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Figure 1: Surface approximation using orthogonalized polynomials of increasing order, where order 1 corresponds to the plain Laplacian
eigenbasis. All of these approximations are obtained starting from just 5 eigenfunctions. Reconstruction error is encoded by color, growing
from white to dark red.

Abstract
We propose a novel approach for the approximation and transfer of signals across 3D shapes. The proposed solution is based on
taking pointwise polynomials of the Fourier-like Laplacian eigenbasis, which provides a compact and expressive representation
for general signals defined on the surface. Key to our approach is the construction of a new orthonormal basis upon the
set of these linearly dependent polynomials. We analyze the properties of this representation, and further provide a complete
analysis of the involved parameters. Our technique results in accurate approximation and transfer of various families of signals
between near-isometric and non-isometric shapes, even under poor initialization. Our experiments, showcased on a selection
of downstream tasks such as filtering and detail transfer, show that our method is more robust to discretization artifacts,
deformation and noise as compared to alternative approaches.

CCS Concepts
• Computing methodologies → Shape analysis; • Theory of computation → Computational geometry; • Mathematics of
computing → Functional analysis;

1. Introduction and related work

Approximation and transfer of signals between shapes are among
the most widely explored tasks in computer vision and graph-
ics, and are at the basis of numerous applications. Common to
most approaches is the idea to encode the given surface signal in
a basis that allows to represent and transfer it efficiently; among
these, approaches based upon the construction of a Fourier-like ba-
sis (or rather its surface counterpart [Tau95]) play the lion’s share

[Lév06, Rus07, VL08]. The key idea is to project the signal onto a
low-dimensional function space, e.g., corresponding to the lowest
portion of the frequency band. This yields a well known trade-off
between the compactness of the representation and its approxima-
tion quality. Efforts have been devoted to strike a balance between
these two factors, by resorting to alternative bases or via costly
post-processing steps; still, the search for a compact basis for rep-
resenting high level of detail, is an unsolved problem to date.
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Figure 2: RGB signal transfer among two non-isometric shapes
with different mesh topology. Our approach (ours, ours∗) better
transfers the surface signal from bison to cow, while using the
same amount of information as other existing approaches (eigs
[OBCS∗12] and prods [NMR∗18]). We refer to the experimental
section for more details.

A closely related problem to that of signal representation is the
need to transfer these signals from a source to a target domain. This
can often be cast as correspondence problem, where the objective
is to find a transformation that acts as a bridge between source and
target. This was shown in [OBCS∗12] to be equivalent to seeking
a coherent set of basis functions for the given pair of shapes; the
search for a correspondence is then phrased as the search for a lin-
ear map (called functional map) that aligns the basis functions on
the source to those on the target. Follow-up works have embraced
this view by introducing more stable ways to compute the func-
tional map [NO17, OCB∗16, EBC17, RPWO18], by extending the
framework to the partial setting [RCB∗17, CRM∗16], or by con-
structing new coherent bases explicitly as linear transformations of
the Laplacian eigenfunctions [KBB∗13, AL19, LRBB17].

The choice of Laplacian eigenfunctions as a reduced basis for
representing surface signals is due to their optimality for continu-
ous functions with bounded variation [ABK15]. However, in many
real applications such as texture transfer and shape interpolation,
this band-limited representation may not provide the necessary ac-
curacy for capturing fine details. To overcome these limitations,
two main solutions have been proposed: (i) to design an ad-hoc ba-
sis for fixed sets of signals; (ii) to define algorithms for recovering
the residual information that is lost in the representation. The for-
mer includes wavelets as a localized alternative to the Fourier basis
[Zho12,CM06,LDW97,HVG11,Pat18,KMP∗20]. Other local con-
structions include those based on sparse regularization and Hamil-
tonian operators with step potentials [NVT∗14, KGB16, CSBK17,
MRCB18]. Specialized bases for piecewise-constant signals and
vertex coordinates have been proposed in [Mel19] and [MMM∗20]
respectively, but these do not generalize well to different function
classes. Point (ii) is a more recent trend [MRR∗19, ELC20]. The
idea is to iteratively seek for bases of increasing dimension starting
from an initial alignment between few Laplacian eigenfunctions.
The iterative procedure preserves the alignment of the two bases
as they increase in dimension, and sidesteps the need for further
optimization to get an optimal alignment.

More closely related to ours is the work of Nogneng et
al. [NMR∗18], where the authors consider the set of pointwise
products of the Laplacian eigenfunctions, in addition to the eigen-
functions alone, for representing surface signals more accurately.
The main property of these eigenproducts is that their alignment
can be explicitly and directly derived from the functional map be-
tween the standard eigenfunctions; this way, a correct alignment be-
tween a few eigenfunctions is automatically extended to the larger
set, which includes their products.

Contribution. Our work addresses a key issue of the latter rep-
resentation, namely that the set containing Laplacian eigenfunc-
tions and eigenproducts is not linearly independent in general; as
we show in the sequel, it is linearly independent only when very
few eigenfunctions are involved. Thus, this set does not provide
a unique representation for surface signals. Further, the linear de-
pendence gives rise to instability in the transfer task, which must
be handled through additional constraints and pre-processing as
shown in [NMR∗18]; see Figure 2 for an example. Here we follow
a similar idea and use eigenproducts to increase the dimensionality
of the basis, and in turn, the quality of the resulting representation.
However, differently from [NMR∗18], we do not limit our analysis
to products of order 2, but we effectively exploit the entire set of
“Fourier polynomials” with arbitrary order.

This paper fills the gaps left by [NMR∗18] in several ways:

• For the first time, we provide a theoretical analysis on the space
spanned by the eigenproducts, including a discussion on the fre-
quency range that they capture;
• We propose the construction of an orthonormal basis on top of

the linearly dependent set of polynomials, yielding a simpler,
more accurate, stable and computationally efficient technique;
• We extend the discussion and empirical evaluation to eigenprod-

ucts of order greater than 2.

Our basis applies to several applications, such as detail transfer
and spectral filtering, that are impossible to target through the rep-
resentation proposed in [NMR∗18] as we show in the experiments.

2. Background

We model a shapes as a 2-dimensional Riemannian manifolds
M, equipped with the metric tensor g. The positive semi-definite
Laplace-Beltrami operator ∆, generalizing the notion of Laplacian
to surfaces, can be expressed in local coordinates as (here in the
general d-dimensional case):

∆ f =− 1√
det(g)

d

∑
i, j=1

∂

∂xi

√
det(g) gi, j ∂ f

∂x j
, (1)

where gi, j = (g−1)i, j is the cell (i, j) of the inverse matrix of g.

