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Abstract—Dempster-Shafer theory is a formal framework for
reasoning and decision-making under uncertainty. A cornerstone
in this formalism is Dempster’s rule, which provides a mechanism
for combining belief functions representing independent pieces
of evidence. This rule has been used extensively in information
fusion applications. In this paper, we consider the situation
where several agents are located at the nodes of a network
and can communicate only with their neighbors. We show that
synchronous or asynchronous linear consensus mechanisms can
be used to combine the agents’ belief functions in a distributed
way. After convergence, a consensus state is reached, in which
all agents hold the same belief, which is equal to the orthogonal
sum of the agents’ initial belief functions. Simulation results with
a simple distributed classification are reported.

I. INTRODUCTION

Dempster-Shafer (DS) theory [1], [2] is a well-known and
widely used framework for uncertain reasoning and informa-
tion fusion. In the past thirty years, it has been used extensively
in a large number of applications including classification
[3], [4], clustering [5], [6], image segmentation [7], scene
perception [8], etc. DS theory has two main components: at the
static level, pieces of evidence about some question of interest
are represented by belief functions (i.e., completely monotone
set functions); at the dynamic level, independent items of
evidence are pooled using the so-called Dempster’s rule of
combination (or orthogonal sum). Although alternative rules
have been proposed, especially to combine highly conflicting
[9] or dependent pieces of evidence [10], Dempster’s rule
remains the cornerstone of DS theory.

To our knowledge, all implementations of Dempster’s rule
have assumed centralized fusion scheme in which a single
agents receives pieces of evidence from several sources and
combines them. In this paper, we consider a distributed scheme
whereby several agents independently collect evidence and
exchange information via a static or dynamic communication
network. The application that motivated this research is collab-
orative perception in a System of Systems composed of a fleet
of vehicles equipped with sensor and communicating through
an ad hoc network (see, e.g. [11], [12]). The overall objective
of this application is to enhance each vehicle’s perception
and situation awareness of a complex dynamic traffic scene
through the multiplicity of sensors and the communication
capabilities of the agents. To process vast amounts of data
collected at the nodes of ad hoc networks, centralized or

hierarchical fusion schemes can no longer be implemented.
We need to develop distributed fusion algorithms, which allow
the different agents to exchange information locally with
their neighbors in the network and to construct, collectively,
a shared representation of the environment. This objective
requires the availability of algorithms for performing various
combination and reasoning tasks (including object association
[13], tracking and classification) in a distributed way.

In this paper, we focus on a specific subtask, which is the
distributed combination of belief functions by Dempster’s rule.
We assume that the agents have already agreed on a common
frame of discernment, or universal set, on which the belief
functions to be combined have been defined. We show that
average consensus algorithms make it possible to combine
the agents’ belief functions in a distributed way, resulting in
a consensus state in which all agents hold the same belief
function, which is the orthogonal sum of all initial individual
belief functions.

The rest of this paper is organized as follows. Some
background on DS theory is first recalled in Section II.
The distributed implementations of Dempster’s rule are then
described in Section III. Simulation results are then reported
in Section IV, and Section V concludes the paper.

II. DEMPSTER-SHAFER THEORY

Let Ω be a finite set of possible answers to some question,
one and only one of each is true. A mass function on Ω is a
mapping m : 2Ω → [0, 1] such that∑

A⊆Ω

m(A) = 1.

It is normalized if m(∅) = 0. In DS theory, a mass function
represents a piece of evidence, and m(A) represents the
probability that the evidence tells us that the truth lies in A,
and nothing more specific. A belief function Bel : 2Ω → [0, 1]
can be computed from a normalized mass function m using
the following formula, Bel(A) =

∑
B⊆Am(B). The quantity

Bel(A) represents a total degree of support given to the
proposition that the truth lies in A. A related notion is the
plausibility function, defined as

Pl(A) =
∑

B∩A 6=∅

m(B) = 1−Bel(A),



where A. The quantity Pl(B) reflects the lack of support given
to the proposition that the truth does not lie in A.

Two mass functions m1 and m2 on Ω representing indepen-
dent items have evidence can be combined by Dempster’s rule.
The combined mass function m1⊕m2, called the orthogonal
sum of m1 and m2, is defined as follows,

(m1 ⊕m2)(A) = K
∑

B∩C=A

m1(B)m2(C) (1)

for all nonempty subset A of Ω, where

K =

 ∑
B∩C 6=∅

m1(B)m2(C)

−1

(2)

is a normalizing constant, and (m1⊕m2)(∅) = 0. Dempster’s
rule can also be computed using the commonality function.
The commonality function Q : 2Ω → [0, 1] associated to a
mass function m is defined by

