yields the minimum cost increase introduced by a new index
in the attack support. Let Ak−1 denote set of indices of attacked observations and Σi−1 ∈ Si−1

the covariance matrix of the attack vector over those i−1 observations. Then the sensor selection
problem at step i is given by the optimization problem:

min
j,∆

J (Σi−1 + ∆) (48)

s.t. j ∈ Ac
i−1,

∆ ∈ Dj ,
Σi−1 + ∆ ∈ Sm+ .

In the following we show that when the choice of the next index selected for attacks is fixed, the
optimization in (48) is convex in the matrix difference.

Theorem 5.1. Let Σi−1 ∈ Si−1 and j ∈ Ac
i−1, then the optimization problem given by

min
∆

J (Σi−1 + ∆) (49)

s.t. ∆ ∈ Dj ,
Σi−1 + ∆ ∈ Sm+ ,

is a convex optimization problem.

Proof. The proof of Theorem 5.1 is presented in Appendix E.
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5.2 Greedy Correlated Attack Construction
The proposed greedy construction for correlated attack case is described in Algorithm 2. Note
that the matrix obtained in the optimization problem in Theorem 5.1 is constrained by projecting
the sum of the update and the previous covariance matrix in the positive semidefinite cone to
guarantee that the resulting covariance matrix is indeed positive semidefinite. This is reflected in
the last step of Algorithm 2 where the resulting matrix construction is projected by minimizing
the Frobenius distance to the positive semidefinite cone.

Algorithm 2 k-sparse correlated attack construction

Require: H in (1);
σ2 in (2);
ΣXX in (3);
λ in (28); and
k in (31).

Ensure: ΣAA in (5).
1: Set A0 = {∅}
2: Set Σ0 = 0
3: for j = 1 to k do
4: for ` ∈ Ac

j−1 do
5: Compute ∆` = argmin

∆∈D`

J(Σj−1 + ∆)

6: end for
7: Compute j? = argmin

`∈Ac
j−1

J(Σj−1 + ∆`)

8: Set Aj = Aj−1 ∪ {j?}
9: Set Σj = Σj−1 + ∆j?

10: end for
11: Compute ΣAA = argmin

S∈Sm
+

‖Σk − S‖F

6 Numerical Results
In this section, we first numerically evaluate the performance of the proposed attack construction
algorithms on a Direct Current (DC) state estimation setting for the IEEE 9-Bus, IEEE 14-Bus
and IEEE 30-Bus test systems [29]. The voltage magnitudes are set to 1.0 per unit, which implies
that the state estimation is based on the observations of active power flow injections to all the
buses and the active power flow between physically connected buses. The Jacobian matrix H is
determined by the reactance of the branches and the topology of the corresponding systems. We
use MATPOWER [30] to generate H for each test system. The statistical dependence between
the state variables is captured by a Toeplitz model for the covariance matrix ΣXX ∈ Sn+ that
arises in a wide range of practical settings, such as autoregressive stationary processes [13,17,31].
Specifically, we model the correlation between state variables Xi and Xj with the exponential
decay parameter ρ ∈ R+ that defines the entries of the covariance matrix of the state variables
as (ΣXX)ij = ρ|i−j| with (i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . , n}.

In this setting, the performance of the proposed sparse stealth attack is not only a function of
the attack constructions but also the correlation parameter ρ, the noise variance σ2, and the
topology of the system described by H. In the simulations, we set the observation model noise

RR n° 9481



Stealth Data Injection Attacks with Sparsity Constraints 15

regime in terms of the signal to noise ratio (SNR) defined as

SNR ∆
= 10 log10

Ç
tr(HΣXXHT)

mσ2

å
. (50)

Please note that the attack construction can be generalized to a linearized AC model at a certain
nominal operation point. The simulation of the linearized power flow model is provided to verify
the generality of the proposed attacks. Let x0 be the state variables of the nominal operation
point when the system is operating under optimal power flow. We use MATPOWER [28] to
obtain the optimal power flow where the nominal operation point lies on. The corresponding
Jacobian matrix is

H0 =
∂

∂x
h(x)|x=x0

, (51)

where h(x) ∈ Rm denotes the vector of random variables induced by the nonlinear relation
between the state variables and the measurements and H0 is the corresponding Jacobian matrix
in linearized AC model when system is operating under optimal power flow.