The operator ∆ admits a spectral decomposition into eigenval-
ues λi and associated eigenfunctions ϕi. The eigenvalues are non-
negative and countably infinite; in this paper, we always assume
that the eigenvalues are ordered non-decreasingly, and the associ-
ated eigenfunctions follow the same ordering. A standard exam-
ple is the 1-dimensional manifold representing the real line [0,T ].

Here, ∆ =− ∂
2

∂x2 , the eigenfunctions are ϕk(x) = sin
(

2πkx
T

)
and the

associated eigenvalues are λk =
4π

2k2

T 2 .

Laplacian eigenfunctions span the space L2(M) of square in-
tegrable functions, i.e. the set of functions f :M→ R such that:

〈 f , f 〉M = ‖ f‖2
M =

∫
M

f 2(x)dx <∞ . (2)

The Laplace-Beltrami operator obeys the Leibniz product rule

© 2021 The Author(s)
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with a correction term involving gradients [Cha84]. Namely,

∆ f (x)g(x) = f (x)∆g(x)+g(x)∆ f (x)−2〈∇ f (x), ∇g(x)〉 (3)

which, in the case of eigenfunctions, leads to†:

∆ϕi(x)ϕ j(x) = (λi +λ j)ϕi(x)ϕ j(x)−2
〈
∇ϕi(x), ∇ϕ j(x)

〉
. (4)

A rescaled version of the correction term was empirically used
in [SK15] as a descriptor field for shape matching.

An important quantity arising when studying functions on man-
ifolds is their Dirichlet energy, which encodes information about
smoothness; in the Fourier setting, this corresponds to the notion of
frequency. Given a scalar function f ∈ L2(M) and its normalized
version u = f/‖ f‖M, we define the Dirichlet energy of f as

E ( f ) =
∫
M
‖∇u(x)‖2 dx = 〈∇u, ∇u〉= 〈u, ∆u〉 . (5)

It can be easily shown that the Dirichlet energy of an eigenfunction
ϕk is the associated eigenvalue λk.

Finally, we formalize the notion of eigenproduct.

Definition 2.1 Let I = {i1, · · · , in} ∈ N be a finite set of indices,
possibly containing repeated elements. We define the eigenproduct
ϕI :M→ R to be the scalar function defined as

ϕI(x) = ∏
i∈I

ϕi(x) , (6)

where the multiplication is to be taken pointwise. A special case
of eigenproduct is when I = {i, · · · , i} is a set containing n times
the same index. In this case, we define the function ϕI = ϕ

n
i an

eigenpower. Finally, an N-th order Fourier polynomial of K eigen-
functions is a linear combination of eigenproducts up to order N
involving the first K eigenfunctions (excluding the constant one).

Functional maps. Let π : N →M be a pointwise map between
two surfaces N and M. A functional map [OBCS∗12, OCB∗16]
is the linear operator TF : L2(M)→ L2(N ) that maps functions
from M to N , defined via the pull-back TF ( f ) = f ◦ π, ∀ f ∈
L2(M). Given two bases {ϕi} and {ψ j} respectively for L2(M)

and L2(N ), the operator TF can be encoded in a matrix C = (ci j),
computed as:

TF ( f )=TF

(
∑

i
〈 f ,ϕi〉Mϕi

)
=∑

i j
〈 f ,ϕi〉M 〈TF (ϕi),ψ j〉N︸ ︷︷ ︸

c ji

ψ j (7)

In [OBCS∗12] the authors propose to truncate the sum on i and
j in equation (7). With this choice, the functional map reduces to
a small matrix C that can be efficiently estimated as described in
[OBCS∗12, NO17] and other related works.

Discretization. In the discrete setting, we represent a Riemannian
surfaceM as a triangle mesh with n vertices, connected by edges
that form a triangle mesh approximating the smooth surface M.
Scalar functions f :M→R are represented as vectors f ∈Rn. The

† Strictly speaking, functions in L2(M) do not admit a pointwise product;
we keep the notation for the sake of simplicity, with the understanding that
it remains valid in the proper Sobolev space.

Figure 3: Shapes used for our theoretical results: human (∼ 7k
vertices), bunny (∼ 10k), cat (∼ 10k), and donut (∼ 20k).

Laplace-Beltrami operator can be represented as the n× n matrix
∆∆∆ = A−1W, where matrix A contains the area elements associated
to each vertex, and matrix W is defined according to the local ge-
ometry (see, e.g. [PP93]). The manifold inner product 〈 f ,g〉M is
discretized as the area-weighted scalar product f>Ag.

3. Theoretical results

In this section, we present some theoretical results on eigenprod-
ucts, together with some interesting implications of their proper-
ties. We first examine their frequency distribution, and compare it
to the frequency distribution of the eigenfunctions (i.e. their asso-
ciated eigenvalues). We then discuss a result on the approximation
of eigenproducts in the space spanned by the eigenfunctions, pro-
viding possible interpretations and implications. We use different
shapes to show the generality of our results (see Figure 3).

3.1. Frequency distribution

We now present a result about the distribution of frequencies (i.e.
the Dirichlet energies) of eigenproducts.

Theorem 3.1 Let M be a d-dimensional Riemannian manifold,
and ∆ be the associated Laplace-Beltrami operator. Then, let I be a
set of indices of size N and let ϕI be an eigenproduct. The following
relation holds:

E (ϕI)≥
1
2 ∑

i∈I
λi . (8)

Furthermore, in the special case of an eigenpower ϕI = ϕ
N
i , it holds

E
(

ϕ
N
i

)
=

N2

2N−1
λi . (9)

Proof See Appendix A.

Corollary 3.1.1 LetM be a 2-dimensional manifold, and ∆ be the
associated Laplace-Beltrami operator. Fixed N,K ∈N, and being Φ̃ΦΦ

the set of N-th order eigenproducts between the first K Laplacian
eigenfunctions, we have max

ϕI∈Φ̃ΦΦ
{E (ϕI)} ∈Ω(NK).

Proof See Appendix A.

From Theorem 3.1 and Corollary 3.1.1, we can deduce the fol-
lowing. Since, by Weyl’s law, for 2-dimensional manifolds the
(NK)-th eigenvalue is Θ(NK), then using the Dirichlet energies of
N-th order products between K eigenfunctions allows to express the
same frequencies as if we use NK eigenfunctions. Further, within
the band of the first NK eigenvalues, each eigenvalue is matched

© 2021 The Author(s)
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Figure 4: Each plot shows the relative error min{(λi−E (ϕI))/λi}
between the i-th Laplacian eigenvalue (where i ranges on the x axis)
and the closest frequency of a N-th order eigenproduct. Here NK
Laplacian eigenvalues are considered, with K = 30 and product
order N = {1,2,3} (left to right). At order 1 the products corre-
spond to the standard eigenfunctions, hence yielding exactly zero
error. At increasing order the error stays close to zero, showing
that each eigenvalue is approximated by the frequency of a product
with > 99.9% accuracy. Results are averaged on four shapes.

to high accuracy by the Dirichlet energy of an eigenproduct, as we
empirically demonstrate in Figure 4.

