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Abstract

We study the problem of multi-armed bandits with ϵ-global Differential Privacy
(DP). First, we prove the minimax and problem-dependent regret lower bounds for
stochastic and linear bandits that quantify the hardness of bandits with ϵ-global
DP. These bounds suggest the existence of two hardness regimes depending on the
privacy budget ϵ. In the high-privacy regime (small ϵ), the hardness depends on
a coupled effect of privacy and partial information about the reward distributions.
In the low-privacy regime (large ϵ), bandits with ϵ-global DP are not harder than
the bandits without privacy. For stochastic bandits, we further propose a generic
framework to design a near-optimal ϵ-global DP extension of an index-based
optimistic bandit algorithm. The framework consists of three ingredients: the
Laplace mechanism, arm-dependent adaptive episodes, and usage of only the
rewards collected in the last episode for computing private statistics. Specifically,
we instantiate ϵ-global DP extensions of UCB and KL-UCB algorithms, namely
AdaP-UCB and AdaP-KLUCB. AdaP-KLUCB is the first algorithm that both
satisfies ϵ-global DP and yields a regret upper bound that matches the problem-
dependent lower bound up to multiplicative constants.

1 Introduction

Multi-armed bandit problems, in short bandits, are a model for sequential decision-making with
partial information (Lattimore and Szepesvári, 2018). In bandits, a learner sequentially interacts
with an environment, which is a set of unknown distributions (or arms or actions), over T ∈ N
steps. T is referred to as the horizon. At each step t ∈ {1, . . . , T}, the learner chooses an arm At
from {1, . . . ,K} and the environment reveals a reward rt from the distribution νAt

. The learner’s
objective is to maximise its cumulative reward

∑T
t=1 rt. An equivalent performance metric for

a bandit algorithm π is regret. Regret is the difference between the expected cumulative reward
collected by pulling the optimal arm a∗ for T times and the expected cumulative reward obtained
by using π. Regret is the price paid by the bandit algorithm due to partial information about the
reward distributions. The goal of a bandit algorithm is to minimise its regret. Bandits, introduced
in (Thompson, 1933) for medical trials, are widely studied and deployed in real-life applications,
such as online advertising (Schwartz et al., 2017), recommendation systems (Silva et al., 2022)
and investment portfolio design (Silva et al., 2022). Sensitive data of individuals, such as health
conditions, personal preferences, financial status etc., are utilised in these applications, which raises
the concern about privacy.

Example 1. In bandit-based recommendation systems, the learning algorithm selects an item for
each user. The user decides whether or not to click the recommendation. Based on the click feedback,
the bandit algorithm improves its subsequent recommendations. Here, an action corresponds to an
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item and a reward corresponds to whether a user clicks on the item (1) or not (0). A change in a
user’s preference prompts changes in the algorithm’s output. As a result, even if the click feedback
is kept private, the user’s private information, i.e. their preference over items, is revealed. Privacy
protection aims to prevent the algorithm’s output from revealing the preferences of any specific user.

This example demonstrates the need for privacy in bandits. In this paper, we use Differential Privacy
(DP) (Dwork and Roth, 2014) as the framework for privacy. DP ensures that an algorithm’s output is
unaffected by changes in input at a single data point. By limiting the amount of sensitive information
that an adversary can deduce from the output, DP renders an individual corresponding to a data point
‘indistinguishable’. A calibrated amount of noise is injected into an algorithm to ensure DP. The noise
scale is set to be proportional to the algorithm’s sensitivity and inversely proportional to the privacy
budget ϵ.

To address the privacy issues in bandit applications, the problem of Differentially Private Bandits is
coined and studied under different settings, such as stochastic bandits (Mishra and Thakurta, 2015;
Tossou and Dimitrakakis, 2016; Sajed and Sheffet, 2019; Hu et al., 2021), adversarial bandits (Tossou
and Dimitrakakis, 2017), and linear contextual bandits (Shariff and Sheffet, 2018; Neel and Roth,
2018). Also, multiple adaptations of DP, namely local and global, are proposed for bandits (Basu
et al., 2019). Local DP aims to preserve the privacy of the sequence of rewards obtained by sending
noisy rewards to the algorithm (Duchi et al., 2013). Global DP allows the algorithm to access rewards
without noise and aims to keep the sequence of rewards private while only the sequence of actions
taken by the algorithm is produced to the public (Basu et al., 2019). Though local DP provides
stronger privacy as the data curator has no access to the original reward stream, it injects too much
noise that leads to higher regret. Also, the fundamental hardness of local DP in bandits in terms of
regret lower bound and also corresponding optimal algorithms are well-understood (Zheng et al.,
2020). Thus, in this paper, we focus on the bandit problems with ϵ-global DP. We aim to address two
questions:

1. What is the fundamental hardness of differentially private bandits with global DP expressed in
terms of the regret lower bound?

2. How to design an algorithmic framework that converts an optimistic and near-optimal bandit
algorithm into a near-optimal bandit algorithm satisfying global DP?

Our Contributions. These questions have led to the following contributions:

1. Hardness as Lower Bounds: We derive both the minimax (worst-case) and problem-dependent
lower bounds on the regret of bandits with ϵ-global DP for stochastic bandits (Thm. 2 and 3, Sec. 3).
Both the bounds show that the hardness depends on a trade-off between the privacy budget ϵ and
the distinguishability gap of a bandit environment. If the ϵ is bigger than the distinguishability
gap, a bandit with global DP is not harder than a non-private bandit problem. Additionally, our
problem-dependent regret lower bound (Thm. 3) provides a novel observation that the difficulty of
a bandit problem with global DP depends on the TV-indistinguishability gap (tinf , Thm. 3). This
was not known in the regret lower bound in (Shariff and Sheffet, 2018), where the privacy dependent
term in regret, i.e. K log(T )

ϵ is independent of the hardness of the bandit instance. Our lower bounds
explicates this missing link between the interaction of privacy and partial information. We also
extend our techniques to derive the lower bounds for linear bandits with a finite number of arms
(Thm. 4 and 5). These lower bounds also reflect the same transition of hardness depending on ϵ and
distinguishability gaps.

2. Algorithm Design: Optimistic bandit algorithms used the empirical mean and variance of observed
rewards to compute indexes and use them to select an action. We propose three fundamental strategies
to design a private bandit algorithm from an optimistic algorithm (Sec. 4)– a) add Laplacian noise to
the empirical mean of each arm calibrated by the corresponding sensitivity, b) use adaptive episodes
to compute the private empirical mean less number of times, and c) use only the observed rewards of
the arm’s last active episode1 and forget everything before to keep the sensitivity of the empirical
mean low. We deploy these techniques with UCB (Auer et al., 2002) and KL-UCB (Garivier and
Cappé, 2011) algorithms for non-private bandits to propose two near-optimal and ϵ-global DP bandit
algorithms, AdaP-UCB and AdaP-KLUCB (Sec. 4). Both of these algorithms achieve near-optimal
problem-dependent regret and also reflect a transition in hardness from a low to a high privacy regime

1The last active episode of an arm is the last episode in which that arm was played.
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(Thm. 7 and 8). Both theoretical (Table 1) and experimental (Sec. 5) results demonstrate optimality
of AdaP-KLUCB than existing algorithms.

3. Technical Tools: (a) To derive the lower bound, we extend the Karwa-Vadhan lemma (Lemma
6.1, (Karwa and Vadhan, 2017)) to the sequential setting (Lemma 2). (b) We present a novel sequential
information processing lemma under ϵ-global DP (Thm. 10) that controls the difference between
the outcome streams of a differentially private policy when interacting with two different bandit
instances. (c) This leads to a generic proof structure, utilised to generate refined regret lower bounds
under ϵ-global DP for different settings. (d) To derive the regret upper bound, we develop a novel and
general analysis of optimistic algorithms with adaptive episodes.

Our regret lower and upper bounds close the open question posed in (Tenenbaum et al., 2021),
i.e. the problem-dependent regret bounds of differentially private bandits should depend on the
KL-divergence between the reward distributions.

Related Works: Lower Bound. (Shariff and Sheffet, 2018) first proposed a problem-dependent
lower bound on regret, Ω(max{

∑
a ̸=a∗

log T
∆a

, K log(T )
ϵ })2, for stochastic bandits with ϵ-global DP.

But this bound is restricted to Bernoulli distributions of reward. In this paper, we provide the first
problem-dependent regret lower bound that is valid for any reward distribution. This lower bound
shows that the effect of privacy does not only depend on ϵ but also on the total variation distance
corresponding to the environment. Thus, it explicates the coupled effect of privacy and partial
information in a high-privacy regime, which was not observed before. To derive this tighter lower
bound, we extend the Karwa-Vadhan lemma (Lemma 6.1, (Karwa and Vadhan, 2017)) to a sequential
setting and also propose a generic proof structure leading to problem-dependent and minimax lower
bounds for stochastic and linear bandits. To our knowledge, these are the first regret lower bounds
for linear bandits with ϵ-global DP. Basu et al. (2019) also proposed a minimax regret lower bound
for stochastic bandits with ϵ-global DP. However, our minimax lower bound (Thm. 2) is tighter and
does not need to assume that the reward distributions are Lipschitz continuous.

Related Works: Bandit Algorithms with ϵ-global DP. DP-UCB (Mishra and Thakurta, 2015;
Tossou and Dimitrakakis, 2016) was the first global DP version of UCB. DP-UCB uses the tree-
based mechanism (Dwork et al., 2010a; Chan et al., 2011) to compute the sum of rewards. The
tree mechanism maintains a binary tree of depth log(T ) over the T streaming observations, where
each node in this tree holds an i.i.d sample from a Laplace distribution with zero mean and scale
(log(T )/ϵ). At each step t, the mechanism yields the sum of the first t observations and the log(T )
nodes on the root-to-the-leaf path in the binary tree as the private empirical mean. As a result,
the noise added to the UCB index per time-step is O

(
log(T )2.5/ϵ

)
, which is responsible for the

extra multiplicative factor log(T )1.5 in regret compared to the lower bound. DP-SE (Sajed and
Sheffet, 2019) was the first ϵ-global DP algorithm to eliminate the additional multiplicative factor
log(T )1.5. DP-SE is an ϵ-global DP version of the Successive Elimination algorithm (Even-Dar
et al., 2002). However, the drawbacks were that the algorithm was not anytime, and was optimal
only asymptotically, i.e. the horizon should be big enough. On the other hand, a careful analysis
of the algorithm suggests that what made the algorithm optimal was the fact that the algorithm was
run in doubling episodes, where the private means computed at the end of the episode to decide
which arms to eliminate, were only computed using the samples collected from that episode. We
detect these ingredients and generalise them to propose a general framework to make any optimist
index-based policy optimal followed by upper bounds matching the lower bounds (Table 1). Similar
techniques have been deployed to design a global DP extension of UCB in (Hu et al., 2021) but they
have an additive factor log(T ) extra in regret than AdaP-UCB and do not match our proposed regret
lower bound. Also, DP-TS (Hu and Hegde, 2022) aims to achieve ϵ-global DP with a Thompson
sampling based approach. The “lazy" version of DP-TS achieves a similar regret as AdaP-UCB,
but does not achieve the refined lower bound of Thm. 3 with the indistinguishability gaps. Even in
non-private bandits, Thompson Sampling (Agrawal and Goyal, 2013) is not known to achieve the
Kullback-Leibler (KL) indistinguishability gap while KL-UCB (Garivier and Cappé, 2011) is known
to achieve it. Our work leads to the first near-optimal bandit algorithm with ϵ-global DP, namely
AdaP-KLUCB.

2Here, a∗ is the optimal arm with mean reward µ∗ and ∆a ≜ µ∗ − µa is the suboptimality gap of arm a.
3The number of private empirical mean reward statistics computed by the algorithm.
4Not using the full history of rewards to compute the private empirical mean reward statistics.
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Table 1: A comparison of ϵ-global DP algorithms for bandits.
Algorithm Regret # Private Means 3 Anytime Forgetfulness 4

DP-UCB (Mishra and Thakurta (2015); O
(

log(T )2.5

ϵ +
∑
a̸=a∗

log(T )
∆a

)
KT Yes No

Tossou and Dimitrakakis (2016))
DP-SE O

(
K log(T )

ϵ +
∑
a̸=a∗

log(T )
∆a

)
O(log(T )) No Yes

(Sajed and Sheffet, 2019)
AdaP-UCB O

(∑
a ̸=a∗

∆a log(T )
min(∆2

a,ϵ∆a)

)
O(log(T )) Yes Yes

AdaP-KLUCB O
(∑

a ̸=a∗
∆a log(T )

min(d(µa,µ∗),ϵ∆a)

)
O(log(T )) Yes Yes

2 Background: Differential Privacy and Bandits

Differential Privacy (DP). DP renders an individual corresponding to a datum indistinguishable by
constraining the output of an algorithm to be almost the same under a change in one input datum.
Definition 1 ((ϵ, δ)-DP (Dwork and Roth, 2014)). A randomised algorithm A satisfies (ϵ, δ)-
Differential Privacy (DP) if for any two neighbouring datasets5 D and D′, and for all sets of
output O ⊆ Range(A)

Pr[A(D) ∈ O] ≤ eϵ Pr [A (D′) ∈ O] + δ, (1)

where the probability space is over the coin flips of the mechanism A and for some (ϵ, δ) ∈ R≥0×R≥0.
If δ = 0, we say that A satisfies ϵ-differential privacy.
The Laplace mechanism (Dwork et al., 2010b; Dwork and Roth, 2014) ensures ϵ-DP by injecting a
random noise to the output of the algorithm that is sampled from a calibrated Laplace distribution (as
specified in Theorem 1). We use Lap(b) to denote the Laplace distribution with mean 0 and variance
2b2.
Theorem 1 (ϵ-DP of Laplace Mechanism (Theorem 3.6, Dwork and Roth (2014))). Let us consider
an algorithm f : X → Rd with sensitivity s(f) ≜ max

D,D′ s.t ∥D−D′∥Hamming=1
∥f(D)− f(D′)∥1. Here,

∥·∥1 is the L1 norm on Rd. If d noise samples {Ni}di=1 are generated independently from Lap( s(f)ϵ ),
the output injected with the noise, i.e. f(D) + [N1, . . . , Nd] satisfies ϵ-DP.

The Laplace mechanism is originally proposed to ensure DP when the input database is static. In a
sequential setting like bandits, a mechanism must update the published statistics as new data items
arrive, and thus DP definitions are extended accordingly (Basu et al., 2019).