6.1 Performance in terms of information theoretic cost
Let Σk

i be the output of the k-sparse attack construction of Algorithm i. We evaluate the attack
performance in terms of the sparsity penalty defined as

η
∆
=
J(Σk

i )− J(Σm
i )

J(Σm
i )

, (52)

where J(·) is the cost defined in (29). Note that J(Σm
i ) denotes the cost induced by the construc-

tion when all the sensors are attacked. In that sense, this metric captures the performance loss of
the attack when only k sensors are attacked. Fig. 1 depicts the performance of the independent
sparse stealth attack construction in DC model obtained with Algorithm 1 in different IEEE test
systems as a function of the proportion of compromised sensors, that is, k/m, for correlation
parameter ρ = 0.9 and λ = 8. Similarly, Fig. 2 depicts the performance of the correlated sparse
stealth attack construction in DC model from Algorithm 2 in the same setting as in Fig. 1.
As expected, in both cases the sparsity penalty decreases monotonically with the proportion
of compromised sensors. In the independent sparse attack case, the sparsity penalty does not
change significantly in terms of the proportion of compromised sensors while in the Algorithm
2 construction case the sparsity penalty decreases exponentially in the number of compromised
sensors. Note that the exponential decrease slope is approximately constant, which indicates
that the advantage of adding more sensors to the attack construction decreases exponentially at
an approximately constant rate. Remarkably, this exponential decrease is observed for all system
sizes and SNR regimes.

It is worth noting that for most systems, operating with larger SNR yields a lower mutual
information for the same KL divergence. However, in Fig. 2 for the IEEE 30-bus test system
the 10 dB and 30 dB performance curves cross, which indicates that the lower SNR regime
benefits the attacker when the number of comprised sensors grows. Interestingly, the size of the
network does not determine the performance the attack. For the Algorithm 1 construction, the
IEEE 14-bus system is the most vulnerable to attacks, while for the Algorithm 2 construction
the statement only holds for high SNR regime. This suggests that the topology of the network
fundamentally changes the performance of the attack but the specific mechanisms are left for
future study.
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Fig. 3 and Fig. 4 depict the performance of the independent sparse stealth attack construction
and correlated sparse stealth attack construction in linearized AC model from Algorithm 1 and
Algorithm 2, respectively, in different IEEE test systems as a function of the proportion of
compromised measurements, that is, k/m, for parameters ρ = 0.9 and λ = 8.
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Figure 1: Performance of independent attack con-
structions in DC model on different IEEE test sys-
tems with ρ = 0.9 and λ = 8.
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Figure 2: Performance of correlated attack con-
structions in DC model on different IEEE test sys-
tems with ρ = 0.9 and λ = 8.
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Figure 3: Performance of independent attack con-
structions in linearized AC model on different IEEE
test systems with ρ = 0.9 and λ = 8.
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Figure 4: Performance of correlated attack con-
structions in linearized AC model on different IEEE
test systems with ρ = 0.9 and λ = 8.

6.2 Performance in terms of the tradeoff between mutual information
and KL divergence

Fig. 5 and Fig. 6 depict the multiobjective performance of the Algorithm 1 attack construction in
DC model in terms of the tradeoff between mutual information and KL divergence for different
values of the proportion of compromised sensors when SNR = 30 dB and ρ = 0.9. Similarly,
Fig. 7 and Fig. 8 depict the same setting in DC model for the Algorithm 2 attack construction.
As expected, larger values of the parameter λ yield smaller values of KL divergence, that is, the
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Figure 5: Performance of independent sparse at-
tack construction in DC model in terms of mutual
information and KL divergence for different values
of λ on the IEEE 9-bus system with SNR = 30 dB
and ρ = 0.9.
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Figure 6: Performance of independent sparse at-
tack construction in DC model in terms of mutual
information and KL divergence for different values
of λ on the IEEE 14-bus system with SNR = 30 dB
and ρ = 0.9.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