Intuitively, this means that the eigenproducts up to order N have
the same expressive power as the first NK eigenfunctions. There-
fore, eigenproducts can be used to represent well band-limited
functions within the band of the first NK eigenvalues.

0 T/2 T
−1

0

1

ϕ1 ϕ2 ϕ1ϕ2
Example. On the real line
M = [0,T ], consider the
second-order eigenproduct
ϕ̃(x) = sin(2πx/T )sin(4πx/T ).
Its Dirichlet energy is E (ϕ̃) =
1/‖ϕ̃‖2 ∫ T

0 (∂/∂xϕ̃(x))2dx =

(1/‖ϕ̃‖2)5π
2/T . Since the

squared norm of ϕ̃ is T/4, we
get E (ϕ̃) = 20π

2/T 2 = 4π
2/T 2 + 16π

2/T 2 = λ1 + λ2. See the
inset figure for an illustration.

Outside of the band of the first NK eigenvalues, the Dirichlet
energy of eigenproducts grows more rapidly than the sum of the
eigenvalues; we illustrate this behavior in Figure 5. In fact, the
Dirichlet energy of an eigenproduct ϕI can be expressed as (see
the proof of Theorem 3.1 in Appendix A for the derivations):

E (ϕI) =
1
2 ∑

i∈I
λi +∑

i∈I

∫
M
‖∏

j∈I
j 6=i

ϕ j(x)∇ϕi(x)‖2dx . (10)

From Equation (10), we can see how as we add more factors to
the eigenproduct, the number of terms grows and, since these terms
are all non-negative, the whole energy is increased.

3.2. Approximating eigenproducts

We now investigate the following question, and draw some inter-
esting conclusions that were missing in previous work: Can a given
eigenproduct be represented well in the standard eigenbasis?

Let M be a 2-dimensional manifold and {ϕi} be the set of its

4,200 4,400 4,600 4,800 5,000

1,000

1,500

2,000 E(ϕI)∑
i∈I

λi

1
Figure 5: Dirichlet energies of order-2 products against the sum of
the eigenvalues. The former grow much faster in the high portion
of the spectrum.

Laplacian eigenfunctions. For any function f , let Eυ( f ) be the pro-
jection of f onto the first υ Laplacian eigenfunctions and let Rυ( f )
be the L2 norm of f −Eυ( f ). Namely, the residual:

Rυ( f ) = ‖ f −
υ

∑
i=0
〈ϕi, f 〉Mϕi‖L2 . (11)

Aflalo et al. [ABK15] proved the upper bound:

R2
υ( f )≤ ‖∇ f‖2

λυ+1
∀ f , (12)

further showing that the bound can not be tightened by any other
sequence of linearly independent functions {ϕi} ∈ L2(M). This
yields the optimality of the Laplacian eigenfunctions for represent-
ing any function with bounded gradient magnitude. For the special
case of f being an eigenproduct ϕI , however, the bound is not very
informative. We instead appeal to the following:

Theorem 3.2 [LSS18] Fixed K,N ∈ N, with K � 1, for any set
of indices I = {i1, · · · , iN}, where each i j ≤ K, for any υ > K and
for any χ ∈ N, it holds:

Rυ(ϕI). K
Nσ(2N,2)

2

(
K
υ

) χ

2

, (13)

where

σ(p,d) = max
{

d−1
2

(
1
2
− 1

p

)
, d
(

1
2
− 1

p

)
− 1

2

}
. (14)

This result can be read as follows. For large values of K, the prod-
ucts tend to add less and less information to the spanned space,
until, eventually, all the products are spanned by a basis of υ eigen-
functions, for every υ > K.

Example. Consider the product ϕ̃(x) = sin(2πx)sin(4πx)sin(6πx)
between the first three non-constant eigenfunctions onM = [0,1].
If we represent this product in the basis of the first υ = 4 non-
constant eigenfunctions, we get the residual R4(ϕ̃) = 3/64; this
residual is already quite small, if we consider that we are using
only 1 more eigenfunction for representing the product.

Nevertheless, for small values of K and N it is very rare that an
eigenproduct can be expressed exactly as a linear combination of
eigenfunctions. Extending the basis with eigenproducts introduces
a lot of additional information. Even if they are not all linearly in-
dependent, they could expand the dimension of the spanned space
by orders of magnitude. In Figure 6 we show examples where using
only 20 eigenfunctions, and admitting products up to the 4-th order,

© 2021 The Author(s)
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Figure 6: Number of linearly independent eigenproducts (in blue)
against the number of eigenfunctions involved; each plot is for a
different maximum product order. The total number of eigenprod-
ucts (in orange) is plotted for reference. These results are averaged
on four different shapes.

generates a basis spanning a functional space with > 3000 dimen-
sions. This kind of rank analysis was also missing in [NMR∗18],
while the study about the loss of the eigenproducts basis’ full-rank
property, reported in Figure 6, gives a heuristic for selecting param-
eters N and K. According to our theoretical and experimental anal-
ysis, we advocate using K ≤ 50,15,10 for, respectively, N = 2,3,4,
since this parameter setup maximizes the size of the basis with re-
spect to the computed products.

3.3. Orthogonalized eigenproducts

In the work of Nogneng et al. [NMR∗18], resorting to eigenprod-
ucts for representing surface signals also involved solving an opti-
mization problem prone to numerical instability. Here we propose
a much simpler alternative that is less empirical, more stable, and
provides consistently better results than [NMR∗18]. Specifically,
consider the set of order-N products of the first K eigenfunctions,
spanning a function space F(M) with some dimension Q. We or-
thogonalize this set via the Gram-Schmidt (GS) algorithm, and ob-
tain an orthonormal basis for the same space with exactly Q basis
functions; see Figures 7 and 8 for examples. Although straightfor-
ward, this process offers advantages both in terms of computational
effort and numerical stability.

Complexity. In [NMR∗18], computing a representation for a
given signal in the set of eigenproducts requires computing the
SVD decomposition of a n×L matrix containing all eigenproducts
as its columns, where n is the number of vertices and L =

(K+N
N
)

is the number of N-th order products between the first K eigen-
functions. This SVD decomposition has complexity O(n2L+ L3)
[GVL13], which for L� n (our case) reduces to O(n2L). On the
other hand, the computational complexity of GS is O(nL2), which
for L� n is much more sustainable than SVD decomposition.