Stochastic Bandits with Global DP. Now, we describe the general canonical bandit model (Section
4.6, (Lattimore and Szepesvári, 2018)) and define global Differential Privacy (global DP) in this
setting. A bandit algorithm (or policy) interacts with an environment ν consisting of K arms with
reward distributions {νa}Ka=1 for a given horizon T and produces a history HT ≜ {(At, Rt)}Tt=1. At
each step t, the choice of the arm depends on the previous history Ht−1. The reward Rt is sampled
from the reward distribution νAt and is conditionally independent of the previous history Ht−1. Thus,
a bandit algorithm (or policy) π can be represented by a sequence (πt)

T
t=1 , where πt : Ht−1 → [K]

is a probability kernel. Thus, we denote the probability of occurrence of a sequence of actions
aT ≜ [a1, . . . , aT ] given a sequence of rewards rT ≜ [r1, . . . , rT ] as π(aT | rT ) ≜

∏T
t=1 πt(at |

a1, r1, . . . , at−1, rt−1). If we consider aT as the output of a bandit algorithm and rT as the input,
π(aT | rT ) defines the corresponding probability distribution on the output space required for
defining DP (Eq. (1)). In order to define DP in the sequential setup of bandits, the event-level privacy
under continuous observations (Dwork et al., 2010b) framework is adopted. In this framework, if two
data sequences differ on a single entry at a single time-step t and are identical on all other time-steps,
they are called neighbouring data sequences. A sequential algorithm is differentially private if its
output sequence is not distinguishable from two neighbouring input sequences. This framework leads
to the global DP definition for bandits (Mishra and Thakurta, 2015; Basu et al., 2019).
Definition 2 (Global DP for Bandits). A bandit algorithm π ∈ Πϵ satisfies ϵ-global DP, if π(aT |
rT ) ≤ eϵπ(aT | r′T ) for every action sequence aT ∈ [K]T and every two neighbouring reward
sequences rT , r′T ∈ RT , which means that ∃j ∈ [1, T ] such that rj ̸= r′j and ∀ t ̸= j rt = r′t. The
set of all bandit algorithms satisfying ϵ-global DP, i.e. Πϵ, is called the ϵ-global DP policy class.

5Neighbouring datasets differ only in one entry, i.e ∥D −D′∥Hamming = 1.
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Table 2: Regret lower bounds for bandits with ϵ-global DP
Minimax Problem Dependent

Stochastic Multi-armed bandit max

(
1
27

√
T (K − 1), 1

131
K−1
ϵ

) ∑
a:∆a>0

∆a log(T )
min(da,6ϵta)

Stoachastic Linear bandit max

(
exp(−2), exp(−6ϵd

√
T )

)
d
8

√
T

infα∈[0,∞)A
∑
a∈A α(a)∆a log(T )

s.t. ∥a∥2
H−1

α
≤ ∆amin

(
∆a

2 , 3ϵρ(A)
)

Now, we formally define the regret of a bandit algorithm with ϵ-global DP, namely πϵ, as

RegT (π
ϵ, ν) ≜ Tµ∗(ν)− Eνπ

[
T∑
t=1

Rt

]
≜

K∑
a=1

∆aEνπ [Na(T )] . (2)

Na(T ) ≜
∑T
t=1 1 {At = a} is the number of times the arm a is played till T . ∆a ≜ µ∗(ν)− µa is

the suboptimality gap of the arm a. The expectation is taken with respect to the probability measure
on action-reward sequences induced by the interaction of πϵ and ν. The objective of the bandit
algorithm πϵ is to satisfy ϵ-global DP while minimising the regret over horizon T . A regret lower
bound of any ϵ-global DP bandit algorithm in Πϵ quantifies the fundamental hardness of this problem.

3 Regret Lower Bounds for Bandits with ϵ-global DP

The first question is how much additional regret we have to endure in bandits with ϵ-global DP than
the bandits without privacy. The lower bound on regret provides insight into the intrinsic hardness of
the problem and serves as a target for the optimal algorithm design. In this section, we prove minimax
and problem-dependent lower bounds for stochastic and linear bandits under ϵ-global DP. The
proposed lower bounds are summarised in Table 2. We defer the proof details to the supplementary.

Stochastic Bandits. First, we consider the stochastic bandit problem with K-arms (as in Section 2).

Minimax Regret. We derive the minimax regret lower bound in this bandit setting with ϵ-global DP.
Minimax regret is the lowest achievable regret by any bandit algorithm under the worst environment
among a family of environments EK with K arms under consideration.

Regminimax
T,ϵ = inf

πϵ∈Πϵ
sup
ν∈EK

RegT (π
ϵ, ν)

Theorem 2 (Minimax lower bound). For any K > 1 and T ≥ K − 1, and ϵ > 0, the minimax regret
of stochastic bandits with ϵ-global DP satisfies

Regminimax
T,ϵ ≥ max

{
1

27

√
T (K − 1)︸ ︷︷ ︸

without global DP

,
1

131

K − 1

ϵ︸ ︷︷ ︸
with ϵ-global DP

}
. (3)

Consequences of Theorem 2. Equation (3) shows two regimes of hardness: high-privacy, correspond-
ing to lower values of ϵ, and low-privacy, corresponding to higher values of ϵ. In the high-privacy

regime, specifically for ϵ < 131
27

√
(K−1)
T , the hardness depends only on the number of the arms

K and the privacy budget ϵ and is higher than the lower bound for bandits without privacy. In the

low-privacy regime, i.e. for ϵ ≥ 131
27

√
(K−1)
T , the lower bound coincides with that of the bandits

without privacy. This indicates the phenomena that for higher values of ϵ, signifying lower privacy,
bandits with global DP is not harder than the bandits without privacy. Specially, for significantly large
T , the threshold between low and high privacy regime is smaller than most of the practically used
privacy budget values. For example, if T = 106 and K = 100, the bandits with and without global
DP are equivalently hard for any privacy budget ϵ ≥ 0.05. This shows that for stochastic bandits, we
can deploy very low privacy budgets (ϵ) without loosing anything in performance.

Problem-dependent Regret: Similar to the lower bounds specific to the Bernoulli reward distribu-
tions (Shariff and Sheffet, 2018), the minimax bound indicates a separation between hardness due
to global DP and partial information. To understand whether this observation is an artefact of the
Bernoulli distribution and the worst-case environment considered in minimax bounds, we derive a
lower bound on the problem-dependent regret (Equation (2)) for general reward distributions.
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Before deriving the lower bound, we define two information-theoretic terms that quantify the dis-
tinguishability of the specific bandit environment ν where the algorithm is operating from all other
bandit environments with K arms and finite means. If M is a set of distributions with finite means,
and µ(P ) is the mean of the reward distribution P ∈ M, we define the KL-distinguishability gap
as dinf (P, µ∗,M) ≜ infP ′∈M {DKL (P ∥ P ′) : µ (P ′) > µ∗} and the TV-distinguishability gap as
tinf (P, µ

∗,M) ≜ infP ′∈M {TV (P ∥ P ′) : µ (P ′) > µ∗}. These two quantities indicate the min-
imum dissimilarity, in terms of KL-divergence and Total Variation (TV) distance, of the reward
distribution of the optimal arm a∗ with any other distribution with finite mean higher than µ∗. For
bandits without DP, inverse of the KL-distinguishability gap quantifies the hardness to identify the
optimal arm of the environment ν under partial information (Lai and Robbins, 1985).

Theorem 3 (Problem-dependent Regret Lower Bound). Let the environment E be a set of K reward
distributions with finite means and a policy πϵ ∈ Πcons (E) ∩ Πϵ be a consistent policy6 over E
satisfying ϵ-global DP . Then, for all ν = (Pi)

K
i=1 ∈ E , it holds that

lim inf
T→∞

RegT (π
ϵ, ν)

log(T )
≥

∑
a:∆a>0

∆a

min

(
dinf (Pa, µ

∗,Ma)︸ ︷︷ ︸
without global DP

, 6 ϵ tinf (Pa, µ
∗,Ma)︸ ︷︷ ︸

with ϵ-global DP

) . (4)

Consequences of Theorem 3. Now, we summarise the interesting observations led by the lower bound.

1. Universality: The lower bound of Theorem 3 holds for any environment with K arms and reward
distributions with finite means. This is the first general lower bound for bandits with ϵ-global DP.

2. For Bernoulli distributions of reward: TV-distinguishability gap tinf (Pa, µ∗,Ma) = ∆a, i.e. the
suboptimality gap of arm a, and the KL-distinguishability gap dinf (Pa, µ∗,Ma) ≥ 2∆2

a. Thus, our
problem-dependent lower bound reduces to Ω(

∑
a̸=a∗

log T
min{∆a,ϵ} ). For Bernoulli rewards, our lower

bound is able to retrieve the lower bound of (Shariff and Sheffet, 2018) with explicit constants.

3. High- and Low-privacy Regimes: Like the minimax regret bound, the problem-dependent regret
also indicates two clear regimes in regret due to high and low privacy (resp. small and large privacy
budgets ϵ). In the low-privacy regime, i.e. for ϵ ≥ dinf (Pa,µ

∗,Ma)
6tinf (Pa,µ∗,Ma)

, the regret achievable by bandits
with global DP and without global DP are same. Thus, there is no loss in performance due to privacy
in this regime. In the high-privacy regime, i.e. for ϵ < dinf (Pa,µ

∗,Ma)
6tinf (Pa,µ∗,Ma)

, the regret depends on a
coupled effect of privacy and partial information. This effect is quantified by the inverse of the
privacy budget times inverse of the TV-distinguishability gap. This interaction between privacy and
partial information was not explicated by any of the existing lower bounds. In Section 4, we propose
the AdaP-KLUCB algorithm that demonstrates the same interactive effect in its regret upper bound.

Stochastic Linear Bandits. In order to illustrate the generality of our results, and also to investigate
how partial information and privacy in structured bandits, we derive minimax and problem-dependent
regret lower bounds for stochastic linear bandits (Lattimore and Szepesvari, 2017). To perform the
regret analysis, we consider a simple linear model with parameter θ ∈ Rd and Gaussian noise. It
implies that for an action At ∈ A ⊆ Rd the reward is Rt = ⟨At, θ⟩+ ηt, where ηt ∼ N (0, 1) is a
sequence of independent Gaussian noises. The regret of a policy is RegT (A, θ) ≜ Eθ

[∑T
t=1 ∆At

]
,

where suboptimality gap ∆a ≜ maxa′∈A ⟨a′ − a, θ⟩, and Eθ[·] is the expectation with respect to the
measure on outcomes induced by the interaction of the policy and the linear bandit determined by θ.
Given this structure, we state the minimax and problem-dependent regret lower bounds for stochastic
linear bandits.

Theorem 4 (Minimax regret lower bound). Let A = [−1, 1]d and Θ =
{
−T−1/2, T−1/2

}d
. Then,

there exists a vector θ ∈ Θ leading to a minimax regret of linear bandits with ϵ-global DP such that

Regminimax
T (A,Θ) ≥ max

{
exp(−2)︸ ︷︷ ︸

without global DP

, exp(−6ϵd
√
T )︸ ︷︷ ︸

with ϵ-global DP

}d
8

√
T . (5)

6A policy π is called consistent over a class of bandits E if for all ν ∈ E and p > 0, it holds that
limT→∞

RT (π,ν)
Tp = 0. We denote the class of consistent policies over a set of environments E as Πcons (E).
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Theorem 5 (Problem-dependent regret lower bound). Let A ⊂ Rd be a finite set spanning Rd and
θ ∈ Rd be such that there is a unique optimal action. Then, for any consistent and ϵ-global DP
bandit algorithm satisfies

lim inf
T→∞

RegT (A, θ)
log(T )

≥ c(A, θ), (6)

where the structural distinguishability gap is the solution of a constraint optimisation

c(A, θ) ≜ inf
α∈[0,∞)A

∑
a∈A

α(a)∆a, such that ∥a∥2
H−1

α
≤ min

{
0.5∆2

a︸ ︷︷ ︸
without global DP

, 3ϵρa(A)∆a︸ ︷︷ ︸
with ϵ-global DP

}

for all a ∈ A with ∆a > 0, Hα =
∑
a∈A α(a)aa

⊤, and a structure dependent constant ρa(A).

Remarks. Theorems 4 and 5 are the first minimax and problem-dependent regret lower bounds
for linear bandits. The minimax regret bound also shows a clear distinction between high- and
low-privacy regimes for ϵ < 1/(3d

√
T ) and ϵ ≥ 1/(3d

√
T ). Interestingly, the threshold between

two regimes decreases with increase in dimension d and allows us to use quite low values of ϵ without
losing any performance. The difference between high- and low-privacy regimes is more subtle. The
first constraint on ∥a∥2

H−1
α

is reminiscent of the Graves-Lai bound for structural bandits without
privacy. The second constraint, i.e. 3ϵρa(A)∆a, captures the interaction between privacy and partial
information under linear structure and in the high-privacy regime.

Proof Technique. In order to prove the lower bounds, we adopt the general canonical bandit model.
The high level idea of proving bandit lower bounds is selecting two hard environments, which are
hard to be statistically distinguished but are conflicting, i.e. actions that may be optimal in one is
suboptimal in other. This is quantified by upper bounding the per-step KL-divergence between action
distributions for such hard environments, and then plugging in this upper bound in the Bretagnolle-
Huber inequality to obtain a regret lower bound. Though this proof technique works to quantify the
hardness due to partial information, we need to upper bound the “confusion" created due to global DP.
Existing proofs use the information-processing lemma of Karwa-Vadhan (Karwa and Vadhan, 2017).
Though this works for Bernoulli bandits, to proof a general bound, we derive a sequential version of
this lemma. The sequential version leads to an upper bound of the KL-divergence dependent on both
total-variation distinguishability gap and privacy budget, and enables us to show the coupled effect of
privacy and partial-information in the high-privacy regimes. For details of the technical results, we
refer to the Supplementary Material.

4 Stochastic Bandit Algorithms with ϵ-global DP: AdaP-UCB & AdaP-KLUCB

In this section, we present a framework (Algorithm 1) to convert index-based optimistic algorithms
into algorithms satisfying ϵ-global DP. We instantiate this framework by proposing AdaP-UCB and
AdaP-KLUCB, and derive corresponding regret upper bounds.

Algorithm 1 A framework for ϵ-global DP extension of an index-based bandit algorithm

1: Input: Privacy budget ϵ, an environment ν with K arms, parameter α > 3
2: Output: A sequence of T -actions satisfying ϵ-global DP
3: Initialisation: Choose each arm once and assign t = K
4: for ℓ = 1, 2, . . . do ▷ Adaptive episodes of reward subsequences
5: Let tℓ = t+ 1
6: Compute Aℓ = argmaxa I

ϵ
a(tℓ − 1, α) ▷ Arm selection with private indexes (Eqn. (7)-(8))

7: Choose arm Aℓ until round t such that Ti(t) = 2Ti(tℓ − 1) ▷ Doubling of episodes
8: end for

Index-Based Algorithms and Private Empirical Mean. We focus on index-based bandit algorithms
that compute the empirical mean of rewards of each arm at each step. Using the empirical means, they
compute an optimistic index for each arm that serves as a high-probability upper confidence bound
on the true mean of the corresponding arm. Examples of such algorithms with empirical mean-based
indexes include UCB (Auer et al., 2002), MOSS (Audibert and Bubeck, 2010), KL-UCB (Garivier
and Cappé, 2011), IMED (Honda and Takemura, 2015) etc. Here, the empirical mean is the main
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statistics of reward sequences used by the algorithms. Thus, by post-processing lemma, designing an
ϵ-global DP bandit algorithm reduces to computing the empirical means privately.