KL divergence

26.4

26.6

26.8

27

27.2

27.4

27.6

27.8

28

M
ut

ua
l i

nf
or

m
at

io
n

k = 3
k = 5
k = 8
k = 11

 = 6

 = 2

 = 4

Figure 7: Performance of correlated sparse attack
construction in DC model in terms of mutual infor-
mation and KL divergence for different values of λ
on the IEEE 9-bus system with SNR = 30 dB and
ρ = 0.9.
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Figure 8: Performance of correlated sparse attack
construction in DC model in terms of mutual infor-
mation and KL divergence for different values of λ
on the IEEE 14-bus system with SNR = 30 dB and
ρ = 0.9.

probability of detection is prioritized in the construction over the mutual information decrease
for all the scenarios. Moreover, smaller values of k yield smaller reductions of the mutual infor-
mation, which indicates that remaining stealthy in a sparse setting necessarily implies reducing
the amount of disruption of the attack. On the other hand, larger values of k enable the attacker
to more effectively tradeoff disruption for stealth. This effect is particularly marked in the cor-
related attack construction case, which reinforces the previous observation regarding the value
of coordination between attack variables to achieve stealth.

Fig. 9 and Fig. 10 depict the multiobjective performance of the Algorithm 1 attack construction
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in linearized AC model in terms of the tradeoff between mutual information and KL divergence
for different values of the proportion of compromised sensors when SNR = 30 dB and ρ = 0.9.
Similarly, Fig. 11 and Fig. 12 depict the same setting in linearized AC model for the Algorithm
2 attack construction.
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Figure 9: Performance of independent sparse at-
tack construction in linearized AC mdoel in terms
of mutual information and KL divergence for dif-
ferent values of λ on the IEEE 14-bus system with
SNR = 30dB and ρ = 0.9.
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Figure 10: Performance of independent sparse at-
tack construction in linearized AC mdoel in terms
of mutual information and KL divergence for dif-
ferent values of λ on the IEEE 14-bus system with
SNR = 30dB and ρ = 0.9.
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Figure 11: Performance of correlated sparse attack
construction in linearized AC mdoel in terms of mu-
tual information and KL divergence for different
values of λ on the IEEE 9-bus system with SNR =
30dB and ρ = 0.9.
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Figure 12: Performance of correlated sparse attack
construction in linearized AC mdoel in terms of mu-
tual information and KL divergence for different
values of λ on the IEEE 14-bus system with SNR
= 30dB and ρ = 0.9.

6.3 Performance in terms of mutual information and probability of
attack detection

Fig. 13 and Fig. 14 depict the performance of the attack construction in DC model for different
values of λ and sparse constraint k with SNR = 30 dB, ρ = 0.9 and τ = 2 for the IEEE 9-bus
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Figure 13: Performance of attack constructions in DC model on IEEE 9-bus test system with ρ = 0.9,
SNR = 30dB and τ = 2.
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Figure 14: Performance of attack constructions in DC model on IEEE 14-bus test system with ρ = 0.9,
SNR = 30dB and τ = 2.