Stability. We demonstrate empirically that our orthogonal basis
produces more stable results than [NMR∗18]. For the latter method,

ϕ0 ϕ1 ϕ2 ϕ3 ϕ4

ϕ2
1 ϕ1ϕ2 ϕ1ϕ3 ϕ1ϕ4 ϕ2

2

ϕ2ϕ3 ϕ2ϕ4 ϕ2
3 ϕ3ϕ4 ϕ2

4

Q1 Q2 Q3 Q4 Q5

Q6 Q7 Q8 Q9 Q10

Figure 7: Standard Laplacian eigenfunctions (blue), eigenproducts
(red, in lexicographic order) and orthonormalized eigenproducts
(green) on the real line [0,T ].

ζ1 ζ2 ζ2 ζ3 ζ4

ϕ2
1 ϕ1ϕ2 ϕ1ϕ3 ϕ1ϕ4 ϕ2

2

ϕ0 ϕ1 ϕ2 ϕ3 ϕ4

Figure 8: Top to bottom: first five Laplacian eigenfunctions, first
five eigenproducts, and the orthogonalized eigenproducts.

numerical inaccuracies occurring in the computation of the repre-
sentation tend to propagate when the function is mapped to a dif-
ferent domain, producing local scale errors; see Figure 9 and the
experimental section for examples.

Transfer. In a similar spirit as [NMR∗18], where the authors ex-
tend the notion of functional map to eigenproducts, we also provide
a way to compute a transfer matrix for our orthogonal bases.

Let us be given a functional map matrix C between two shapes
M and N , and let us assume a manifold-independent ordering
of the eigenproducts (e.g., a lexicographic ordering on the indices
of the factors). We then have an ordered set of P eigenproducts
Φ̃ΦΦ = {ϕI1 , · · · ,ϕIP} onM, and similarly Ψ̃ΨΨ on N . After orthonor-

© 2021 The Author(s)
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Source Target eigs prods ours ours*

Figure 9: Function transfer example on two pairs from the FAUST
[BRLB14] dataset. The adoption of eigenproducts as in [NMR∗18]
(denoted as prods) yields local scale artifacts (knee and neck in the
first row) or loss of high frequency details (arms in the second row).
With the standard eigenbasis (eigs), K eigenfunctions are simply
not enough to capture the frequency content of the transferred sig-
nal. In the bottom row, the second variant of our method (ours*)
achieves almost perfect reconstruction.

malization, we get a new set of functions in the form:

ζi(x) = ϕIi(x)−
i−1

∑
j=1

〈
ϕIi , ζ j

〉
M ζ j(x) . (15)

By Equation (7), matrix C maps each eigenfunction ϕi onM to
a linear combination ∑

K
j=1 c j,iψ j of eigenfunctions on N . Assume

for now that TF (ΦΦΦ)=ΨΨΨC is a strict equality. Further, for the sake of
simplicity, we limit the exposition to second-order products, but the
process can be iterated and generalized to any higher order. Each
eigenproduct ϕI onM is the product between two eigenfunctions
ϕi and ϕ j. When we consider the mapping induced by C, we get:

ϕI(x) = ϕi(x)ϕ j(x) =

(
K

∑
h=1

ch,iψh(x)

)(
K

∑
p=1

cp, jψp(x)

)
=

=
K

∑
h,p=1

ch,icp, jψh(x)ψp(x) .

(16)

Thus, the coefficients for transferring products are fully determined
by the coefficients for transferring eigenfunctions, as also shown
in [NMR∗18]. Hence, one can compute a matrix C̃(C), depending
only on C, such that TF (Φ̃ΦΦ) = Ψ̃ΨΨC̃.

Going one step further, we extend matrix C̃ to a new matrix O
that can correctly transfer the orthonormalized basis. We proceed
as follows. In general, given a set of vectors B = (b1, . . . ,bn) with
n elements and rank 1 ≤ r ≤ n, GS produces an orthogonal basis
Q = (q1, . . . ,qr) with r elements, spanning the same space as B. A

side-product is the r×n upper triangular matrix R = (ri, j):

R = (ri, j) =




〈q1, b1〉 〈q1, b2〉 · · · 〈q1, bn〉
0 〈q2, b2〉 · · · 〈q2, bn〉
...

. . . · · ·
...

0 0 · · · 〈qr, bn〉


 , (17)

such that QR = B.

Applied to the sets of eigenproducts Φ̃ΦΦ and Ψ̃ΨΨ, we get the factor-
izations Φ̃ΦΦ = QΦRΦ and Ψ̃ΨΨ = QΨRΨ.

Since QΦ and QΨ span the same space as Φ̃ΦΦ and Ψ̃ΨΨ, assum-
ing there exists a meaningful mapping between ΦΦΦ and ΨΨΨ, it makes
sense to search for a mapping between QΦ and QΨ. Thus, we seek
for a matrix O such that:

TF (QΦ) = QΨO . (18)

By the factorization above, we can equivalently rewrite TF (Φ̃ΦΦ) =
Ψ̃ΨΨC̃ as TF (QΦ)RΦ = QΨRΨC̃; plugging in Equation (18) and sim-
plifying, we get:

ORΦ = RΨC̃ . (19)

Since RΦ is full row-rank, it has a right inverse R>Φ
(

RΦR>Φ
)−1

.
Thus, if we have access to the bases on both manifolds, we can
directly compute O as

O = RΨC̃R>Φ
(

RΦR>Φ
)−1

. (20)

For small enough order N and number of eigenfunctions K, the set
of eigenproducts is likely to be full-rank (see Figure 6 for an em-
pirical assessment); in this case, RΨ is a square invertible matrix,
leading to:

O = RΨC̃R−1
Φ

, (21)

and since RΨ is upper triangular, its inverse can be computed effi-
ciently.

We also derive the following alternative formula to compute it-
eratively the columns of O depending only on the matrices C̃, RΦ,
and RΨ:

TF (ζi) =
1

(RΦ)i,i

(
∑

j
(∑
l=1

(RΨ) j,l c̃l,i−
i−1

∑
h=1

(RΦ)i,ho j,h)

︸ ︷︷ ︸
o j,i

ξ j

)
.

(22)
We report the full derivation of this formula in the supplementary
materials. In both Equations (20) and (22), we have an explicit for-
mula to compute O directly from C̃, and thus, from C.