By Theorem 1, we know that adding a Laplacian noise with scale s(µ̂t)/ϵ to each empirical mean
turns it ϵ-DP, where s(µ̂t) is the sensitivity of empirical mean µ̂t at step t. For K arms and horizon
T , an index-based bandit algorithm computes the empirical mean KT times. Using the naïve
composition of ϵ-DP, a first baseline is to make each computed empirical mean ϵ

KT -DP. This needs
us to add at each step noise scaled linearly to T . This might lead the corresponding bandit algorithm
to yield a linear regret. Thus, we need to add noise less number of times and with lower sensitivity.

Empirical Mean using Reward Sub-sequence. The improvement is invoked by the observation
that a bandit algorithm does not need to calculate the empirical mean at each time-step using all the
rewards observed till that step. Thus, motivated by the DP-SE (Sajed and Sheffet, 2019), we calculate
the empirical mean less number of times by exploiting an episodic structure that we will explicit later.
Specifically, we use only the rewards of the last episode. We formally express this trick in Lemma 1.

Lemma 1. Let us define the private empirical mean of the rewards between steps i and j (i < j) as

f ϵ{ri, . . . , rj} ≜
1

j − i

j∑
t=i

rt + Lap

(
1

(j − i)ϵ

)
.

If 1 < t1 < · · · < tℓ < T and rt ∈ [0, 1], the mechanism gϵ mapping the sequence of re-
wards (r1, r2, . . . , rT ) to (ℓ+ 1)-private empirical means (f ϵ{r1, . . . , rt1−1}, f ϵ{rt1 , . . . , rt2−1},
. . . , f ϵ{rtℓ , . . . , rT }) satisfies ϵ-DP.

Lemma 1 implies that, if we calculate the empirical mean of each arm ℓ+ 1 (≪ T ) times on non-
overlapping sub-sequences of the reward stream, we only need to ensure that each empirical mean is
ϵ-DP with respect to the corresponding reward sub-sequence. These (ℓ+ 1) private empirical means
together ensure that the sequence of (ℓ+ 1) computed indexes and the resultant action sequence of
length T satisfy ϵ-global DP by the post-processing lemma (Dwork and Roth, 2014). Thus, we divide
the horizon into (ℓ+ 1)-episodes. This allows us to take T actions only by computing ℓ+ 1 private
empirical means with the rewards observed in the last active episode of the arm. Specifically, for
each t ∈ [ti, ti+1 − 1], we play the same arm that was decided at the beginning of the episode, i.e. at
ti, with the private empirical mean computed from the last active episode of that arm.

Adaptive Episodes with Doubling. In order to set the episode lengths, we focus on the specific
structure of the bandit process. Specifically, we know that a sub-optimal arm a should be sampled at
least na = O

(
log(T )
∆2

a

)
times before discarding. Since the empirical means are computed using only

rewards of one episode, to yield a near-optimal regret, the length of the episode should be greater at
any given time than na. To satisfy this criterion, we deploy adaptive episodes with doubling.

Example 2 (Illustration of Algortihm 1.). To clarify the schematic, we illustrate a few steps of
executing Algorithm 1 in Figure 1. After playing each arm once, the first episode begins at t1. To
observe different ingredients, we focus on step t4 = 7. The index of Arm 1 at t4 uses the private
empirical mean r4+r5

2 + Lap( 1
2ϵ ) to build a high probability upper bound of the real mean µ1 with

confidence t−α4 . The index of Arm 2 uses r6 +Lap( 1ϵ ). If we assume that the index of Arm 1 is higher
at t4, Arm 1 is played for a full episode from t4 until t5 − 1. The last time, when Arm 1 was played,
the length of the episode was 2. Thus, following t4, the length of the episode is doubled to 4.

Theorem 6 (ϵ-global DP). For any private index Iϵa computed using the private empirical mean of
the rewards collected in the last active episode of arm a, Algorithm 1 satisfies ϵ-global DP.

Proof. The main idea is that a change in reward will only affect the empirical mean calculated in
one episode, which is made private using the Laplace Mechanism and Lemma 1. Since the actions
are only calculated using the private empirical means, the algorithm is ϵ-global DP following the
post-processing lemma. We refer to Appendix D for a complete proof.

Now, to concretise an algorithm, we only need to explicit how the indexes are calculated. In other
words, we need to build a high-probability upper confidence bound on the true mean of an arm only
using a private empirical mean. We instantiate the design details for AdaP-UCB and AdaP-KLUCB.

AdaP-UCB and AdaP-KLUCB. Let µ̂ℓa be the empirical mean reward of arm a computed using the
samples collected between tψa(ℓ) and tψa(ℓ)+1 − 1. For an episode ℓ, ψa(ℓ) = ℓa is the last active
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Step t

Arm 1

Arm 2

r1

r2

t1

r3

t2

r4 r5

t3

r6

t4

r7 r8 r9 r10

t5

r11 r12

Figure 1: An illustration of adaptive episodes with per-arm doubling.

episode of arm a. In Example 2, ψ1(4) = 2 and ψ2(4) = 3. Thus, due to the doubling of episode
length, the empirical mean corresponds to 1

2Na(tℓ − 1) samples of arm a. Since the rewards are in

[0, 1], the private empirical mean as µ̃ℓa,ϵ = µ̂ℓa + Lap
(

2
ϵNa(tℓ−1)

)
satisfies ϵ-DP (Theorem 1). Now,

we want to ensure that Iϵa(tℓ − 1, α), computed using only µ̃ℓa,ϵ, is a high-probability upper bound on
the true mean. Here, we introduce two specific indexes that satisfy this criterion.

For AdaP-UCB: Iϵa(tℓ − 1, α) = µ̃ℓa,ϵ +

√
α log(tℓ)

2× 1
2Na(tℓ − 1)

+
α log(tℓ)

ϵ× 1
2Na(tℓ − 1)

(7)

For AdaP-KLUCB: Iϵa(tℓ − 1, α) = max

{
q ∈ [0, 1] : d

(
µ̆ℓ,αa,ϵ , q

)
≤ α log(tℓ)

1
2Na(tℓ − 1)

}
, (8)

where µ̆ℓ,αa,ϵ = Clip0,1

(
µ̃ℓa,ϵ +

α log(tℓ)

ϵ 1
2Na(tℓ−1)

)
= min{max{0, µ̃ℓa,ϵ +

α log(tℓ)

ϵ× 1
2Na(tℓ−1)

}, 1} is the private
empirical mean clipped between zero and one.

Theorem 7. For rewards in [0, 1], AdaP-UCB satisfies ϵ-global DP, and for α > 3, it yields a regret

RegT (AdaP-UCB, ν) ≤
∑

a:∆a>0

(
16α

min{∆a, ϵ}
log(T ) +

3α

α− 3

)
.

Theorem 8. When the rewards are sampled from Bernoulli distributions, AdaP-KLUCB satisfies
ϵ-global DP, and for α > 3 and constants C1(α), C2 > 0, it yields a regret

RegT (AdaP-KLUCB, ν) ≤
∑

a:∆a>0

(
C1(α)∆a

min{dinf(µa, µ∗), C2ϵ∆a}
log(T ) +

3α

α− 3

)
.

Both the upper bounds show that for low-privacy regime, the regrets of AdaP-UCB and AdaP-KLUCB
are independent of ϵ, and in high-privacy regime, they depend on the coupled effect. In Ap-
pendix E.4, we also derive problem-independent or minimax regret upper bounds for AdaP-UCB and
AdaP-KLUCB, which are O(

√
KT log(T ) + K log(T )

ϵ ).

Remark 1. α controls the width of the optimistic confidence bound. Specifically, it dictates that the
real mean is smaller than the optimistic index with high probability, i.e. with probability 1− 1

tα at step
t. The requirement that α > 3 is due to our analysis of the algorithm. To be specific, the requirement
that α > 3 is needed to use a sum-integral inequality in the proof of Theorem 11. Since the dominant
terms in the regret upper bounds of both AdaP-UCB and AdaP-KLUCB are multiplicative in α,
making α smaller will tighten the bound. We leave it for future work. We refer to Section G.3 for a
detailed discussion on choosing α.

Summary of Algorithm Design. We propose three ingredients to design an ϵ-global DP version
of a bandit algorithm (Algo. 1). Firstly, add Laplace noise to make the empirical means private
(Lemma 1). Secondly, computed the index of an arm using the private empirical mean of rewards
collected from the last active episode of that arm and forget all the samples obtained before that.
Thirdly, use adaptive episodes with doubling. At the beginning of an episode choose the arm with the
highest index and play it double number of times than the length of the last active episode of the arm.
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Figure 2: Evolution of regret over time
for DP-UCB, DP-SE, AdaP-UCB, and
AdaP-KLUCB with ϵ = 1. Each algorithm is run
20 times with T = 107, and Bernoulli distribu-
tions with means {0.75, 0.625, 0.5, 0.375, 0.25}.
AdaP-KLUCB achieves the lowest regret.
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Figure 3: Dependence of lower bounds and re-
gret of AdaP-KLUCB with respect to the privacy
budget ϵ. We run AdaP-KLUCB for 20 runs with
T = 107. Echoing the theoretical analysis, re-
gret of AdaP-KLUCB transits between privacy
regimes and is independent of ϵ for low-privacy.

5 Experimental Analysis
In this section, we perform empirical evaluations to test two hypotheses: (i) AdaP-KLUCB is the
most optimal algorithm among the existing bandit algorithms with ϵ-global DP, and (ii) the transition
between high and low-privacy regimes are reflected in the upper bounds. Additional experimental
results are deferred to Appendix G.

Efficiency in Performance. First, we compare performances of AdaP-UCB and AdaP-KLUCB
with those of DP-SE and DP-UCB. We set α = 3.1 to comply with the regret upper bounds of
AdaP-UCB and AdaP-KLUCB. We assign γ = 0.1 for DP-UCB and β = 1/T for DP-SE. We
implement all the algorithms in Python (version 3.8) and on an 8 core 64-bits Intel i5@1.6 GHz CPU.
We test the algorithms for Bernoulli bandits with 5-arms and means {0.75, 0.625, 0.5, 0.375, 0.25}
(as in Sajed and Sheffet (2019)). We run each algorithm 20 times for a horizon T = 107, and plot
corresponding average and standard deviations of regrets in Figure 2. AdaP-KLUCB achieves the
lowest regret followed by AdaP-UCB. Both of them attain almost 10 times lower regret than the
competing algorithms.

Impact of Privacy Regimes. In Figure 3, we plot regret of AdaP-KLUCB at T = 107 for a Bernoulli
bandit with mean rewards {0.8, 0.1, 0.1, 0.1, 0.1}. We plot the average regret over 20 runs as a
function of the privacy budget ϵ ∈ [0.05, 10]. As indicated by the theoretical regret lower bounds
and upper bounds, the experimental performance of AdaP-KLUCB demonstrates two regimes: a
high-privacy regime (for ϵ < 0.3), where the regret of AdaP-KLUCB depends on the privacy budget
ϵ, and a low privacy regime (for ϵ > 0.3), where the regret of AdaP-KLUCB does not depend on ϵ.

In brief, our experimental results validate that AdaP-KLUCB is the most optimal algorithm for
stochastic bandits that satisfies ϵ-global DP, and performance of AdaP-KLUCB transits from high-
to low-privacy regimes, where its performance turns independent of the privacy budget ϵ.

6 Conclusion and Future Works
We revisit bandits with ϵ-global DP. We prove the minimax and problem-dependent regret lower
bounds for stochastic and linear bandits indicating two regimes of hardness. We propose a framework
to design an ϵ-global DP version of an index-based optimistic bandit algorithm in a near-optimal
fashion by utilising three ingredients: adding noise with Laplace Mechanism, using the empirical
mean of rewards collected in the last active episode of an arm, and adapting episodes with doubling.

One limitation of our analysis that the lower and upper bounds defer by multiplicative constants.
It would be a technical challenge to merge this gap. Another future direction is to derive regret
lower bounds for other variants of DP, namely (ϵ, δ)-DP and Rényi-DP (Mironov, 2017), especially
in the structured bandits compatible with Gaussian noise injection and also to extend the proposed
proof techniques in these settings. For the algorithm design, it would be interesting to see how the
proposed ingredients generalise to linear and contextual bandits (Shariff and Sheffet, 2018), and
Markov Decision Processes (Vietri et al., 2020).
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A The Canonical Model of Bandits

We extend the general canonical model of bandits (Chapter 4, Lattimore and Szepesvári (2018)) with
ϵ-global differential privacy. The canonical model with ϵ-global DP consists of a privacy-preserving
policy πϵ and an environment ν. The policy interacts with the environment up to a given time horizon
T to produce a history HT ≜ {(At, Rt)}Tt=1. The iterative steps of this interaction process are:

1. the probability of choosing an action At = a at time t is dictated only by the policy πϵ(a|Ht−1),
2. the distribution of reward Rt is PAt and is conditionally independent of the previous observed

history Ht−1.

Let us formalise this interaction by defining an ϵ-global DP policy, the environment and the probability
space produced by this interaction.

Let T ∈ N be the horizon. Let ν = (Pa : a ∈ [K]) a bandit instance with K arms. For each t ∈ [T ],
let Ωt = ([K]× R)t ⊂ R2t and Ft = B(Ωt) with B being the Borel set.
Definition 3. A policy π is a sequence (πt)

T
t=1 , where πt is a probability kernel from (Ωt,Ft) to

([K], 2[K]). Since [K] is discrete, we adopt the convention that for i ∈ [K],

πt(i | a1, r1, . . . , at−1, rt−1) = πt({i} | a1, r1, . . . , at−1, rt−1)

and for a sequence of actions aT ≜ [a1, . . . , aT ] and a sequence of rewards rT ≜ [r1, . . . , rT ]:

π(aT | rT ) =
T∏
t=1

πt(at | a1, r1, . . . , at−1, rt−1)

A policy πϵ is ϵ-global DP, if
πϵ(aT | rT ) ≤ eϵπϵ(aT | r′T )

for every sequence of actions aT and every two neighbouring reward streams rT , r′T : ∃j ∈ [1, T ]
such that rj ̸= r′j and ∀ t ̸= j rt = r′t.

Let λ be a σ-finite measure on (R,B(R)) for which Pa is absolutely continuous with respect to
λ for all a ∈ [K]. Let pa = dPa/dλ be the Radon–Nikodym derivative of Pa with respect to λ,
which is a function pa : R → R such that

∫
B
padλ = Pa(B) for all B ∈ B(R). Letting ρ be the

counting measure with ρ(B) = |B|, the density pνπϵ : ΩT → R can now be defined with respect to
the product measure (ρ× λ)T by

pνπϵ(a1, r1, . . . , aT , rT ) ≜
T∏
t=1

πt(at | a1, r1, . . . , at−1, rt−1)pat(rt)

and Pνπϵ be defined by

Pνπϵ(B) ≜
∫
B

pνπϵ(ω)(ρ× λ)T ( dω) for all B ∈ FT

Hence (ΩT ,FT ,Pνπϵ) is a probability space over histories induced by the interaction between πϵ
and ν.