and the IEEE 14-bus test systems, respectively. As expected, larger values of the parameter λ
yield smaller values of the probability of attack detection while increasing the mutual information
between the vector of state variables and the vector of observations in the systems. We note
that the probability of attack detection decreases approximately linearly with respect to log λ for
small values of λ. Simultaneously for this range of λ, mutual information increases approximately
linearly with respect to log λ. For moderate values of λ, we observe a significant decrease in
the probability of detection with respect to log λ with a smaller rate of increase in mutual
information. The comparison between independent and correlated attack constructions, shows
that for the same sparsity constraint, the correlated attack construction successfully exploits the
coordination between different locations to yield a smaller probability of detection and a smaller
mutual information.
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7 Conclusions
We have proposed novel stealth attack construction with sparsity constraints. The insight ob-
tained from the problem of incorporating an additional sensor to the attack has been distilled
to construct heuristic greedy constructions for both the independent and the correlated attack
cases. We show that for both cases, the greedy step results in a convex optimization problem
which can be solved efficiently and yields a low complexity attack update rule. We have numeri-
cally evaluated the attack performance in several IEEE test systems and shown that it is feasible
to implement disruptive attacks that have access to small number of observations. Furthermore,
we have observed that the topology and the SNR regime govern the performance of the attack
and numerically characterised the dependence.
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Appendices

A Proof of Proposition 3.1.1

Proof. Let Wn+m ∆
= (Xn;Y mA ). It follows that Wn+m ∼ N (µW ,Σ) such that

µW
∆
=

Å
0
µA

ã
, (53)

Σ
∆
=

Å
ΣXX ΣXXHT

HΣXX HΣXXHT + σ2Im + ΣAA

ã
. (54)

Note that

I(Xn;Y mA )
∆
=EXn;Ym

A

ñ
log

fXn;Ym
A

fXnfYm
A

ô
(55)

=EWn+m

ñ
log

fWn+m

fXnfYm
A

ô
, (56)

where the functions fXn;Ym
A
, fXn and fYm

A
in (55) are the probability density functions of

(Xn;Y mA ), Xn and Y mA , respectively; the function fWn+m in (56) is the pdf of Wn+m and
fXn;Ym

A
= fWn+m . It follows that

I(Xn;Y mA ) (57)

=EWn+m

log
exp(−1

2
(Wn+m − µW )TΣ−1(Wn+m − µW ))

(2π)
n+m

2 |Σ| 12

 (58)

−EXn

log
exp(−1

2
(Xn)TΣ−1

XXX
n)

(2π)
n
2 |ΣXX |

1
2


−EYm

A

log
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2
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YAYA
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(
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1
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ó
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1
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1
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1
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T
óä
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1

2
log
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2
(n+m) +

1

2
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1

2
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1
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log
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|
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=
1

2
log
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|
|Σ|

, (62)
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where the equality in (58) follows from taking the expression of the probability density functions
of multivariate Gaussian distributions, that is, fXn , fYm

A
and fWn+m into (56); the equality

in (59) follows from taking constants out of the expectation; the equality in (60) follows from
the fact that

EWn+m

î(
Wn+m − µW

)T
Σ−1

(
Wn+m − µW

)ó
(63)

=EWn+m

î
tr
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n
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T
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, (64)
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A

î
(Y mA −µA)

T
Σ−1
YAYA

(Y mA −µA)
ó

=tr
Ä
Σ−1
YAYA

EYm
A

î
(Y mA −µA)(Y mA −µA)

T
óä

; (65)

the equality in (61) follows from the fact that

tr
(
Σ−1EWn+m

[(
Wn+m − µW

)
(Wn+m − µW )T

])
=tr

(
Σ−1Σ

)
= n+m, (66)
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Ä
Σ−1
XXEXn
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T
óä

=tr
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= n, (67)
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A
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T
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=tr
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ΣYAYA
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= m. (68)

This completes the proof.

B Proof of Proposition 3.1.2
Proof. Note that
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A
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∆
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log
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where the functions fYm
A

and fYm in (70) are the probability density functions of Y mA and Y m,
respectively; the equality in (71) follows from taking the probability density functions of Y mA and
Y m into the definition of KL divergence; the equality in (73) follows from taking constants out
of the expectation; the equality in (75) follows from (65) and the fact that

EYm
A

[
(Y mA )TΣ−1

YY Y
m
A

]
= tr

(
Σ−1
YY EYm

A

[
(Y mA )TY mA

])
; (78)

the equality in (75) follows from the fact that

EYm
A

[
Y mA (Y mA )T

]
=EYm

A

î
(Y mA − µA) (Y mA − µA)

T
ó

+ µAµ
T
A (79)

=ΣYAYA
+ µAµ

T
A.