3.4. Implementation details

Despite their simplicity, the analytic solutions we introduced above
can be unstable as they rely on the hypothesis that C maps per-
fectly the source eigenbasis onto the target, TF (ΦΦΦ) = ΨΨΨC. If the
equality is not exact, we observed a quick degradation in accuracy.
Moreover, in the iterative process of Equation (22), the error ac-
cumulates at each iteration. We highlight this issue in Figure 10
(left), by evaluating the error obtained in the estimation of O us-
ing the formula (20) while we increasingly add white noise to the
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Figure 10: Left: Error generated by Equation (20) (red curve) at
increasing random noise on the matrix C. We show the error for the
functional map as a reference (blue curve). Right: Error induced
by the analytic expression of O in transferring the orthogonal ba-
sis onto the target shape at increasing number of eigenfunctions.
Each curve represents a different ratio between the number KN of
eigenfunctions on the target and the number KM on the source.

coefficients stored in the map C. We compute the relative error as
the Frobenius norm of the difference between TF (ΦΦΦ) and ΨΨΨC and
the difference between TF (QΦ) and QΨO. The latter difference in-
creases quickly when the former grows. Moreover, the accuracy of
the transfer matrix O decreases as we increase K; we show this in
Figure 10 (right), by plotting the error for different dimensions of
the source and target bases. To solve these issues, we propose a dif-
ferent strategy to recover the transfer matrix O. Being O a function
of C̃ (and so of C), we make the educated guess that it is enough
to align the first K eigenfunctions to obtain a sufficiently precise
transfer matrix. To implement this idea, we proceed as follows:

1. We solve for the best permutation Π as the solution of a nearest
neighbor assignment problem between Ψ̃ and Φ̃C̃>;

2. We estimate O as the solution in the least-squares sense of
QΨO = ΠQΦ.

This process is equivalent to extracting a point-to-point map from
a given functional map as in [OBCS∗12], and then converting the
point-to-point map to a new matrix with respect to different bases.
Since our basis can be completely derived from the first K eigen-
functions (with respect to which the matrix C is encoded), we ex-
pect the estimated Π to contain enough information for estimating
an accurate O. By virtue of our analysis on the space spanned by the
set of eigenproducts, we only need a small number of eigenfunc-
tions K ≈ 12, which ensures an easier optimization for the func-
tional maps. It is worth to stress that this process is more feasible
than extracting a point-to-point map directly from the orthogonal-
ized basis, since we extract the map from just K eigenfunctions,
rather than searching for a match between two sets ofO(KN) basis
functions. This is even more efficient than fast refinement methods
like ZOOMOUT [MRR∗19], since we do a one-shot computation,
rather than iterating on large bases one function at a time.

Dependency on the first K eigenfunctions. The i-th (for i > K)
orthogonalized eigenproduct can be explicitly formulated in terms
of the first K eigenfunctions. This is not true when we consider a
basis of K∗ > K Laplacian eigenfunctions. Thus, it is reasonable to
think that, starting from a functional map C for the first K eigen-
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Figure 11: Comparison in the estimation of the transfer matrix di-
rectly from the point-to-point map extracted from C̃. Left: an exam-
ple pair with different connectivity. Right: error curves vs. size of
the initial matrix C, averaged over 20 random FAUST pairs.

functions, we can handle the orthonormalized products basis better
than the standard Laplacian eigenbasis.

To test this claim, we apply the same strategy of computing our
transfer matrix O to estimate a functional map C∗ between eigen-
functions with the same cardinality as our bases. In Figure 11, for
products of order N = 3 we compare the estimation of the two ma-
trices varying the size K of the initial functional map C (x-axis).
The error (y-axis) is defined as the relative Frobenius norm between
the estimated and the ground-truth matrix. We report the error for
the initial functional map C for comparison. In this test, the shapes
do not share the same connectivity, as we remesh one of the two to
5k vertices. The errors for O and O∗ are stable and comparable to
the error of C, while the error for the functional map C∗ increases
when K grows. This shows that it is possible to directly estimate O
accurately from the point-to-point map extracted from C.
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Robustness to noise. We add an in-
creasing amount of white noise (x-axis)
to an input ground-truth functional map
C, and extract the transfer matrix O.
Then we compare the error in the trans-
fer of the coordinate functions for K
eigs, prods, ours and ours*. The curves
in the inset figure show that our method
is less sensitive to noise. These results
are averaged on 20 random FAUST pairs, remeshed as in Figure 11.
In Figure 12, we show a qualitative result under maximum noise.
The corrupted map generates visible distortion in the transfer for
both K eigs and prods, while the proposed method remains stable.

4. Experimental results

We evaluate the performance of our basis in tasks of surface filter-
ing, signal approximation and transfer. For all the tasks we compare
with [NMR∗18], and also report the results of taking a linear com-
bination of NK eigenfunctions and of

(K+N
N
)

eigenfunctions.

We also investigate the numerical stability of GS, which may
produce non-orthogonal vectors with large, non full-rank input
bases, since linearly dependent functions must be discarded from
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Source Ground truth K eigs prods ours ours*

Figure 12: Comparisons on function transfer with noise.

source target K eigs NK eigs prods ours*

Figure 13: Detail transfer with our orthogonalized eigenproducts
from a textured shape to another. The geometric details on the tar-
get are replaced correctly with those of the source shape.

the final set. This is done by thresholding small inner products.
We consider (i) a direct implementation with a permissive thresh-
old (10−2) for the identification of linearly dependent vectors (de-
noted by Ours), and (ii) a reiterated variant, with a strict thresh-
old (10−9), which enforces orthogonality (Ours*). The two ap-
proaches may output very different bases, which are shown by
experiments to be suitable in different applications. In particular,
Ours is more numerically stable, therefore more suitable for trans-
ferring signals in general (Tables 2 to 4). On the other hand, Ours*
sacrifices numerical stability for more descriptive power, which can
be useful for spectral filtering (Figures 14 and 15), reconstruction
(Figure 17), detail transfer (Figure 13), or transfer between very
different subjects (Table 6).

The code is available at a public repository on GitHub‡.

4.1. Detail transfer

In Figure 13, we highlight the representation power of the proposed
basis by transferring fine geometric details (encoded as vertex coor-
dinates) from a source shape to a target. For the first pair of shapes,
we use products of order N = 3 of the first KM = 30 eigenfunctions
on the source shape and KN = 40 on the target. For the second pair,
we still use products of order N = 3, but we limited the number of
eigenfunctions to KM = 27 on the source shape and KN = 30 on
the target to show the result with a different set of parameters. The
standard eigenfunctions cannot represent the details even with NK
eigenfunctions, while prods [NMR∗18] only approximates the de-
tails. Instead, our basis fulfils the task with good accuracy.