We define also a marginal distribution over sequence of actions by

mνπϵ(a1, . . . , aT ) ≜
∫
r1,...,rT

pνπϵ(a1, r1, . . . , aT , rT ) dr1 . . . drT ,

and for all C ∈ P([K]T ),

Mνπϵ(C) ≜
∑

(a1,...,aT )∈C

mνπϵ(a1, a2, . . . , aT ).

Hence, ([K]T ,P([K]T ),Mνπϵ) is a probability space over sequence of actions produced when πϵ
interacts with ν for T time-steps.
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B Distinguishing Environments with Partial Information and Global DP

In this section, we first revisit the Karwa-Vadhan Lemma (Lemma 6.1, (Karwa and Vadhan, 2017))
that bounds the multiplicative distance between marginal distributions induced by a differentially
private mechanism, when the datasets are generated using two different distributions P and Q. We
generalise this result to the setting where the inputs are not identically distributed. We call this
Sequential Karwa-Vadhan Lemma (Lemma 2) and apply it to upper bound the Kullback-Leibler (KL)
divergence between the marginal distributions Mνπϵ and Mν′πϵ , when πϵ is an ϵ-global DP policy,
and ν and ν′ are two different environments (Theorem 10).

Karwa-Vadhan Lemma. Let P and Q be two distributions, and TV (P ∥ Q) be the total vari-
ation distance between these two distributions. Let M be an (ϵ, δ)-differentially private mech-
anism that runs on the set of samples {x1, . . . , xT }. For any event E in M’s output space,
M(E|X1 = x1, . . . , XT = xT ) denotes the probability that M outputs an element in E given
the input x1, . . . , xT , and

MP(E) ≜
∫

M(E|X1, . . . , XT ) dP(X1, . . . , XT )

is the marginal distribution induced by the DP mechanism when the data is generated from the
distribution P.
Theorem 9 (Lemma 6.1, Karwa and Vadhan (2017)). If a mechanism M satisfies (ϵ, δ)-DP, then for
every event E in the output space of M, the marginal distributions induced by distributions P and Q
satisfy

MP(E) ≤ eϵ
′
MQ(E) + δ′,

where ϵ′ ≜ (6ϵT )TV (P ∥ Q) and δ′ ≜ (4eϵ
′
Tδ)TV (P ∥ Q).

We extend this result for the setting where the data is not identically distributed.

B.1 Sequential Karwa-Vadhan Lemma

Let {P1, . . . ,PT } and {Q1, . . . ,QT } two sets of independent distributions.

Given the samples X1, . . . , XT generated from the distributions P1, . . . ,PT , we define the corre-
sponding marginal distribution induced by M as

MP1,...,PT
(E) ≜

∫
M(E|X1, . . . , XT ) dP1(X1) dP2(X2) . . . dPT (XT )

Lemma 2 (Sequential Karwa-Vadhan Lemma). If M is a mechanism satisfying (ϵ, δ)-DP, then
for every event E in the output space of M, the marginal distributions induced by the two sets of
independent distributions {P1, . . . ,PT } and {Q1, . . . ,QT } satisfy

MP1,...,PT
(E) ≤ eϵ

′
MQ1,...,QT

(E) + δ′,

where ϵ′ = 6ϵ
∑T
i=1 TV (Pi ∥ Qi) and δ′ = 4eϵ

′
δ
∑T
i=1 TV (Pi ∥ Qi)

Proof. We extend the proof proposed by (Karwa and Vadhan, 2017) to the non-identical distribution
setting. The main observation is that the proof follows naturally if the data is generated from different
distributions by just adapting the coupling to the case of different distributions. For completeness, we
present the whole proof with all the adapted changes.

We construct a coupling between
⊗T

i=1 Pi and
⊗T

i=1 Qi that allows us to control the hamming
distance between samples generated from this distributions.

Let us denote pi ≜ TV (Pi ∥ Qi), Fi ≜ max(Pi − Qi, 0), Gi ≜ max(Qi − Pi, 0), and Ci ≜
min(Pi,Qi). It is easy to see that Pi = Fi + Ci and Qi = Gi + Ci.

Given the aforementioned notations, we consider the following algorithm to generate 2T samples:

For i = 1 to T , generate Hi from Bernoulli(pi)
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(a) If Hi = 1, sample Xi ∝ Fi and X ′
i ∝ Gi

(b) If Hi = 0, sample Xi ∝ Ci and set X ′
i = Xi.

Here Xi ∝ Fi means that Xi is generated from a distribution defined by normalizing Fi.

This construction satisfies the following properties:

1. X ≜ (X1, . . . , XT )∼
⊗T

i=1 Pi ≜ D0.

2. X ′ ≜ (X ′
1, . . . , X

′
T )∼

⊗T
i=1 Qi ≜ D1.

3. ∥X −X ′∥Hamming =
∑T
i=1Hi ≜ H .

Now, we introduce the following shorthand for the marginal distributions at step h

mj(h) ≜
∫
x

M(E|X = x) dDj(X|H = h)

for j ∈ {0, 1} and p(h) = P(H = h). For j ∈ {0, 1} and any event E, we have, by definition,

Mj(E) =

T∑
h=0

mj(h)p(h)

Fact 1: For j ∈ {0, 1}, mj(h) ≤ eϵmj(h− 1) + δ for h = 1, . . . , T , and m1(0) = m0(0).

We defer the proof of Fact 1 to the end of this proof.

By Fact 1, for j ∈ {0, 1}, we have

mj(h) ≤ ehϵmj(0) +
ehϵ − 1

eϵ − 1
δ

Now, we obtain

Mj(E) =

T∑
h=0

p(h)mj(h)

= E[mj(H)]

≤ E[eHϵmj(0) +
eHϵ − 1

eϵ − 1
δ]

= mj(0) · E[eHϵ] +
δ

eϵ − 1
·
(
E[eHϵ]− 1

)
= mj(0) ·

T∏
i=1

(1− pi + pi · eϵ) +
δ

eϵ − 1
·

(
T∏
i=1

(1− pi + pi · eϵ)− 1

)
(9)

The last equality holds due to that fact that for any t > 0, E[etH ] =
∏T
i=1(1− pi + pi · et).

Similarly, we obtain

Mj(E) ≥ mj(0)

T∏
i=1

(1− pi + pi · e−ϵ) +
δ

e−ϵ − 1
·

(
T∏
i=1

(1− pi + pi · e−ϵ)− 1

)
(10)

Combining inequalities 9 and 10, we get

M0(E) ≤

[
T∏
i=1

(
1− pi + pi · eϵ

1− pi + pi · e−ϵ

)]
·

(
M1(E) +

1−
∏T
i=1(1− pi + pi · e−ϵ)

1− e−ϵ
· δ

)
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+

∏T
i=1(1− pi + pi · e−ϵ)− 1

eϵ − 1
· δ (11)

From Lemma 6.1 of (Karwa and Vadhan, 2017), we know that

log

(
1− pi + pi · eϵ

1− pi + pi · e−ϵ

)
≤ 6ϵpi,

Thus,

T∏
i=1

(
1− pi + pi · eϵ

1− pi + pi · e−ϵ

)
≤ e6ϵ

∑T
i=1 pi ≜ eϵ

′
, (12)

and

eϵ
′
·
1−

∏T
i=1(1− pi + pi · e−ϵ)

1− e−ϵ
· δ +

∏T
i=1(1− pi + pi · eϵ)− 1

eϵ − 1
· δ (13)

≤ eϵ
′
·
1− exp(2(

∑T
i=1 pi) · (e−ϵ − 1))

1− e−ϵ
· δ +

exp(2(
∑T
i=1 pi) · (eϵ − 1))− 1

eϵ − 1
· δ (14)

≤ eϵ
′
· 2(

T∑
i=1

pi) · δ + 2(

T∑
i=1

pi) · δ (15)

≤ eϵ
′
· 4

T∑
i=1

pi · δ. (16)

Substituting Equations (12) and (16) in Equation 11, we obtain

M0(E) ≤ eϵ
′
M1(E) + δ′,

where ϵ′ = 6ϵ(
∑T
i=1 pi) and δ′ = 4eϵ

′
δ(
∑T
i=1 pi).

Now, we prove Fact 1.

Fact 1. For j ∈ {0, 1}, mj(h) ≤ eϵmj(h− 1) + δ for h = 1, . . . , T , and m1(0) = m0(0).

Proof. We prove the claim for j = 0, the other case is similar.

First, let us introduce some notations. Fix a (h1, . . . , hT ) ∈ {0, 1}T . Let I ′ ≜ {i : hi = 1},
J ≜ {i : hi = 0}, and r be any fixed index in I ′. Let I = I ′/{r} and consider the following partition
of X into three parts:

X = (XI , Xr, XJ),

where XI is the vector X specified by the indices in I . By definition of the coupling, XI ∼⊗
i∈I Fi ≜ FI , Xr ∼ Fr, XJ ∼

⊗
i∈J Ci ≜ CJ . Now, let X ′

r ∼ Cr and

X ′ = (XI , X
′
r, XJ).

Also, let h′1, . . . , h
′
T be the binary indicators corresponding to X ′. By construction, we have the

following properties:

1. hi = h′i for all i ̸= r

2. hr = 1 and hr = 0

3.
∑T
i=1 hi = h and

∑T
i=1 h

′
i = h− 1

4. Dj(X|H1 = h1, . . . ,HT = hT ) = PFI
(XI)PFr (Xr)PCJ

(XJ)

5. Dj(X ′|H1 = h′1, . . . ,HT = h′T ) = PFI
(XI)PCr

(X ′
r)PCJ

(XJ)
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Thus, we obtain∫
x

M(E|X = x) dDj(X|H1 = h1, . . . HT = hT )

=

∫
xI

∫
xr

∫
xJ

M(E|xI , xr, xJ) dPFI
(XI) dPFr (Xr) dPCJ

(XJ)

≤
∫
x′
r

∫
xI

∫
xr

∫
xJ

(eϵM(E|xI , x′r, xJ) + δ) dPFI
(XI) dPFr

(Xr) dPCr
(X ′

r) dPCJ
(XJ)

≤
∫
xI

∫
x′
r

∫
xJ

(eϵM(E|xI , x′r, xJ) + δ) dPFI
(XI) dPCr

(X ′
r) dPCJ

(XJ)

≤ eϵ
∫
x′
M(E|X = x′) dDj(X ′|H1 = h′1, . . . HT = h′T ) + δ.

Taking expectations on both sides with respect to (H1, . . . ,HT ) proves the claim.

B.2 KL-divergence Decomposition with ϵ-global DP

The Sequential Karwa-Vadhan Lemma (Lemma 2) allows us to show the maximum KL-divergence
induced in the distributions of actions by a global DP policy πϵ. The upper bound allows us to show
how different the final distributions over actions induced by a global DP policy are for two different
environments. Thus, in turn, it provides an information-theoretic limit on distinguishability of two
environments if πϵ is played.
Theorem 10 (Upper Bound on KL-divergence for Bandits with ϵ-global DP). When an ϵ-global DP
policy πϵ interacts with two bandit instances ν = (Pa : a ∈ [K]) and ν′ = (P ′

a : a ∈ [K]) we have:

DKL (Mνπϵ ∥Mν′πϵ) ≤ 6ϵEνπϵ

[
T∑
t=1

TV
(
Pat

∥∥ P ′
at

)]

Proof. We define the marginal over the sequence of actions induced by πϵ for a given environment ν
as

mνπϵ(a1, . . . , aT ) ≜
∫
r1,...,rT

πϵ(a1, . . . , aT | r1, . . . , rT )Pa1 dr1 . . . PaT drT

Since πϵ is ϵ-global DP, using Lemma 2, we obtain

log

(
mνπϵ(a1, a2, . . . , aT )

mν′πϵ(a1, a2, . . . , aT )

)
≤ 6ϵ

T∑
t=1

TV
(
Pat

∥∥ P ′
at

)
for every action sequence (a1, . . . , aT ) ∈ [K]T .

Thus,

DKL (Mνπϵ ∥Mν′πϵ) = Eνπϵ

[
log

(
mνπϵ(A1, A2, ..., AT )
mν′πϵ(A1, A2, ..., AT )

)]
≤ 6ϵEνπϵ

[
T∑
t=1

TV
(
Pat

∥∥ P ′
at

)]

This lemma explicates how the distinguishability of two environments ν and ν′ under πϵ is dic-
tated by a joint effect of global DP, in terms of the privacy budget ϵ, and the partial informa-
tion available in bandits, in terms of the total variation distance between the rewards of the arms
Eνπϵ

[∑T
t=1 TV

(
Pat

∥∥ P ′
at

)]
. We leverage this lemma further to construct the minimax and

problem-dependent regret lower bounds for stochastic and linear bandits with ϵ-global DP.
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C Lower Bounds on Regret: Stochastic and Linear Bandits with ϵ-global DP

In order to prove the lower bounds, we adopt the general canonical bandit model introduced in
Section A. The high level idea of proving bandit lower bounds is selecting two problem instances
that are similar (the policy cannot statistically distinguish between them) but conflicting (actions that
may be good in one instance are not good for the other).

Under ϵ-global differential privacy, a new source of "confusion" is added to the problem, i.e. any
sequence of actions induced by neighbouring reward streams must be ϵ-indistinguishable. In the
canonical bandit framework, this is expressed by our Theorem 10.

In the following, we plug this upper bound on KL-divergences in the classic proofs of regret lower
bounds in bandits Lattimore and Szepesvári (2018) to derive our minimax and problem-dependent
regret lower bounds.

Notations. Let Π be the set of all policies, and Πϵ be the set of all ϵ-global DP policies.

C.1 Stochastic Bandits: Minimax Lower Bound

Theorem 2 (Minimax lower bound). For any K > 1 and T ≥ K − 1, and ϵ > 0, the minimax regret
of stochastic bandits with ϵ-global DP satisfies

Regminimax
T,ϵ ≥ max

{
1

27

√
T (K − 1)︸ ︷︷ ︸

without global DP

,
1

131

K − 1

ϵ︸ ︷︷ ︸
with ϵ-global DP

}
.

Proof. We denote the environment corresponding to the set of K-Gaussian reward distributions with
unit variance and means µ ∈ RK as EKN (1) ≜

{
(N (µi, 1))

K
i=1 : µ = (µ1, . . . , µK) ∈ RK

}
.

Since Πϵ ⊂ Π, we can have that

Regminimax
T,ϵ ≥ inf

π∈Π
sup

ν∈EK
N (1)

RegT (π, ν) ≥
1

27

√
T (K − 1)

The second inequality is due to Theorem 15.2 in (Lattimore and Szepesvári, 2018).

Step 1: Choosing the ‘Hard-to-distinguish’ Environments. First, we fix a policy πϵ in Πϵ.