This completes the proof.

C Proof of Lemma 4.1
Proof. Let Σ1 ∈ Sm+ and Σ2 ∈ Sm+ be two matrices that satisfy Σ2 = Σ1 + ∆, with ∆ ∈ Rm×m.
Taking Σ1 and Σ2 into (29), then the cost difference between J(Σ2) and J(Σ1) is given by

J(Σ2)− J(Σ1) (80)
=(1− λ) log |ΣYY + Σ2| − log |σ2Im + Σ2|+ λtr(Σ−1

YY Σ2)

−
(
(1− λ) log |ΣYY + Σ1| − log |σ2Im + Σ1|+ λtr(Σ−1

YY Σ1)
)

(81)

=(1− λ) log
|ΣYY + Σ1 + ∆|
|ΣYY + Σ1|

− log

∣∣σ2Im + Σ1 + ∆
∣∣

|σ2Im + Σ1|
+ λtr
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Σ−1
YY (Σ2 −Σ1)

)
(82)

=(1− λ) log
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−1
∆
∣∣∣− log

∣∣∣Im +
(
σ2Im + Σ1

)−1
∆
∣∣∣+ λtr

(
Σ−1
YY ∆

)
, (83)

where the equality in (81) follows from taking Σ1 and Σ2 into (29) and the equality in (82) follows
from replacing Σ2 with Σ1 +∆ and the equality in (83) follows from eliminating |ΣYY +Σ1| and
|σ2Im+Σ1|. From the equality in (83), the cost difference can be written as a function of Σ1 and
∆, that is, J(Σ2)−J(Σ1) = f(Σ1,∆), where f(Σ1,∆)

∆
= (1−λ) log

∣∣∣Im + (ΣYY + Σ1)
−1

∆
∣∣∣−

log
∣∣∣Im +

(
σ2Im + Σ1

)−1
∆
∣∣∣+ λtr

(
Σ−1
YY ∆

)
. This completes the proof.

D Proof of Theorem 4.1
Proof. It follows from Lemma 4.1 that the optimization problem in (39) is equivalent to

min
(j,v)∈Ac

i−1×R+

J(Σi−1) + f(Σi−1, veje
T
j ), (84)

where the function f : Rm×m ×Rm×m → R is such that

f(Σi−1, veje
T
j ) =(1− λ) log

∣∣∣Im + (ΣYY + Σi−1)
−1
veje

T
j

∣∣∣− log
∣∣∣Im +

(
σ2Im + Σi−1
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T
j

∣∣∣
+λtr

(
Σ−1
YY veje

T
j

)
. (85)
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Note that J(Σi−1) is a constant with respect to j and v. Hence, it holds that the optimization
problem in (39) is equivalent to

min
(j,v)∈Ac

i−1×R+

f(Σi−1, veje
T
j ) (86)

= min
(j,v)∈Ac

i−1×R+

(1− λ) log
∣∣∣Im + (ΣYY + Σi−1)

−1
veje

T
j

∣∣∣− log
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(
σ2Im + Σi−1

)−1
veje

T
j

∣∣∣
+λtr

(
Σ−1
YY veje

T
j

)
. (87)

Note that j ∈ Ac
i−1. Therefore, it holds that

log
∣∣∣Im + (ΣYY + Σi−1)

−1
veje

T
j

∣∣∣ = log(1 + αjv), (88)

where αj
∆
= tr

(
(ΣYY + Σi−1) eje

T
j

)
. Note that j ∈ Aci−1 and Σi−1 is formed from previous i

epochs. It yields that Σi−1 is a diagonal matrix and

log
∣∣∣Im +

(
σ2Im + Σi−1

)−1
veje

T
j

∣∣∣ = log(1 +
v

σ2
). (89)

It follows that the minimization problem in (86) can be rewritten as

min
(j,v)∈Ac

i−1×R+

f(Σi−1, veje
T
j ) (90)