‡ https://github.com/filthynobleman/orthogonalized-fourier-polynomial

0 max0
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Filters

Source prods ours*

Figure 14: Filtering the coefficients of the vertex coordinates rep-
resented in the set of eigenproducts (middle) and in our orthogonal
basis (right). We use a smoothing filter (blue curve, top row) and
a sharpening filter (red curve, bottom row). Eigenproducts are not
easy to control and do not provide meaningful variations, while our
representation leads to the expected results.

pr
od

s
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*

Figure 15: Stability of spectral filtering. From left to right, we grad-
ually increase by ε only one coefficient in the spectral representa-
tion of the vertex coordinates; we use the same ε for both rows.
While the reconstruction using eigenproducts degenerates quickly,
ours yields a more stable and meaningful deformation.

4.2. Spectral filtering

Since the eigenproducts of [NMR∗18] are not linearly independent
and do not provide a unique representation for a given signal, it is
hard to design operations on the signal coefficients along the lines
of spectral filtering approaches such as [VL08]. To demonstrate
this, we run a test where we process vertex coordinates with sim-
ple filters (Figure 14): a smoothing filter that suppresses the high
frequencies, and an enhancement filter that suppresses the lower
portion of the spectrum. As a second test, in Figure 15 we contin-
uously change a single coefficient in the spectral representation of
the vertex coordinates, and then reconstruct the resulting geometry.
While our basis can recover a meaningful smooth deformation of
the original geometry, the plain eigenproducts rapidly degenerate
to a flat shape. All these experiments are performed using products
of order 3 on the first 15 eigenfunctions.

4.3. Function approximation

In a discrete setting, computing K Laplacian eigenfunctions boils
down to solving an eigenproblem for a sparse symmetric n× n
matrix, which has complexity O(Kn2) [Ste02]. This is prohibitive
for high resolution meshes and for large K, which is required to
capture fine details. Using eigenproducts for the representation as
in [NMR∗18] can lead to big accuracy improvements, at the cost
of increased numerical instability as discussed above. By contrast,
our orthonormal basis leads to more stable and accurate results.

© 2021 The Author(s)
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Source K eigs prods ours ours*

Figure 16: Reconstruction of a RGB signal using K = 100 eigen-
functions and order-2 products. We compare the reconstruction
quality using K eigenfunctions, the eigenproducts of [NMR∗18],
and our two methods based on the orthogonalized basis.

K prods ours NK
(K+N

N
)

HK k 0.0% 0.0% 0.0% 0.0% 0.0%
HK K 75.8% 18.1% 13.7% 61.1% 0.0%
HKS 1.1% 0.0% 0.0% 0.4% 0.0%
WKS 14.1% 0.0% 0.0% 5.7% 0.1%
Rand 37.5% 33.8% 33.5% 37.2% 33.4%
XYZ 15.2% 2.0% 1.7% 7.6% 0.8%
Ind 29.2% 12.5% 12.2% 23.6% 11.4%

SHOT 66.8% 35.4% 33.8% 58.8% 28.9%
AWFT 12.5% 5.9% 5.8% 10.5% 4.2%

Table 1: Reconstruction error of our method compared to the ap-
proach from [NMR∗18] (prods) and just taking linear combinations
of K eigenfunctions (K). As ideal references, we also report the
results obtained via linear combinations of NK and

(K+N
N
)

eigen-
functions, which are prohibitive to compute on large shapes. Here,
we used K = 30 and N = 2.

In Table 1 we compare with the standard eigenfunctions and the
eigenproducts of [NMR∗18] in terms of reconstruction error, mea-
sured as (

∫
M( f − f̃ )2)

1/2/(
∫
M f 2)

1/2, where f is the original sig-
nal and f̃ is its reconstruction. We consider the same families of
functions as in [NMR∗18]. Namely, HK k, HK K: the heat ker-
nel between a random point and the rest of the shape approxi-
mated using 200 and K eigenfunctions respectively. HKS, WKS:
the heat and wave kernel signatures [SOG09, ASC11]. Rand: ran-
dom functions. XYZ: vertex coordinates. Ind: the binary indica-
tor function of a random region. SHOT, AWFT: local descriptors
[TSDS10, MRCB16].

Moving to an orthonormal basis brings additional regularization,
leading in turn to an increase in quality. Both our orthogonal basis
and the plain eigenproducts produce much better results than those
obtained with K or even NK eigenfunctions. The two methods can,
in most cases, compete with the approach of using

(K+N
N
)

eigen-
functions, without incurring in the prohibitive cost of computing a
massive number of eigenfunctions (in the order of O(KN)). Qual-
itative results on this task are shown in Figures 1 and 17 for the
coordinate functions (XYZ), and in Figure 16 for a RGB signal.

4.4. Function transfer

We evaluate the transfer task on several datasets, differing in terms
of mesh quality, resolution, regularity, and deformation type (isom-
etry or lack thereof). We consider the same set of functions used for
this experiment in [NMR∗18]. As a reference, we also report the re-

Source

50 eigs 100 eigs

prods ours ours*

Source

18 eigs 54 eigs

prods ours ours*

Figure 17: Coordinate reconstruction of two shapes. With N-th or-
der products of K eigenfunctions, the eigenproducts and the or-
thogonal basis get better results than NK eigenfunctions, and start
to catch some details from the surface. A lower threshold in the or-
thogonalization process produces a more descriptive basis, in these
cases. Here we use N = 2,K = 50 for the statue and N = 3,K = 18
for the dancing children.

sults obtained with linear combinations of NK standard eigenfunc-
tions. For each method, we compute the functional map matrix C
with the method of [NO17]. As an error measure, we report the nor-
malized error (

∫
N ( fgt− f̃ )2)

1/2/(
∫
N f 2

gt)
1/2, where fgt is the ground

truth signal on the targetN and f̃ is the transferred counterpart.

Near-isometries (synthetic). For synthetic near-isometric meshes
we use 10 random pairs from TOSCA [BBK08]; Table 2 sum-
marizes the comparisons, showing a 5–25% improvement over
[NMR∗18]. Using third-order products allows to successfully
transfer the 46-th eigenfunction by using only 15 eigenfunctions
on the source and 18 on the target shape, as shown in Figure 18.

Non-isometries (real humans). Comparisons are favorable also
when considering more realistic non-isometric shapes, where we

© 2021 The Author(s)
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K prods ours ours* NK

HK k 70.3% 64.4% 50.9% 52.0% 17.7%
HK K 78.4% 61.3% 52.8% 55.9% 56.4%
HKS 12.0% 10.4% 5.5% 5.6% 5.9%
WKS 29.3% 22.0% 10.6% 10.8% 17.7%
Rand 50.7% 54.8% 49.9% 50.0% 50.8%
XYZ 40.6% 44.5% 32.4% 33.2% 21.3%
Ind 47.7% 51.2% 27.2% 24.8% 35.9%

SHOT 74.6% 73.3% 65.4% 65.3% 67.0%
AWFT 31.4% 35.4% 23.8% 24.2% 22.9%

Table 2: Transfer error comparison on 10 isometric pairs from
TOSCA. The parameters are N = 3 and KM = KN = 12.