Let ∆ be a constant (to be specified later), and ν be a Gaussian bandit instance with unit variance and
mean vector µ = (∆, 0, 0, ..., 0).

To choose the second bandit instance, let i ≜ argmina>1 Eν,πϵ [Na(T )] be the least played arm in
expectation other than the optimal arm 1.

The second environment ν′ is then chosen to be a Gaussian bandit instance with unit variance and
mean vector µ′ = (∆, 0, 0, . . . 0, 2∆, 0 . . . , 0), where µ′

j = µj for every j except for µ′
i = 2∆.

The first arm is optimal in ν and the arm i is optimal in ν′.

Since T = Eνπϵ [N1(T )] +
∑
a>1 Eνπϵ [Na(T )] ≥ (K − 1)Eνπϵ [Ni(T )], we observe that

Eνπϵ [Ni(T )] ≤
T

K − 1

Step 2: From Lower Bounding Regret to Upper Bounding KL-divergence. Now by the classic
regret decomposition and Markov Inequality 6, we get7

RegT (π
ϵ, ν) = (T − Eνπϵ [N1(T )])∆ ≥ Mνπϵ (N1(T ) ≤ T/2)

T∆

2
,

and

RegT (π
ϵ, ν′) = ∆Eν′πϵ [N1(T )] +

∑
a/∈{1,i}

2∆Eν′πϵ [Na(T )] ≥ Mν′πϵ (N1(T ) > T/2)
T∆

2
.

7In all regret lower bound proofs, we are under the probability space over sequence of actions, produced
when πϵ interacts with ν for T time-steps. We do this to use the KL-divergence decomposition of Mνπϵ
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Let us define the event A ≜ {N1(T ) ≤ T/2} = {(a1, a2, . . . , aT ) : card({j : aj = 1}) ≤ T/2}.

By applying the Bretagnolle–Huber inequality, we have:

RegT (π
ϵ, ν) + RegT (π

ϵ, ν′) ≥ T∆

2
(Mνπϵ(A) +Mν′πϵ(Ac))

≥ T∆

4
exp(−DKL (Mνπϵ ∥Mν′πϵ))

Step 3: KL-divergence Decomposition with ϵ-global DP. Now, we apply Theorem 10 to upper-
bound the KL-Divergence between the marginals.

DKL (Mνπϵ ∥Mν′πϵ) ≤ 6ϵEνπϵ

[
T∑
t=1

TV
(
Pat

∥∥ P ′
at

)]
≤ 6ϵEνπϵ [Ni(T )] TV (pi ∥ p′i)

since ν and ν′ only differ in the arm i.

Finally, using Pinsker’s Inequality 9, we obtain

TV (pi ∥ p′i) ≤
√

1

2
DKL (N (0, 1) ∥ N (2∆, 1)) = ∆

Step 4: Choosing the Worst ∆. Plugging back in the regret expression, we find

RegT (π
ϵ, ν) + RegT (π

ϵ, ν′) ≥ T∆

4
exp (−6ϵEνπϵ [Ni(T )]∆)

≥ T∆

4
exp

(
− 6ϵT∆

K − 1

)
By optimising for ∆, we choose ∆ = K−1

6ϵT .

We conclude the proof by lower bounding exp(−1) with 48
131 , and using 2max(a, b) ≥ a+ b.

C.2 Stochastic Bandits: Problem-dependent Lower Bound

Theorem 3 (Problem-dependent Regret Lower Bound). Let the environment E be a set of K reward
distributions with finite means and a policy πϵ ∈ Πcons (E) ∩ Πϵ be a consistent policy8 over E
satisfying ϵ-global DP . Then, for all ν = (Pi)

K
i=1 ∈ E , it holds that

lim inf
T→∞

RegT (π
ϵ, ν)

log(T )
≥

∑
a:∆a>0

∆a

min

(
dinf (Pa, µ

∗,Ma)︸ ︷︷ ︸
without global DP

, 6 ϵ tinf (Pa, µ
∗,Ma)︸ ︷︷ ︸

with ϵ-global DP

) .

Proof. Let µa be the mean of the a-th arm in ν, ta = tinf (Pa, µ
∗,Ma) and πϵ ∈ Πcons (E) ∩Πϵ.

Since πϵ is consistent, by (Theorem 16.2, Lattimore and Szepesvári (2018)), it holds that

lim inf
T→∞

RegT (π
ϵ, ν)

log(T )
≥

∑
a:∆a>0

∆a

dinf (Pa, µ∗,Ma)
.

The theorem will follow by showing, for every suboptimal arm a:

lim inf
T→∞

Eνπϵ [Na(T )]

log(T )
≥ 1

6 ϵ ta

Fix a suboptimal arm a, and let α > 0 be an arbitrary constant.
8A policy π is called consistent over a class of bandits E if for all ν ∈ E and p > 0, it holds that

limT→∞
RT (π,ν)

Tp = 0. We denote the class of consistent policies over a set of environments E as Πcons (E).
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Step 1: Choosing the ‘Hard-to-distinguish’ Environment. Let ν′ ≜
(
P ′
j

)K
j=1

∈ E be a bandit with
P ′
j = Pj for j ̸= a and P ′

a ∈ Ma be such that TV (Pa ∥ P ′
a) ≤ ta + α and µ (P ′

a) > µ∗, which
exists by the definition of ta. Let µ′ ∈ RK be the vector of means of distributions of ν′.

Step 2: From Lower Bounding Regret to Upper Bounding KL-divergence. For simplicity
of notations, we use RegT = RegT (π

ϵ, ν), Reg′T = RegT (π
ϵ, ν), and A = {(a1, a2, . . . , aT ) :

card({j : aj = 1}) ≤ T/2}.

Then, by regret decomposition and Markov Inequality 6, we obtain

RegT +Reg′T ≥ T

2
(Mνπϵ(A)∆a +Mν′πϵ (Ac) (µ′

a − µ∗)) (17)

≥ T

2
min {∆a, µ

′
a − µ∗} (Mνπϵ(A) +Mν′πϵ (Ac))

≥ T

4
min {∆a, µ

′
a − µ∗} exp(−DKL (Mνπϵ ∥Mν′πϵ))

Step 3: KL-divergence Decomposition with ϵ-global DP. By Theorem 10 and the construction of
the ‘hard-to-distinguish’ environments, we obtain

DKL (Mνπϵ ∥Mν′πϵ) ≤ 6ϵEνπϵ [Na(T )] TV (Pa ∥ P ′
a)

≤ 6ϵEνπϵ [Na(T )] (ta + α)

Step 4: Rearranging and taking the limit inferior. Thus, we get

RegT +Reg′T ≥ T

4
min {∆a, µ

′
a − µ∗} exp (−6ϵEνπϵ [Na(T )] (ta + α))

Now, taking the limit inferior on both sides leads to

lim inf
T→∞

Eνπϵ [Na(T )]

log(T )
≥ 1

6ϵ (ta + α)
lim inf
T→∞

log

(
T min{∆a,µ

′
a−µ

∗}
4(RegT+Reg′

T )

)
log(T )

=
1

6ϵ (ta + α)

(
1− lim sup

T→∞

log
(
RegT +Reg′T

)
log(T )

)
=

1

6ϵ (ta + α)
.

The last equality follows from the definition of consistency, which says that for any p > 0, there
exists a constant Cp such that for sufficiently large T , RegT +Reg′T ≤ CpT

p. This property implies
that

lim sup
T→∞

log
(
RegT +Reg′T

)
log(T )

≤ lim sup
T→∞

p log(T ) + log (Cp)

log(T )
= p,

which gives the result since p > 0 was an arbitrary constant.

We arrive at the claimed result by taking the limit as α tends to zero.

Remark 2. For Bernoulli distributions, ta is equal to ∆a, so the private lower bound simplifies to:

O

( ∑
a:∆a>0

∆a
1

ϵ∆a
log(T )

)
= O

(
K log(T )

ϵ

)
Thus, our problem-dependent regret lower bound retrieves as a special case the lower bound found
in (Shariff and Sheffet, 2018) and established for Bernoulli distributions of rewards.
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C.3 Stochastic Linear Bandits: Minimax Lower Bound

Theorem 4 (Minimax Regret Lower Bound). Let A = [−1, 1]d and Θ =
{
−T−1/2, T−1/2

}d
. Then,

there exists a vector θ ∈ Θ leading to a minimax regret of linear bandits with ϵ-global DP such that

Regminimax
T (A,Θ) ≥ max

{
exp(−2)︸ ︷︷ ︸

without global DP

, exp(−6ϵd
√
T )︸ ︷︷ ︸

with ϵ-global DP

}d
8

√
T .

Proof. Due to Theorem 24.1,(Lattimore and Szepesvári, 2018), it holds that for any policy class Π,

Regminimax
T (A,Θ) ≥ exp(−2)

d

8

√
T .

Now, we focus on proving the ϵ-global DP part of the lower bound.

For θ, θ′ ∈ Θ, let ν and ν′ be the bandit instances corresponding resp. to θ and θ′. We denote
Mθ = Mν,πϵ and Mθ′ = Mν′,πϵ . Let Eθ and Eθ′ the expectations under Mθ and Mθ′ respectively.

Step 1: From Lower Bounding Regret to Upper Bounding KL-divergence We begin with

RegT (A, θ) = Eθ

[
T∑
t=1

d∑
i=1

(sign (θi)−Ati) θi

]

≥
√

1

T

d∑
i=1

Eθ

[
T∑
t=1

I {sign (Ati) ̸= sign (θi)}

]

≥
√
T

2

d∑
i=1

Mθ

(
T∑
t=1

I {sign (Ati) ̸= sign (θi)} ≥ T/2

)

In this derivation, the first equality holds because the optimal action satisfies a∗i = sign (θi)
for i ∈ [d]. The first inequality follows from an observation that (sign (θi)−Ati) θi ≥
|θi| I {sign (Ati) ̸= sign (θi)}. The last inequality is a direct application of Markov’s inequality 6.

For i ∈ [d] and θ ∈ Θ, we define

pθ,i ≜ Mθ

(
T∑
t=1

I {sign (Ati) ̸= sign (θi)} ≥ T/2

)
.

Now, let i ∈ [d] and θ ∈ Θ be fixed. Also, let θ′j = θj for j ̸= i and θ′i = −θi. Then, by the
Bretagnolle-Huber inequality,

pθ,i + pθ′,i ≥
1

2
exp (−DKL (Mθ ∥ Mθ′)) .

Step 2: KL-divergence Decomposition with ϵ-global DP. From Theorem 10, we obtain that

DKL (Mθ ∥ Mθ′) ≤ 6ϵEνπϵ

[
T∑
t=1

TV (N (⟨At, θ⟩ , 1) ∥ N (⟨At, θ′⟩ , 1))

]

≤ 6ϵEνπϵ

[
T∑
t=1

√
1

2
DKL (N (⟨At, θ⟩ , 1) ∥ N (⟨At, θ′⟩ , 1))

]

= 6ϵEνπϵ

[
T∑
t=1

√
1

4

[
⟨At, θ − θ′⟩2

]]

= 3ϵEνπϵ

[
T∑
t=1

|⟨At, θ − θ′⟩|

]
(18)
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≤ 3ϵEνπϵ

[
T∑
t=1

∥At∥ (∥θ − θ′∥)

]

≤ 3ϵEνπϵ

[
T
√
d× 2

√
d

1√
T

]
= 6ϵd

√
T

Here, the second inequality is a consequence of Pinsker’s inequality (Lemma 9). The third inequality
is due to Cauchy-Scwhartz. The last inequality holds true because At ∈ [−1, 1]d and θ, θ′ ∈{
−T−1/2, T−1/2

}d
Step 3: Choosing the ‘Hard-to-distinguish’ θ. We already have that

pθ,i + pθ′,i ≥
1

2
exp

(
−3ϵEνπϵ

[
T∑
t=1

|⟨At, θ − θ′⟩|

])
≥ 1

2
exp(−6ϵd

√
T )

Now, we apply an ‘averaging hammer’ over all θ ∈ Θ, such that |Θ| = 2d, to obtain

∑
θ∈Θ

1

|Θ|

d∑
i=1

pθ,i =
1

|Θ|

d∑
i=1

∑
θ∈Θ

pθ,i ≥
d

4
exp(−6ϵd

√
T ).

This implies that there exists a θ ∈ Θ such that
∑d
i=1 pθ,i ≥ d exp(−6ϵd

√
T )/4.

Step 4: Plugging Back θ in the Regret Decomposition. With this choice of θ, we conclude that

RegT (A, θ) ≥
√
T

2

d∑
i=1

pθ,i

≥ d
√
T

8
exp(−6ϵd

√
T )

C.4 Stochastic Linear Bandits: Problem-dependent Lower Bound

Theorem 5 (Problem-dependent Regret Lower Bound). Let A ⊂ Rd be a finite set spanning Rd and
θ ∈ Rd be such that there is a unique optimal action. Then, any consistent and ϵ-global DP bandit
algorithm πϵ satisfies

lim inf
T→∞

RegT (A, θ)
log(T )

≥ c(A, θ),

where the structural distinguishability gap is the solution of a constraint optimisation

c(A, θ) ≜ inf
α∈[0,∞)A

∑
a∈A

α(a)∆a, such that ∥a∥2
H−1

α
≤ min

{
0.5∆2

a︸ ︷︷ ︸
without global DP

, 3ϵρa(A)∆a︸ ︷︷ ︸
with ϵ-global DP

}

for all a ∈ A with ∆a > 0, Hα =
∑
a∈A α(a)aa

⊤, and an arm-structure dependent constant
ρa(A).

Proof. Let a∗ = argmaxa∈A⟨a, θ⟩ be the optimal action, which we assumed to be unique.

By Theorem 25.1, Lattimore and Szepesvári (2018),

lim sup
T→∞

log(T ) ∥a− a∗∥2Ḡ−1
T

≤ 1

2
∆2
a. (19)

Let M and M′ be the measures on the sequence of outcomes A1, . . . , AT induced by θ and θ′
respectively. Let E[·] and E′[·] be the expectation operators of M and M′, respectively.

Step 1: Choosing the ‘Hard to distinguish’ θ′. Let θ′ ∈ Rd be an alternative parameter to be chosen
subsequently. We follow the usual plan of choosing θ′ to be close to θ, but also ensuring that the
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optimal action in the bandit determined by θ′ is not a∗. Let ∆min = min {∆a : a ∈ A,∆a > 0},
α ∈ (0,∆min) and H be a positive definite matrix (to be chosen later) such that ∥a− a∗∥2H > 0.

Given this setting, we define

θ′ ≜ θ +
∆a + α

∥a− a∗∥2H
H (a− a∗) ,

which is chosen such that ⟨a− a∗, θ′⟩ = ⟨a− a∗, θ⟩+∆a + α = α.

This means that a∗ is α-suboptimal for the environment corresponding to θ′.