= min
(j,v)∈Ac

i−1×R+

(1− λ) log(1 + αjv)− log(1 +
v

σ2
) + λβjv, (91)

where βj
∆
= tr

((
σ2Im + Σi−1

)
eje

T
j

)
. We break the optimization problem in (90) as follows:

min
(j,v)∈Ac

i−1×R+

f(Σi−1, veje
T
j ) = min

j∈Ac
i−1

min
v∈R+

(1− λ) log(1 + αjv)− log(1 +
v

σ2
) + λβjv, (92)

Let λ ≥ 1, then it holds that for all j ∈ Ai−1, the cost function in (92) is convex in v. The
only solution of the inner minimization problem in (92) is obtained by letting the first derivative
equal to zero, that is,

∂f(Σi−1, veje
T
j )

∂v
= 0, (93)

which is

βjαjv
2 + (βj − αj + βjαjσ

2)v + βjσ
2 − αjσ2 − αjσ

2 + 1

λ
= 0. (94)

Note that equation (94) is quadratic with two solutions as follows:

1

2βjαj

Ç
−(βj−αj+βjαjσ2)+

…
(βj − αj + βjαjσ2)2−4βjαj(βjσ2−αjσ2−αjσ

2+1

λ
)

å
, and (95)

1

2βjαj

Ç
−(βj−αj+βjαjσ2)−

…
(βj − αj + βjαjσ2)2−4βjαj(βjσ2−αjσ2−αjσ

2+1

λ
)

å
. (96)

The result follows by choosing the solution such that v ∈ R+, that is, the solution in (95). After
some algebra manipulation, the solution is rewritten as

v∗j =
βj − αj + βjαjσ

2

2βjαj

áÕ
1−

4βjαj

Å
βjσ

2 − αjσ2 − αjσ
2 + 1

λ

ã
(βj − αj + βjαjσ2)

2 − 1

ë
, (97)
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We now proceed to the outer minimization in (92). The solution j∗ to the optimization problem
in (92) is obtained by searching over all the possible candidate in Aci−1, that is,

j? = argmin
j∈Ac

i−1

J(Σi−1 + vjeje
T
j ), (98)

with vj in (97). This completes the proof.

E Proof of Theorem 5.1
Proof. Let Σi−1 ∈ Si−1 and j ∈ Aci−1. From Lemma 4.1, for all j ∈ Aci−1, the optimization
problem in (48) is equivalent to the following optimization problem:

min
∆

J (Σi−1) + f(Σi−1,∆) (99)

s.t. ∆ ∈ Dj ,
Σi−1 + ∆ ∈ Sm+ ,

where the function f : Rm×m ×Rm×m → R is given by

f(Σi−1,∆) =(1− λ) log
∣∣∣Im + (ΣYY + Σi−1)

−1
∆
∣∣∣− log

∣∣∣Im +
(
σ2Im + Σi−1

)−1
∆
∣∣∣

+λtr
(
Σ−1
YY ∆i

)
. (100)

Therefore, the optimization problem in (99) is equivalent to

min
∆

f(Σi−1,∆) (101)

s.t. ∆ ∈ Dj ,
Σi−1 + ∆ ∈ Sm+ .

Note that the minimization problem in (101) is equivalent to the following optimization problem,
up to a constant additive term,

min
∆

(1− λ) log |ΣYY + Σi−1 + ∆| − log
∣∣σ2Im + Σi−1 + ∆

∣∣+ λtr
(
Σ−1
YY ∆i

)
(102)

s.t. ∆ ∈ Dj ,
Σi−1 + ∆ ∈ Sm+ .

Noting that Sm+ is convex and the set Dj is convex for all j ∈ Ac
i−1. Hence, the logarithm terms

are convex [32] for λ ≥ 1. The trace term is a linear operation. It follows that the optimization
problem in (102) is convex in ∆. Therefore, the optimization problem in (49) is convex in ∆.
This completes the proof.
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