Source

Target

eigs prods

ours ours*

Figure 18: Transferring a high-frequency eigenfunction that is out
of the span of the truncated Laplacian eigenbasis. Projecting onto
the latter yields a zero signal due to orthogonality, while eigenprod-
ucts and our orthogonal basis can transfer it more precisely. Here
we used KM = 15 eigenfunctions on the source shape, KN = 18
on the target shape, and N = 3 (third-order products).

use 20 random pairs from the FAUST [BRLB14] dataset of real
scans. Each pair is simultaneously inter-class and inter-pose. Ta-
ble 3 summarizes the results. On this dataset, we select K and N as
in [NMR∗18] for a direct comparison.

K prods ours ours* NK

HK k 28.0% 27.4% 26.6% 27.1% 22.5%
HK K 66.7% 51.3% 46.4% 46.4% 56.3%
HKS 8.1% 12.3% 6.6% 6.7% 8.2%
WKS 16.7% 15.5% 11.4% 11.6% 12.3%
Rand 49.9% 51.0% 49.6% 50.5% 50.0%
XYZ 21.3% 21.9% 19.5% 20.0% 19.5%
Ind 36.4% 33.7% 30.1% 30.2% 31.4%

SHOT 76.6% 75.1% 73.7% 76.3% 70.7%
AWFT 15.1% 18.3% 13.4% 13.9% 14.7%

Table 3: Transfer error comparison on 20 inter-class pairs from
FAUST. Here N = 2, KM = 30 and KN = 40.

Source Target eigs prods ours ours*

Figure 19: RGB signal transfer comparison on a pair from the
SHREC’19 dataset. Our approach better transfers the fine details.
In this example, the noise in the ground truth correspondence due
to wildly different meshings is enough to produce local distortion
in the function transfer, but our approach remains stable and pro-
duces a smooth correspondence.

Near-isometries (different meshing). We further evaluate the set-
ting where the shapes have a wildly different vertex count and con-
nectivity. For these tests, we take 10 random pairs from SHREC’19
[MMR∗19]; the results are reported in Table 4 and highlight how,
under a different connectivity, even using a large eigenbasis incurs
into issues (NK column), whereas our method still gives stable re-
sults. Note that when a mesh in a pair is undersampled with re-

K prods ours ours* NK

HK k 27.9% 29.3% 26.2% 26.4% 30.4%
HK K 79.9% 67.4% 62.7% 62.8% 75.8%
HKS 12.6% 17.5% 10.7% 10.8% 13.7%
WKS 25.4% 21.6% 18.5% 18.6% 22.4%
Rand 50.8% 52.8% 50.2% 50.4% 51.5%
XYZ 30.5% 30.2% 29.2% 29.6% 30.8%
Ind 41.0% 38.2% 34.8% 35.7% 36.6%

SHOT 66.3% 66.0% 62.8% 64.7% 64.8%
AWFT 24.6% 28.0% 21.4% 21.6% 25.6%

Table 4: Transfer error comparison on 10 non-isometric pairs
(with very different connectivity) from SHREC’19, with N = 2,
KM = 30 and KN = 40.

spect to the other, the ground-truth correspondence is patchy and
low-quality. Figure 19 shows how our approach can still produce a
higher quality transfer.

Non-isometries (different animals). We extend our comparison
to the recent dataset SHREC’20 [DLR∗20], composed by 30 pairs
divided in 5 different test-sets (1 partial-to-full and 4 full-to-full
shape with 4 different levels of isometry: highest, high, low, low-
est). In total, 14 different shapes are involved with different con-
nectivity, topological errors and missing parts. A set of ∼50 sparse
ground truth correspondences are provided for the evaluation. Due
to the impossibility of retrieving a dense ground truth, here we mea-
sure the average absolute error | fgt − f̃ | on the sparse landmarks
only. In Table 5, we show that the proposed method transfers func-
tions between these animals better than the competitors. A qualita-
tive visualization is given by the RGB transfer results in Figure 2.

Non-isometries (different semantic class). Finally, we address
the difficult setting where the shapes belong to different classes. We
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K prods ours ours* NK

HK k 12.2% 15.8% 15.2% 13.0% 14.8%
HK K 4.4% 5.9% 5.3% 3.2% 4.8%
HKS 26.6% 30.9% 23.6% 23.6% 26.7%
WKS 19.2% 25.1% 17.7% 17.7% 19.9%
Rand 26.8% 40.4% 27.2% 25.2% 26.9%
XYZ 18.1% 51.5% 11.9% 7.4% 20.4%
Ind 21.0% 26.1% 20.4% 18.6% 22.1%

SHOT 10.4% 15.8% 12.6% 11.3% 10.7%
AWFT 18.8% 30.8% 20.4% 18.3% 19.6%

Table 5: Transfer error comparison for SHREC’20, averaged on
the 5 test-sets (30 pairs with different levels of non-isometry, topo-
logical errors and missing parts), with N = 3, KM = 12, KN = 12.
The values are multiplied by 102 to help the comparison.

use the MISC dataset [MOR∗18] with 10 random pairs in random
poses for a woman, a man and a gorilla; a sparse correspondence
between ∼10% of the vertices is given. The results reported in Ta-
ble 6 show that, with orthogonalized third-order eigenproducts, we
are still able to transfer functions with high accuracy. Having only
a sparse ground truth correspondence, we use the same error mea-
sure of SHREC’20. We want to stress that, by using this measure,
the values shown in Tables 5 and 6 must be interpreted differently
from those shown in Tables 2 to 4. The error, here, is not relative,
and depending on the availability of landmarks, it can have higher
of lower values. However, this does not affect the comparison, since
all the methods are compared under the same conditions. In Figure
20, we show a qualitative result for a pair of non-isometric shapes.

K prods ours ours* NK

HK k 11.0% 10.6% 12.0% 9.2% 8.7%
HK K 3.1% 3.7% 2.9% 2.1% 3.2%
HKS 5.8% 6.2% 5.4% 5.4% 9.6%
WKS 11.0% 8.2% 7.3% 7.3% 9.3%
Rand 25.4% 28.6% 25.2% 25.4% 25.9%
XYZ 20.1% 21.1% 19.5% 19.2% 18.1%
Ind 10.9% 10.1% 8.0% 6.9% 11.3%

SHOT 0.2% 0.2% 0.2% 0.2% 0.2%
AWFT 5.9% 7.8% 6.5% 6.3% 5.6%

Table 6: Transfer error comparison on 10 strongly non-isometric
pairs from MISC. In this setting, N = 3 and KM = KN = 12.