Step 2: From Lower Bounding Regret to Upper Bounding KL-divergence. For simiplicity, we
abbreviate RegT = RegT (A, θ) and Reg′T = RegT (A, θ′).
Then, by applying the classic regret decomposition and Markov’s inequality 6, we obtain

RegT = E

[∑
a∈A

Na(T )∆a

]
≥ T∆min

2
M (Na∗(T ) < T/2) ≥ Tα

2
M (Na∗(T ) < T/2) ,

Since a∗ is α-suboptimal in bandit θ′, it implies that

Reg′T ≥ Tα

2
M′ (Na∗(T ) ≥ T/2) .

Now, Bretagnolle–Huber inequality implies that

RegT +Reg′T ≥ Tα

2
(M (Na∗(T ) < T/2) +M′ (Na∗(T ) ≥ T/2))

≥ Tα

4
exp (−DKL (M ∥ M′))

Step 3: KL-divergence Decomposition with ϵ-global DP. By Equation 18, we have that

DKL (M ∥ M) ≤ 3ϵEνπϵ

[
T∑
t=1

|⟨At, θ − θ′⟩|

]

= 3ϵEνπϵ

[
T∑
t=1

∣∣∣∣∣
〈
At,

∆a + α

∥a− a∗∥2H
H (a− a∗)

〉∣∣∣∣∣
]

= 3ϵ
∆a + α

∥a− a∗∥2Ḡ−1
T

ρT (H),

where we define

ρT (H) ≜
∥a− a∗∥2Ḡ−1

T

∥a− a∗∥2H
Eνπϵ

[
T∑
t=1

|⟨At, H (a− a∗)⟩|

]
Thus, after re-arrangement, we get

3ϵ (∆a + α)

log(T ) ∥a− a∗∥2Ḡ−1
T

ρT (H) ≥ 1− log ((4RT + 4R′
T ) /α)

log(T )
. (20)

Step 4: Choosing H and Taking the Limit. The definition of consistency means that RegT and
Reg′T are both sub-linear in T . This implies that the second term in Equation (20) tends to zero for
large T . Thus, by tending T to ∞ and α to zero, we obtain

lim inf
T→∞

ρT (H)

log(T ) ∥a− a∗∥2Ḡ−1
T

≥ 1

3ϵ∆a
.

We now choose H to be a cluster point of the sequence
(
Ḡ−1
T /

∥∥Ḡ−1
T

∥∥)
T∈S where

∥∥Ḡ−1
T

∥∥ is the
spectral norm of the matrix Ḡ−1

T .
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Fact 2: For this choice of H ,
lim inf
T→∞

ρT (H) ≤ ρa(A),

where

ρa(A) ≜
K∑

j=1,∥aj∦=0

∣∣aTj (a− a∗)
∣∣

∥aj∥2
.

Finally,

lim sup
T→∞

log(T ) ∥a− a∗∥2Ḡ−1
T

≤ 3ϵ∆aρa(A).

Combined with Equation 19, we get that

lim sup
T→∞

log(T ) ∥a− a∗∥2Ḡ−1
T

≤ min

(
1

2
∆2
a, 3ϵ∆aρa(A)

)
.

Using that

lim
T→∞

∥a− a∗∥Ḡ−1
T

∥a∥Ḡ−1
T

= 1

from Theorem 25.1, Lattimore and Szepesvári (2018), we get that

lim sup
T→∞

log(T ) ∥a∥2Ḡ−1
T

≤ min

(
1

2
∆2
a, 3ϵ∆aρa(A)

)
.

Step 5: Getting Back to the Regret. We conclude using the same steps as in the Corollary
2 (Lattimore and Szepesvari, 2017).

Now, we prove Fact 2.

Fact 2. If H is a cluster point of the sequence
(
Ḡ−1
T /

∥∥Ḡ−1
T

∥∥)
T∈S and

∥∥Ḡ−1
T

∥∥ is the spectral norm
of the matrix Ḡ−1

T , then the following inequality holds true:

lim inf
T→∞

ρT (H) ≤ ρa(A),

where

ρa(A) ≜
K∑

j=1,∥aj∦=0

∣∣aTj (a− a∗)
∣∣

∥aj∥2
.

Proof. We let S be a subset so that Ḡ−1
T /

∥∥Ḡ−1
T

∥∥ converges to H on T ∈ S. Then,

lim inf
T→∞

ρT (H) ≤ lim inf
T∈S

ρT (Ḡ
−1
T /

∥∥Ḡ−1
T

∥∥)
= lim inf

T∈S
Eθ

[
T∑
t=1

∣∣〈At, Ḡ−1
T (a− a∗)

〉∣∣]

= lim inf
T∈S

K∑
j=1

Eθ(Nj(T ))
∣∣aTj Ḡ−1

T (a− a∗)
∣∣

= lim inf
T∈S

K∑
j=1,∥aj∦=0

Eθ(Nj(T ))
∣∣aTj Ḡ−1

T (a− a∗)
∣∣
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Let j be such that ∥aj∥ ≠ 0.

Now, we aim to upper bound the term
∣∣aTj Ḡ−1

T (a− a∗)
∣∣

First, we decompose a− a∗ into two orthogonal components, which are aligned and orthogonal to aj
respectively.

a− a∗ = αjaj + bj ,

where a⊤j bj = 0 and αj =
aTj (a−a∗)

∥aj∥2 .

On the other hand, we have that

ḠT = Eθ

[
T∑
t=1

AtA
⊤
t

]
=

K∑
j=1

Eθ(Nj(T ))aja⊤j ⪰ Eθ(Nj(T ))aja⊤j

Since

(
Eθ(Nj(T ))aja⊤j

)†

=
1

Eθ(Nj(T ))(a⊤j aj)2
aja

⊤
j ,

and

(
Eθ(Nj(T ))aja⊤j

)†

bj = 0,

only the component of a−a∗ in the direction of aj matters in the dot product aTj Ḡ
−1
T (a− a∗). Thus,∣∣aTj Ḡ−1

T (a− a∗)
∣∣ ≤ |αj |

Eθ(Nj(T ))(a⊤j aj)2
aTj aja

T
j aj

=
|αj |

Eθ(Nj(T ))

Consequently,

lim inf
T→∞

ρT (H) ≤
K∑

j=1,∥aj∦=0

∣∣aTj (a− a∗)
∣∣

∥aj∥2
≜ ρa(A)

Example 3 (ρa(A) for an orthogonal set of arms). If the action space is the orthogonal basis, then
ρa(A) = 2, because:

ḠT =

E(N1(T ))
. . .

E(Nd(T ))


and: ∣∣〈At, Ḡ−1

T (a− a∗)
〉∣∣ = 1

E(Na(T ))
IAt=a +

1

E(Na⋆(T ))
IAt=a⋆

so:

E

[
T∑
t=1

∣∣〈At, Ḡ−1
T (a− a∗)

〉∣∣] = 2
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D Privacy Analysis of Algorithm 1

In this section, we prove that any bandit algorithm designed using the framework of Algorithm 1
satisfies ϵ-global DP. We establish the claim by proving ϵ-global DP for the set of private indices
computed in Algorithm 1 and the final result is a consequence of the post-processing property of DP
(Lemma 5).
Lemma 1 (Privacy of the (l + 1)-means Computed in Algorithm 1). Let us define the private
empirical mean of the rewards between steps i and j (i < j) as

f ϵ{ri, . . . , rj} ≜
1

j − i

j∑
t=i

rt + Lap

(
1

(j − i)ϵ

)
. (21)

If 1 < t1 < · · · < tℓ < T and rt ∈ [0, 1], the mechanism gϵ mapping the sequence of rewards
(r1, r2, . . . , rT−1, rT ) to (ℓ + 1)-private empirical means (f ϵ{r1, . . . , rt1−1}, f ϵ{rt1 , . . . , rt2−1},
. . . , f ϵ{rtℓ−1

, . . . , rtℓ−1}, f ϵ{rtℓ , . . . , rT }) satisfies ϵ-DP.

Proof. Let rT ≜ (r1, . . . , rT ) and r′T ≜ (r′1, . . . , r
′
T ) be two neighbouring reward sequences in

[0,1]. This implies that ∃j ∈ [1, T ] such that rj ̸= r′j and ∀t ̸= j, rt = r′t.

Let ℓ′ be such that tℓ′ ≤ j ≤ tℓ′+1 − 1, and follows the convention that t0 = 1 and tℓ+1 = T + 1.

Let µ ≜ (µ0, . . . , µℓ) a fixed sequence of outcomes obtained using Equation (21). Then,

P(gϵ(rT ) = µ)

P(gϵ(r′T ) = µ)
=

P
(
f ϵ{rtℓ′ , . . . , rtℓ′+1−1} = µℓ′

)
P
(
f ϵ{rtℓ′ , . . . , rtℓ′+1−1} = µℓ′

) ≤ eϵ,

where the last inequality holds true because f ϵ satisfies ϵ-DP following Theorem 1.

Theorem 6 (ϵ-global DP for Algorithm 1). For any index Iϵa computed using the private empirical
mean of the rewards collected in the last active episode of arm a, Algorithm 1 satisfies ϵ-global DP.

Proof. Fix two neighboring reward streams rT = {r1, . . . , rT } and r′T = {r′1, . . . , r′T }.
This implies that ∃j ∈ [1, T ] such that rj ̸= r′j and ∀t ̸= j, rt = r′t.
We also fix a sequence of actions aT = {a1, . . . , aT }.
We want to show that: Pr(π(rT ) = aT ) ≤ eϵPr(π(r′T ) = aT ).

The main idea is that the change of reward in the j-th reward only affects the empirical mean
computed in one episode, which is made private using the Laplace Mechanism and Lemma 1.

• Since rj−1 = r′j−1, Pr(π(rj−1) = aj−1) = Pr(π(r′j−1) = aj−1).

• Let tℓ ≤ j < tℓ+1 and tℓ′ ≤ j < tℓ′+1 be the episodes corresponding to the jth reward
in rT and r′T respectively. Since rj−1 = r′j−1, we get that ℓ = ℓ′. Thus, Pr(π(rtℓ+1) =
atℓ+1) = Pr(π(r′tℓ+1) = atℓ+1).

• Let µ̃ℓaj ,ϵ and µ̃
′ℓ
a,ϵ be the private means of arm aj computed in the episode [tℓ, tℓ+1], by the

Laplace mechanism, for every interval I ∈ R, Pr(µ̃ℓa,ϵ ∈ I) ≤ eϵPr(µ̃
′ℓ
a,ϵ ∈ I).

• Finally, since {rj+1, . . . , rT } = {r′j+1, . . . , r
′
T }, Pr(π(rT ) = aT |µ̃ℓa,ϵ ∈ I) =

Pr(π(r′T ) = aT |µ̃′ℓ
a,ϵ ∈ I)

Now, we conclude the argument by using a chain rule.

Since Theorem 6 holds for any index-based bandit algorithm that uses only private empirical means
of rewards (Equation (21)) of the last active episode to compute the indices, it also implies that
AdaP-UCB and AdaP-KLUCB satisfy ϵ-global DP.
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E Upper Bounds on Regret: AdaP-UCB and AdaP-KLUCB

E.1 Concentration Inequalities

Lemma 3. Assume that (Xi)1≤i≤n are iid random variables in [0, 1], with E(Xi) = µ. Then, for
any δ ≥ 0,

P

µ̂n + Lap

(
1

nϵ

)
−

log
(
1
δ

)
nϵ

−

√
log
(
1
δ

)
2n

≥ µ

 ≤ 3

2
δ, (22)

and

P

µ̂n + Lap

(
1

nϵ

)
+

log
(
1
δ

)
nϵ

+

√
log
(
1
δ

)
2n

≤ µ

 ≤ 3

2
δ, (23)

where µ̂n = 1
n

∑n
t=1Xt

Proof. We have that

p1 ≜ P

µ̂n + Lap

(
1

nϵ

)
−

log
(
1
δ

)
nϵ

−

√
log
(
1
δ

)
2n

≥ µ


≤ P

µ̂n −

√
log
(
1
δ

)
2n

≥ µ

+ P

(
Lap

(
1

nϵ

)
−

log
(
1
δ

)
nϵ

≥ 0

)

≤ δ +
δ

2
=

3

2
δ,

where the last inequality is due to Lemma 11 and Lemma 10.

Similarly,

p2 ≜ P

µ̂n + Lap

(
1

nϵ

)
+

log
(
1
δ

)
nϵ

+

√
log
(
1
δ

)
2n

≤ µ


≤ P

µ̂n +

√
log
(
1
δ

)
2n

≤ µ

+ P

(
Lap

(
1

nϵ

)
+

log
(
1
δ

)
nϵ

≤ 0

)

≤ δ +
δ

2
=

3

2
δ,

where the last inequality is due to Lemma 11 and Lemma 10.

Lemma 4. Let X1, X2, . . . , Xn be a sequence of independent random variables sampled from a
Bernoulli distribution with mean µ, and let µ̂n = 1

n

∑n
t=1Xt be the sample mean. Let

µ̆n(δ) ≜ Clip0,1

(
µ̂n + Lap

(
1

nϵ

)
+

log( 1δ )

nϵ

)
(24)

for δ > 0 be the clipped and private empirical mean.

Claim 1. For any δ > 0 and α ∈ [0, µ], the following inequality holds:

P(µ ≥ µ̆n(δ) + α) ≤ exp(−nd(µ− α, µ)) +
1

2
δ (25)

Claim 2. Furthermore for δ ≥ 0, we define

Un(δ) ≜ max

{
q ∈ [0, 1] : d (µ̆n (δ) , q) ≤

log
(
1
δ

)
n

}
(26)

Then,

P(µ ≥ Un(δ)) ≤
3

2
δ (27)
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Proof. Here, we prove Claim 1 followed by Claim 2.

Claim 1. Since µ̆n(δ) = min
{
max

{
0, µ̂n + Lap

(
1
nϵ

)
+

log( 1
δ )

nϵ

}
, 1
}

, we have that

µ− α ≥ µ̆n(δ) ⇒ µ− α ≥ 1 or µ− α ≥ max

{
0,

(
µ̂n + Lap

(
1

nϵ

)
+

log( 1δ )

nϵ

)}
⇒ µ− α ≥ µ̂n + Lap

(
1

nϵ

)
+

log( 1δ )

nϵ
(since µ ≤ 1)

⇒ µ− α ≥ µ̂n or Lap

(
1

nϵ

)
+

log( 1δ )

nϵ
≤ 0.

It implies that

P(µ ≥ µ̆n(δ) + α) ≤ P
(
µ ≥ µ̂n + α

)
+P
(
Lap

(
1

nϵ

)
+

log( 1δ )

nϵ
≤ 0

)
≤ exp(−nd(µ− α, µ)) +

1

2
δ.

The last inequality is due to Equation 38 of Lemma 13 and Lemma 10.

Claim 2.

We have that the sets

{µ ≥ Un(δ)} =
(a)

{µ ≥ Un(δ) ≥ µ̆n(δ)}

=
(b)

{d(µ̆n(δ), µ) ≥ d(µ̆n(δ), Un(δ)), µ ≥ µ̆n(δ)}

=
(c)

{d(µ̆n(δ), µ) ≥
log( 1δ )

n
, µ ≥ µ̆n(δ)}

=
(d)

{µ̆n(δ) ≤ µ− α}

Here, we chose an α > 0 such that d(µ− α, µ) =
log( 1

δ )

n .