5. Conclusions

In this paper, we proposed a new orthonormal basis based on the
pointwise products of the eigenfunctions of the Laplace-Beltrami
operator. We provided a theoretical analysis of the properties car-
ried by this basis, and assessed its practical value in different set-
tings and applications. In particular, orthogonalization yields a no-
table improvement over prior work [NMR∗18] in terms of compu-
tational complexity and expressive power.

Source

Target

eigs prods

ours ours*

Figure 20: Example of function transfer on the MISC dataset. The
ground truth on the target is only shown for the given landmarks.

Limitations and future work. Perhaps the main limitation of
our approach lies in the pipeline for function transfer, where we
strongly depend on the quality of the given functional map. If the
method for building this map is not stable, the behavior of the
orthogonal basis can be unpredictable. Furthermore, currently we
need to rely on a point-to-point map in order to compute the trans-
fer matrix, since our analytical derivations are not stable. Directly
estimating this matrix without resorting to point-to-point conver-
sion, is an important direction that we intend to explore. Another
possible avenue for future research is to extend our construction
to accommodate different definitions of products, for a more ef-
ficient and accurate representation for surface signals. Finally, we
will explore the adoption of our basis in existing pipelines, such
as ZOOMOUT [MRR∗19], which are basis-agnostic and allow to
extend this work to a number of other tasks.
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Appendix A: Proofs

Laplacian of a product

We want to show that, given a function f (x) = ∏
n
i=1 fi(x), the ap-

plication of the Laplace-Beltrami operator results in

∆ f (x)=
n

∑
i=1

n

∏
j=1
j 6=i

f j(x)∆ fi(x)−
n

∑
i, j=1
i6= j

n

∏
h=1

h 6=i, j

fh(x)〈∇ fi(x),∇ f j(x)〉 (23)
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We show it by induction, with the base case given by Equation (3)
for n = 2. Assuming this true up to n−1, for g = ∏

n−1
i=1 fi we have

∆ f (x) = fn(x)∆g(x)+g(x)∆ fn(x)−2〈∇ fn(x), ∇g(x)〉 (24)

The first term expands to

n−1

∑
i=1

n

∏
j=1
j 6=i

f j(x)∆ fi(x)−
n−1

∑
i, j=1
i 6= j

n

∏
h=1

h 6=i, j

fh(x)
〈
∇ fi(x), ∇ f j(x)

〉
, (25)

while the second term is ∏
n−1
i=1 fi(x)∆ fn(x), and the third term is

−2
n−1

∑
j=1

n

∏
h=1

h 6= j,n

fh(x)
〈
∇ f j(x), ∇ fn(x)

〉
(26)

By adding these all together, we finally get back Equation (23).

Proof of Theorem 3.1

Proof For simplicity, we assume ‖ϕI‖2 = 1. Also, to keep the equa-
tions more readable, we will abuse of our notation. When we iterate
over multiple indices and we indicate i 6= j we do not mean that in-
dex i must be necessarily different from index j (since eigenprod-
ucts can involve the same eigenfunction multiple times), but that
we cannot pick the i-th index two times.

By observing that

∆ϕI(x) = ∑
ii∈I

λii ϕI(x)− ∑
i, j∈I
i 6= j

∏
h∈I

h 6=i, j

ϕh(x)
〈
∇ϕi(x), ∇ϕ j(x)

〉
(27)

and by knowing 〈∇ f , ∇g〉T (M) = 〈 f , ∆g〉M, we easily get

E (ϕI) = ∑
i∈I

λi− ∑
i, j∈I
i 6= j

∫
M

∏
h∈I
h 6=i

ϕh(x) ∏
p∈I
p 6= j

ϕp(x)
〈
∇ϕi(x), ∇ϕ j(x)

〉
dx

(28)
Now, let us consider the following terms:

∑
i∈I

∫
M

∏
j∈I
i 6= j

ϕ
2
j(x)〈∇ϕi(x), ∇ϕi(x)〉dx . (29)

Since the integrands are always non-negative, the whole sum is
non-negative. Hence, we can give a lower bound to Equation (28):

E (ϕI)≥∑
i∈I

λi− ∑
i, j∈I

∫
M

∏
h∈I
h 6=i

ϕh(x) ∏
p∈I
p 6= j

ϕp(x)
〈
∇ϕi(x), ∇ϕ j(x)

〉
dx

(30)
The second term is the Dirichlet energy of ϕI . In fact, we have:

E (ϕI) = 〈∇ϕI , ∇ϕI〉T (M) =

= ∑
i, j∈I

〈
∏
h∈I
h 6=i

ϕh∇ϕi, ∏
p∈I
p6= j

ϕp∇ϕ j

〉

T (M)

=

= ∑
i, j∈I

∫
M

∏
h∈I
h6=i

ϕh(x) ∏
p∈I
p 6= j

ϕp(x)
〈
∇ϕi(x), ∇ϕ j(x)

〉
dx

(31)

By plugging it into Equation (30), we get:

E (ϕI)≥∑
i∈I

λi−E (ϕI) , (32)

which results in the claim.

Consider now the special case of ϕI = ϕ
n
i . In this case, all the inte-

grals in Equation (28) are equal and can be written as∫
M

〈
ϕ

n−1
i (x)∇ϕi(x), ϕ

n−1
i (x)∇ϕi(x)

〉
dx (33)

which, recalling 1
α
∇ f α(x) = f α−1(x)∇ f (x), gives∫

M

∥∥∥ϕ
n−1
i (x)∇ϕi(x)

∥∥∥
2

dx =
1
n2

∫
M

∥∥∇ϕ
n
i (x)

∥∥2 dx =
1
n2 E

(
ϕ

n
i
)

(34)
Since in Equation (28) there is a sum over i 6= j, we have a total of
n(n−1) of these terms. Hence, we are left with

E
(
ϕ

n
i
)
= nλi−

n−1
n
E
(
ϕ

n
i
)

(35)

which, with simple algebraic manipulations, leads to

E
(
ϕ

n
i
)
=

n2

2n−1
λi . (36)

Proof of Corollary 3.1.1

Proof We know that the set of eigenproducts contains all the eigen-
powers, and in particular ϕ

N
K ∈ Φ̃ΦΦ. Thus, the following holds:

max
ϕI∈Φ̃ΦΦ

{E (ϕI)} ≥ E
(

ϕ
N
K

)
=

N2

2N−1
λK . (37)

By Weyl’s asymptotic law for 2-dimensional manifolds we have
λK ∈ Θ(K), therefore E

(
ϕ

N
K

)
∈ Θ(NK). Since the maximum

Dirichlet energy is lower bounded by this value, it must be that
max

ϕI∈Φ̃ΦΦ
{E (ϕI)} ∈Ω(NK).

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.