Step (a) holds because Un(δ) ≥ µ̆n(δ) by the definition of Un(δ). Step (b) also holds true since
d(µ̆n(δ), ·) is increasing on [µ̆n(δ), 1]. Since d(µ̆n(δ), Un(δ)) =

log( 1
δ )

n by the definition of Un(δ),
we obtain the equality in Step (c). Finally, Step (d) is obtained by inverting the relative entropy.

We conclude the proof by

P{µ ≥ Un(δ)} = P {µ̆n(δ) ≤ µ− α}

≤ exp(−nd(µ− α, µ)) +
1

2
δ (by Claim 1)

= δ +
δ

2
=

3

2
δ (by substituting α)

E.2 Generic Regret Analysis for Algorithm 1

Algorithm 1 is a generic framework to construct an extension of any optimistic index-based bandit
algorithm, which would satisfy ϵ-global DP. The algorithm is based on the index Iϵa of each arm.
Iϵa is computed using the private empirical mean of the last active episode of arm a and is a high
probability upper bound of the real mean µa.

To explicate the two conditions on arm indexes, we introduce the notation Iϵa(t− 1, α, s), which is
the index of arm a, at time-step t and computed using s reward samples from arm a.

Thus, we can express the index computed using just the last active episode as

Iϵa(t− 1, α) = Iϵa(t− 1, α,
1

2
Na(t− 1)). (28)
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Because Iϵa(t−1, α) only uses samples collected from the last active episode, and due to the doubling,
the last active episode’s size is exactly half the number of times arm a was pulled since the beginning.

The optimism of the index is ensured by the fact that

P (Iϵa(t− 1, α, s) ≤ µa) ≤
3

2

1

tα
(29)

for every arm a, every sample size s and every time-step t, where α is the confidence level.
Theorem 11. Let a be a suboptimal arm and ℓ ∈ N such that 2ℓ < T . Then, Algorithm 1 using an
index Iϵa satisfying Equations 28 and 29, also satisfies that for any α > 3,

E[Na(T )] ≤ 2ℓ+1 + P
(
Gca,ℓ,T

)
T +

α

α− 3
,

where Ga,ℓ,T = {Iϵa(T − 1, α, 2ℓ) < µ∗} and Gca,ℓ,T is the complement of Ga,ℓ,T

Proof. Without loss of generality, we assume the first arm is the optimal one (µ∗ = µ1) and denote a
suboptimal arm by a (1 < a ≤ K).

We leverage the standard idea of UCB-type proofs: if arm a is chosen at the beginning of an episode
ℓ, then either its index at tℓ is larger than the true mean of the first arm, or the true mean of the first
arm is larger than the first arm’s index at tℓ.

Since decisions, i.e. playing the arm with the highest index, are only taken at the beginning of an
episode, we introduce ϕwhich takes as input a time step and outputs the time step corresponding to the
beginning of an episode. Formally, for each t ∈ [K+1, T ], let ϕ(t) = tℓ such that tℓ ≤ t ≤ tℓ+1− 1.
In Example 2, ϕ(5) = 4 and ϕ(9) = 7.

Formally, ϕ(t) is a random variable such that

∀t : ϕ(t) ≤ t ≤ 2ϕ(t) (30)

Step 1: Decomposition of Na(T ). We observe that

Na(T ) = 1 +

T∑
t=K+1

I{At = a}

= 1 +

T∑
t=K+1

I{At = a and Iϵ1(ϕ(t)− 1, α) > µ1}+ I{At = a and Iϵ1(ϕ(t)− 1, α) ≤ µ1}

≤ 1 +N ′
a(T )︸ ︷︷ ︸

Term1

+

T∑
t=K+1

I{Iϵ1(ϕ(t)− 1, α) ≤ µ1}︸ ︷︷ ︸
Term2

We define N ′
a(T ) ≜

∑T
t=K+1 I{At = a and Iϵ1(tℓ′ − 1, α) > µ1}

Step 2: Decomposition of Term 1: N ′
a(T ). Let Ga,ℓ,T be the ‘good’ event defined by

Ga,ℓ,T = {Iϵa(T − 1, α, 2ℓ) < µ1}.

The main part of the proof is decomposing N ′
a(T ) among the ‘good’ and the ‘bad’ events, i.e.

E[N ′
a(T )] = E[I{Ga,ℓ,T }N ′

a(T )] + E[I{Gca,ℓ,T }N ′
a(T )] ≤ 2ℓ+1 + P(Gca,ℓ,T )T.

Gca,ℓ,T denotes the complement of Ga,ℓ,T .

To prove the last inequality, we only need to prove that when Ga,ℓ,T happens, N ′
a(T ) ≤ 2ℓ+1. We

prove it by contradiction.

Hence, let us assume that Ga,ℓ,T holds but N ′
a(T ) > 2ℓ+1.

This assumption implies that the arm a is played more than 2ℓ+1 times. Thus, there must exist a round
tℓ′ , where Na(tℓ′ − 1) = 2ℓ+1, Atℓ′ = i and Iϵ1(tℓ′ − 1, α) ≥ µ1. Since indices are computed only
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using the samples from the last active episode, Iϵa(tℓ′ − 1, α) is computed using exactly 2ℓ reward
samples from arm a.

Thus, we obtain

Iϵa(tℓ′ − 1, α) = Iϵa(tℓ′ − 1, α, 2ℓ)

≤ Iϵa(T − 1, α, 2ℓ) (because tℓ′ ≤ T and Iϵa(·, α, 2ℓ) is increasing)
< µ1 (definition of Ga,ℓ,T )
≤ Iϵ1(tℓ′ − 1, α)

The last inequality contradicts the fact thatAtℓ′ = i and thus, establishes the claim thatN ′
a(T ) ≤ 2ℓ+1

under the ‘good’ event.

Step 3: Upper-bounding Term 2. To conclude,

E

[
T∑

t=K+1

I{Iϵ1(ϕ(t)− 1, α) ≤ µ1}

]
=

T∑
t=K+1

P{Iϵ1(ϕ(t)− 1, α) ≤ µ1}

≤
T∑

t=K+1

t∑
ϕ=t/2

P{Iϵ1(ϕ− 1, α) ≤ µ1}

≤
T∑

t=K+1

t∑
ϕ=t/2

ϕ∑
s=1

P{Iϵ1(ϕ− 1, α, s) ≤ µ1}

≤
T∑

t=K+1

t∑
ϕ=t/2

ϕ∑
s=1

3

2

1

ϕα
(Equation 29)

=
3

2

T∑
t=K+1

t∑
ϕ=t/2

1

ϕα−1

≤ 3

2

T∑
t=K+1

2α−2

tα−2
(because ϕ ≥ t

2
)

≤ 3

2
2α−2

∫ T

K

1

xα−2
dx (sum-integral inequality)

≤ 3

2
2α−2 1

α− 3

1

Kα−3
=

3

2

2

α− 3

(
2

K

)α−3

≤ 3

α− 3

for α > 3 and K ≥ 2.

Here, the first inequality is due to an union bound on ϕ(t) ∈ [t/2, t] (Equation 30), and the second
inequality is due to a union bound on N1(ϕ− 1).

Step 4: Combining the Bounds on Terms 1 and 2.

E[Na(T )] ≤ 1 + 2ℓ+1 + P
(
Gca,ℓ,T

)
T +

3

α− 3

= 2ℓ+1 + P
(
Gca,ℓ,T

)
T +

α

α− 3

Now we design indexes that satisfy the conditions of Theorem 11, namely AdaP-UCB and
AdaP-KLUCB.

To obtain the final regret bounds, we only have to choose ℓ big enough such that P
(
Ia(T, 2

ℓ) ≥ µ1

)
T

is negligible. This corresponds to the leading term in the regret upper-bounds, and this is where the
regrets of AdaP-UCB and AdaP-KLUCB differ.
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We explicate the issues of designing the indexes and choosing corresponding ℓ in the following
section, which leads to the regret upper bounds of AdaP-UCB and AdaP-KLUCB.

E.3 Regret Analysis for AdaP-UCB and AdaP-KLUCB

Theorem 7. For rewards in [0, 1], AdaP-UCB satisfies ϵ-global DP, and for α > 3, it yields a regret

RegT (AdaP-UCB, ν) ≤
∑

a:∆a>0

(
16α

min{∆a, ϵ}
log(T ) +

3α

α− 3

)
.

Proof. The proof is constituted of three steps.

Step 1: Designing an Index satisfying Equation (28), Equation (29), and ϵ-global DP. For
AdaP-UCB, the index is defined as

Iϵa(tℓ − 1, α) = µ̃ℓa,ϵ +

√
α log(tℓ)

2× 1
2Na(tℓ − 1)

+
α log(tℓ)

ϵ× 1
2Na(tℓ − 1)

,

where

µ̃ℓa,ϵ = µ̂a, 12Na(tℓ−1) + Lap

(
1

ϵ× 1
2Na(tℓ − 1)

)
(31)

is the private empirical mean of arm a computed using only samples from the last active episode, and
µ̂a,s is the empirical mean of arm a calculated using s samples of reward from arm a.

This index verifies the first condition (Equation 28) of Theorem 11.

The second condition (Equation 29) of Theorem 11 follows directly from Equation 23 of Lemma 3

By Theorem 6,AdaP-UCB is ϵ-global DP.

By Theorem 11, for every suboptimal arm a, we have that

E[Na(T )] ≤ 2ℓ+1 + P
(
Gca,ℓ,T

)
T +

α

α− 3
,

where

Ga,ℓ,T =

{
µ̂a,2ℓ + Lap

(
1

2ℓϵ

)
+

√
α log(T )

2× 2ℓ
+
α log(T )

ϵ2ℓ
< µ1

}
.

Step 2: Choosing an ℓ. Now, we observe that

P(Gca,ℓ,T ) = P

(
µ̂a,2ℓ + Lap

(
1

2ℓϵ

)
+

√
α log(T )

2× 2ℓ
+
α log(T )

ϵ2ℓ
≥ µ1

)

= P

(
µ̂a,2ℓ + Lap

(
1

2ℓϵ

)
−
√
α log(T )

2× 2ℓ
− α log(T )

ϵ2ℓ
≥ µa + γ

)

for γ =

(
∆a − 2

√
α log(T )
2×2ℓ

− 2α log(T )
ϵ2ℓ

)
.

The idea is to choose ℓ big enough so that γ ≥ 0.

Let us consider the contrary, i.e.

γ < 0 ⇒
√
2ℓ <

√
α log(T )

2∆2
a

(
1 +

√
1 +

4∆a

ϵ

)

⇒ 2ℓ <
α log(T )

2∆2
a

(
4 +

8∆a

ϵ

)
⇒ 2ℓ <

4α log(T )

∆amin{ϵ, 2∆a}
. (32)

32



Thus, by choosing

ℓ =

⌈
1

log(2)
log

(
4α log(T )

∆amin{ϵ, 2∆a}

)⌉
we ensure γ > 0. This also implies that

P(Gca,ℓ,T ) ≤ P

(
µ̂a,2ℓ + Lap

(
1

2ℓϵ

)
−
√
α log(T )

2× 2ℓ
− α log(T )

ϵ2ℓ
≥ µa

)
≤ 3

2Tα

The last inequality is due to Equation 22 of Lemma 3.

Step 3: The Regret Bound. Combining Steps 1 and 2, we get that

E[Na(T )] ≤
α

α− 3
+ 2ℓ+1 + T × 3

2Tα

≤ 16α log(T )

∆amin{ϵ, 2∆a}
+

3α

α− 3
. (33)

Plugging this upper bound back in the definition of problem-dependent regret concludes the proof.

Remark 3. The leading term of the regret is 16α log(T )
∆a min{ϵ,2∆a} , which is 4 times more than what we

got from Equation 32. A multiplicative factor of 2 is introduced due to the doubling and another
multiplicative factor of 2 is due to the forgetting. Thus, the combined price of doubling and forgetting
is a multiplicative constant 4 in the leading term of regret.

Theorem 8. When the rewards are sampled from Bernoulli distributions, AdaP-KLUCB satisfies
ϵ-global DP, and for α > 3 and constants C1(α), C2 > 0, it yields a regret

RegT (AdaP-KLUCB, ν) ≤
∑

a:∆a>0

(
C1(α)∆a

min{d(µa, µ∗), C2ϵ∆a}
log(T ) +

α

α− 3

)
.

Proof. The proof is constituted of three steps.

Step 1: Designing an Index satisfying Equation (28), Equation (29), and ϵ-global DP. For
AdaP-KLUCB, the index is defined as

Iϵa(tℓ − 1, α) = max

{
q ∈ [0, 1] : d

(
µ̆ℓ,αa,ϵ , q

)
≤ α log(tℓ)

1
2Na(tℓ − 1)

}
≜ Ua, 12Na(tℓ−1)

(
1

tαℓ

)
,

where µ̆ℓ,αa,ϵ = Clip0,1

(
µ̃ℓa,ϵ +

α log(tℓ)

ϵ 1
2Na(tℓ−1)

)
= µ̆a, 12Na(tℓ−1)

(
1
tαℓ

)
as defined in Equation 24,

µ̃ℓa,ϵ is the private empirical computed only using the samples from the last active episode (as

defined for AdaP-UCB, and Ua,s(δ) = max

{
q ∈ [0, 1] : d (µ̆a,s (δ) , q) ≤

log( 1
δ )

s

}
as defined in

Equation 26

This index verifies the first condition (Equation 28) of Theorem 11.

The second condition (Equation 29) of Theorem 11 follows directly from Equation 23 of Lemma 3

By Theorem 6, AdaP-KLUCB also satisfies ϵ-global DP.

By Theorem 11, for every suboptimal arm a, we have that

E[Na(T )] ≤ 2ℓ+1 + P
(
Gca,ℓ,T

)
T +

α

α− 3
,

where

Ga,ℓ,T =

{
Ua,2ℓ

(
1

Tα

)
< µ1

}
.
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Step 2: Choosing an ℓ. We observe that

P(Gca,ℓ,T ) = P
(
Ua,2ℓ

(
1

Tα

)
≥ µ1

)
≤ P

(
d+
(
µ̆a,2ℓ

(
1

Tα

)
, µ1

)
≤ α log(T )

2ℓ

)
(by definition of Ua,2ℓ )

where d+(p, q) ≜ d(p, q)Ip<qand d(p, q) is the relative entropy between Bernoulli distributions as
stated in Definition 5.

Let β > 0, and c(β) ∈ [0, 1] such that: d(µa + c(β)∆a, µ1) =
d(µa,µ1)

1+β .

Since d(·, µ1) is a bijective function from [µa, µ1] to [0, d(µa, µ1)], we get that c(β) always exists
and is unique.

In addition, c(β) verifies: limβ→0 c(β) = 0, limβ→+∞ c(β) = 1 and c(β) is an increasing function
of β.

First, we choose ℓ such that

2ℓ ≥ (1 + β)α log(T )

d(µa, µ1)
. (34)

This leads to

P(Gca,ℓ,T ) ≤ P
(
d+
(
µ̆a,2ℓ

(
1

Tα

)
, µ1

)
≤ d(µa, µ1)

1 + β

)
= P

(
d+
(
µ̆a,2ℓ

(
1

Tα

)
, µ1

)
≤ d(µa + c(β)∆a, µ1)

)
(definition of c(β))

≤ P
(
µ̆a,2ℓ

(
1

Tα

)
≥ µa + c(β)∆a

)
(d(·, µ1) is decreasing on [0, µ1])

≤ P
(
µ̂a,2ℓ + Lap

(
1

2ℓϵ

)
+
α log(T )

ϵ2ℓ
≥ µa + c(β)∆a

)
(definition of µ̆)

Let us consider γℓ,T such that d(µa+γℓ,T∆a, µa) =
log(T )

2ℓ
. We prove its existence and upper bound

it later in Fact 3. Thus, we obtain

P(Gca,ℓ,T ) ≤ P
(
µ̂a,2ℓ − γℓ,T∆a + Lap

(
1

2ℓϵ

)
− log(T )

ϵ2ℓ
≥ µa + (c(β)− γℓ,T )∆a −

(1 + α) log(T )

ϵ2ℓ

)
= P

(
µ̂a,2ℓ − γℓ,T∆a + Lap

(
1

2ℓϵ

)
− log(T )

ϵ2ℓ
≥ µa + θ

)
Here, θ ≜ (c(β)− γℓ,T )∆a − (1+α) log(T )

ϵ2ℓ
.

By choosing

2ℓ ≥ (1 + α) log(T )

(c(β)− γℓ,T )ϵ∆a
, (35)

we ensure that θ ≥ 0. Thus, we get

P(Gca,ℓ,T ) ≤ P
(
µ̂a,2ℓ − γℓ,T∆a + Lap

(
1

2ℓϵ

)
− log(T )

ϵ2ℓ
≥ µa

)
≤ P

(
µ̂a,2ℓ − γℓ,T∆a ≥ µa

)
+ P

(
Lap

(
1

2ℓϵ

)
− log(T )

ϵ2ℓ
≥ 0

)
≤ exp

(
−2ℓd(µa + γℓ,T∆a, µa)

)
+

1

2T

=
3

2T
.

The last inequality is due to Equation 37 of Lemma 13 and Lemma 10.

Fact 3. B ≜ {β > 0 : c(β) > γℓ,T } ≠ ∅.
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Combining both conditions 34 and 34, we choose ℓ to be the smallest integer such that

2ℓ ≥ inf
β∈B

max

{
(1 + β)α

d(µa, µ1)
,

(1 + α)

(c(β)− γℓ,T )ϵ∆a

}
log(T ) ≜

1
4C1(α)

min{d(µa, µ1), C2ϵ∆a}
log(T )

Step 3: The Regret Bound. Combining Steps 1 and 2, we get that

E[Na(T )] ≤ 2ℓ+1 + T × 3

2T
+

α

α− 3

≤ C1(α)

min{d(µa, µ1), C2ϵ∆a}
log(T ) +

3α

α− 3

Plugging this upper bound back in the definition of problem-dependent regret concludes the proof.

To conclude, we prove Fact 3.
Fact 3. B ≜ {β > 0 : c(β) > γℓ,T } ≠ ∅.

Proof. Step 1: Going from d(·, µa) to d(·, µ1). The difficulty of the proof lies in the fact that γℓ,T
is defined by inverting d(·, µa) while c(β) is defined by inverting d(·, µ1).

To handle that, we investigate the function g(x) ≜ d(x, µa)− d(x, µ1).

g satisfies the following properties:

• g is continuous and increasing in the interval [µa, µ1],

• g(µa) = −d(µa, µ1) < 0, and

• g(µ1) = d(µ1, µa) > 0.

This implies that there exists a unique root of g(x), where it changes sign. Specifically, there exists a
unique z ∈ [µa, µ1] such that:

• g(z) = 0

• ∀x ∈ [µa, z[: g(x) < 0

• ∀x ∈]z, µ1] : g(x) > 0

and consequently z verifies d(z, µa) = d(z, µ1)

Step 2: Choosing β. We choose β such that d(µa,µ1)
1+β = d(z, µa) = d(z, µ1).

Step 3: Consequence of the choice of β on c(β). Thus,

d(µa + c(β)∆a, µ1) = d(z, µ1),

which yields

z = µa + c(β)∆a

by uniqueness of z.

Step 4: Consequence of the choice of β on γℓ,T . On the other hand,

d(µa + γℓ,T∆a, µa) =
log(T )

2ℓ
(by definition of γℓ,T )

≤ d(µa, µ1)

α(β + 1)
(by Equation 34)

< d(z, µa) (since α > 3)

= d(µa + c(β)∆a, µa) (36)

As a consequence, we conclude that γℓ,T exists and γℓ,T < c(β) as d(·, µa) is an increasing function
in the interval [µa, 1]
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E.4 Problem-independent Regret Bounds

In this section, we provide problem-independent (or minimax) regret upper bounds for AdaP-UCB.
Theorem 12. For rewards in [0, 1], AdaP-UCB yields a regret

RegT (AdaP-UCB, ν) ≤ 3α

α− 3

∑
a

∆a + 8
√
αKT log(T ) +

16αK log(T )

ϵ

which achieves the minimax lower bound of Thm 2 up to log(T ) factors.

Proof. Let ∆ be a value to be tuned later.
We have that

RegT (AdaP-UCB, ν) =
∑
a

∆aE[Na(T )] =
∑

a:∆a≤∆

∆aE[Na(T ) +
∑

a:∆a>∆

∆aE[Na(T )]

≤ T∆+
∑

a:∆a>∆

∆a

(
16α log(T )

∆amin{ϵ,∆a}
+

3α

α− 3

)
(eq. 33)

≤ T∆+
16αK log(T )

∆
+

16αK log(T )

ϵ
+

3α

α− 3

∑
a

∆a

≤ 8
√
αKT log(T ) +

16αK log(T )

ϵ
+

3α

α− 3

∑
a

∆a

where the last step is by taking ∆ = 4
√

αK log(T )
T .

Remark 4. The same bound is achieved by AdaP-KLUCB (up to multiplicative constants) by using
that d(µa, µ∗) ≥ 2∆2

a and using the same steps in Thm 12.
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F Existing Technical Results and Definitions

In this section, we summarise the existing technical results and definitions required to establish our
proofs.
Lemma 5 (Post-processing Lemma (Proposition 2.1, (Dwork and Roth, 2014))). If a randomised
algorithm A satisfies (ϵ, δ)-Differential Privacy and f is an arbitrary randomised mapping defined
on A’s output, then f ◦ A satisfies (ϵ, δ)-DP.
Lemma 6 (Markov’s Inequality). For any random variable X and ε > 0,

P(|X| ≥ ε) ≤ E[|X|]
ε

.

Definition 4 (Consistent Policies). A policy π is called consistent over a class of bandits E if for all
ν ∈ E and p > 0, it holds that

lim
T→∞

RegT (π, ν)

T p
= 0.

The class of consistent policies over E is denoted by Πcons (E).
Lemma 7 (Divergence decomposition). Let ν = (P1, . . . , PK) and ν′ = (P ′

1, . . . , P
′
K) be two bandit

instances. Fix some policy π and let Pνπ and Pν′π be the probability measures on the canonical
bandit model. Then,

DKL (Pνπ ∥ Pν′π) =

K∑
a=1

Eν [Na(T )] D (Pa, P
′
a) .

Lemma 8 (Bretagnolle-Huber inequality). Let P and Q be probability measures on the same
measurable space (Ω,F), and let A ∈ F be an arbitrary event. Then,

P(A) +Q (Ac) ≥ 1

2
exp(−D(P,Q)),

where Ac = Ω\A is the complement of A.
Lemma 9 (Pinsker’s Inequality). For two probability measures P and Q on the same probability
space (Ω,F), we have

DKL (P ∥ Q) ≥ 2(TV (P ∥ Q))2.

Lemma 10 (Tail Bounds for Laplacian Random Variables). For any a, b > 0, we have

P(Lap(b) > a) =
1

2
exp

(
−a
b

)
and P(Lap(b) < −a) = 1

2
exp

(
−a
b

)
.

Lemma 11 (Hoeffding’s Bound). Assume that (Xi)1≤i≤n are iid random variables in [0, 1], with
E(Xi) = µ. For any δ, β ≥ 0 and, we have:

P (µ̂n ≥ µ+ β) ≤ exp
(
−2nβ2

)
and P (µ̂n ≤ µ− β) ≤ exp

(
−2nβ2

)
,

where µ̂n = 1
n

∑n
t=1Xt.

Definition 5 (Relative entropy between Bernoulli distributions). The relative entropy between
Bernoulli distributions with parameters p, q ∈ [0, 1] is

d(p, q) = p log(p/q) + (1− p) log((1− p)/(1− q)),

where singularities are defined by taking limits: d(0, q) = log(1/(1 − q)) and d(1, q) = log(1/q)
for q ∈ [0, 1] and d(p, 0) = 0 if p = 0 and ∞ otherwise and d(p, 1) = 0 if p = 1 and ∞ otherwise.
Lemma 12 (Properties of the relative entropy between Bernoulli distributions (Lemma 10.2, (Latti-
more and Szepesvári, 2018))). Let p, q, ε ∈ [0, 1].

1. The functions d(·, q) and d(p, ·) are convex and have unique minimisers at q and p, respec-
tively.

2. d(p, ·) and d(·, p) are increasing in the interval [p, 1] and decreasing in the interval [0, p].
Lemma 13 (Chernoff’s Bound). LetX1, X2, . . . , Xn be a sequence of independent random variables
that are Bernoulli distributed with mean µ, and let µ̂n = 1

n

∑n
t=1Xt be the sample mean. Then, for

β ∈ [0, 1− µ], it holds that:
P(µ̂n ≥ µ+ β) ≤ exp(−nd(µ+ β, µ)), (37)

and for β ∈ [0, µ],
P(µ̂n ≤ µ− β) ≤ exp(−nd(µ− β, µ)). (38)
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Figure 4: Evolution of regret over time for DP-UCB, DP-SE, AdaP-UCB, and AdaP-KLUCB under
C1 for different values of the privacy budget ϵ. AdaP-KLUCB achieves the lowest regret.
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Figure 5: Evolution of regret over time for DP-UCB, DP-SE, AdaP-UCB, and AdaP-KLUCB under
C2 for different values of the privacy budget ϵ. AdaP-KLUCB achieves the lowest regret.
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(b) ϵ = 0.25
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(c) ϵ = 0.5
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Figure 6: Evolution of regret over time for DP-UCB, DP-SE, AdaP-UCB, and AdaP-KLUCB under
C3 for different values of the privacy budget ϵ. AdaP-KLUCB achieves the lowest regret.
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Figure 7: Evolution of regret over time for DP-UCB, DP-SE, AdaP-UCB, and AdaP-KLUCB under
C4 for different values of the privacy budget ϵ. AdaP-KLUCB achieves the lowest regret.
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G Extended Experimental Analysis

G.1 Experimental Setup

In this section, we perform additional experiments to compare AdaP-UCB and AdaP-KLUCB with
respect to the existing bandit algorithms satisfying global DP, i.e. DP-SE (Sajed and Sheffet,
2019) and DP-UCB (Mishra and Thakurta, 2015). We test the four algorithms in the four bandit
environments with Bernoulli distributions, as defined by Sajed and Sheffet (2019), namely

C1 = {0.75, 0.70, 0.70, 0.70, 0.70}, C2 = {0.75, 0.625, 0.5, 0.375, 0.25},
C3 = {0.75, 0.53125, 0.375, 0.28125, 0.25}, C4 = {0.75, 0.71875, 0.625, 0.46875, 0.25}.

For each bandit environment, we implement the algorithms with ϵ ∈ {0.1, 0.25, 0.5, 1}. We set
α = 3.1 to comply with the regret upper bounds of AdaP-UCB and AdaP-KLUCB. We set γ = 0.1
for DP-UCB and β = 1/T . All the algorithms are implemented in Python (version 3.8) and are
tested with an 8 core 64-bits Intel i5@1.6 GHz CPU. We run each algorithm 20 times, and plot their
average regrets over the runs in Figures 4, 5, 6, and 7.In Section 5, we include Figure 2 to illustrate
the evolution of the regret for the four algorithms with environment C2 and ϵ = 1.

G.2 Experimental Results

Here, we summarise the observations obtained from the experimental results.

Comparative Performance. All the experiments validate that AdaP-KLUCB is the most optimal
algorithm satisfying ϵ-global DP for stochastic bandits. Both AdaP-UCB and AdaP-KLUCB achieve
similar regret, but AdaP-KLUCB is slightly better in all the cases studied. This observation matches
the proven upper bounds, and also reflects similar improvement that KL-UCB brings over UCB in
non-private bandits.

Dependence of Regret on ϵ. As predicted by the theoretical analysis, AdaP-UCB and AdaP-KLUCB
have different regret depending on ϵ: the regret is smaller for low-privacy regimes. This is also the
case for DP-UCB. However, DP-SE have the same performance for different choices of ϵ and echoes
the experimental results presented in the original paper (Sajed and Sheffet, 2019).
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Figure 8: Evolution of regret over time
for AdaP-UCB and AdaP-KLUCB for
different values of α with C1 and ϵ = 1.
α = 1 performs better.

The Shapes of the Regrets. DP-UCB has a regret shaped
like the regret of the classic UCB algorithm. The algorithm
chooses a different action at each time-step allowing it to
still choose exploratory actions. On the other hand, due to
the successive elimination, DP-SE "commits" at a certain
step to one action (the optimal action with high probabil-
ity). Thus, the shape of regret for DP-SE is piece-wise
linear. On the other hand, AdaP-UCB and AdaP-KLUCB
are a trade-off of both strategies: due to the doubling, both
algorithms "commit" for long episodes to near-optimal ac-
tions, while still explore the sub-optimal actions for short
episodes.

G.3 Choice of α

α controls the width of the optimistic confidence bound.
Specifically, it dictates that the real mean is smaller than
the optimistic index with high probability, i.e. with prob-
ability 1− 1

tα at step t. The requirement that α > 3 is due to our analysis of the algorithm. To be
specific, the requirement that α > 3 is needed to use a sum-integral inequality to bound Term 2 of
Step 3 in the proof of Theorem 11. We leave it for future work to relax this requirement.

The experiments are done with α = 3.1 to comply with the theoretical analysis. As shown in Figure 8,
choosing α = 1 works better experimentally. This observation complies with the theoretical results,
since the dominant terms in the regret upper bounds of both AdaP-UCB and AdaP-KLUCB are
multiplicative in α. A tighter analysis might give us a bound for α = 1 and close the multiplicative
gap between the regret’s lower and upper bound. Reflecting this phenomenon in the analysis will be
an interesting future work to pursue.
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