Q(A) =
∑
B⊇A

m(B), (3)

for all A ⊆ Ω. Conversely, m can be recovered from Q using
the following formula,

m(A) =
∑
B⊇A

(−1)|B|−|A|Q(B) (4)

for all A ⊆ Ω. If Q1 and Q2 are the commonality functions
associated with two mass functions m1 and m2, then the
commonality function Q1 ⊕ Q2 associated with m1 ⊕m2 is
Q1⊕Q2 = KQ1·Q2, where K is the normalizing constant (2).
Dempster’s rule is commutative and associative. To combine
n mass functions m1, . . . ,mn, we may proceed as follows:

1) Compute the commonality functions Q1, . . . , Qn using
(3);

2) Compute the product Q = Q1 . . . Qn;
3) Compute the unnormalized mass function m from Q

using (4);
4) Compute the corresponding normalized mass function

m∗ such that m∗(A) = Km(A) for all A 6= ∅ with
K = 1/(1−m(∅)) and m∗(∅) = 0.

III. DISTRIBUTED COMBINATION

In this section, we will show how Dempster’s rule can be
implemented in a distributed way. Let us assume that n agents
are located at the nodes of an undirected communication graph
G(t) = (N , E(t)), where N = {1, . . . , n} is the set of nodes,
E(t) is the set of edges and t is a discrete time index. Each
agent i holds a mass function mi and can communicate only
to its neighbors in the graph. We wish to design distributed
procedures whereby each agent can combine its mass function
with those of other agents by Dempster’s rule. As a result, a
consensus will be reached, each agent having the same mass
function m∗ = m1 ⊕ . . . ⊕ mn. The key idea is to turn the
problem of combining mass functions by Dempster’s rule into
one of averaging certain quantities, and then to use linear
average consensus algorithms [14].

In Section III-A, we will assume the graph to be constant,
G(t) = G and the consensus strategy to be synchronized. In
Section III-B, we will consider the more general situation of a
time-varying graph and an asynchronous updating mechanism.

A. Static consensus

Let us first show that Dempster’s rule can be computed by
averaging certain quantities. With the notations of Section II,
we have

logQ(A) =

n∑
i=1

logQi(A) = n

(
1

n

n∑
i=1

logQi(A)

)
for any A ⊆ Ω. Consequently, the orthogonal sum m∗ =
m1 ⊕ . . . ⊕ mn can be computed by averaging the terms
logQi(A) for all subsets A of Ω, multiplying by n, converting
the combined commonality function Q into an unnormalized
mass function m using (4), and renormalizing.

Let A1, . . . , AN be the nonempty subsets of Ω (proposi-
tions) arranged in some order. Let xik(0) denote the log-
commonality logQi(Ak) of proposition Ak for agent i, xi·(0)
the N -vector (xi1, . . . , xiN ) of log-commonalities for agent
i, x·k(0) the n-vector (x1k, . . . , xnk) of log-commonalities of
Ak for the n agents, and x(0) the initial nN -dimensional state
vector (xT·1(0), . . . , xT·N (0))T composed of the complete initial
log-commonality functions for the n agents. Let αk denote the
average log-commonality of proposition Ak,

αk =
1

n

n∑
i=1

xik(0), (5)

and α the N -vector α = (α1, . . . , αN ).
In this section, we assume the communication graph G to

be constant and strongly connected, i.e., there exists a path
between any two nodes in the graph. We further assume that
the partial state vectors x·k(t) are updated at time t using
linear equations

x·k(t+ 1) = Wx·k(t), k = 1, . . . , N (6)

where W is an n×n square matrix. Let W be the nN ×nN
matrix W = IN ⊗ W , where IN is the identity matrix of
size N and ⊗ is the Kronecker product. Then, the N update
equations (6) can be written more compactly as

x(t+ 1) = Wx(t). (7)

According to a well-known result in the theory of Markov
chains (see, e.g., Theorem 3.1 in [14]), if

1) Matrix W is doubly stochastic, i.e., wij ≥ 0 and∑
i wij =

∑
j wij = 1 for all (i, j);

2) GW = G, where GW is the graph associated with W ,
with nodes N and edges EW = {(i, j)|wij > 0},

then matrix W solves the average consensus problem, i.e., we
have limt→∞ x·k(t) = αk and, consequently,

lim
t→∞

x(t) = α. (8)



A particular matrix verifying the conditions above is the matrix
of Metropolis-Hastings weights [15],

wij =

{
1

max(d(i),d(j))+1 if (i, j) ∈ E and i 6= j

1−
∑n

j=1,i6=j wij if i = j,
(9)

where d(i) is the number of neighbors of node i. For
this choice of matrix W (and the corresponding W ), the
convergence property (8) holds. Consequently, the network
converges to a consensus state where each node holds the
same information α, from which the combined commonality
function Q can be retrieved as Q(Ak) = exp(nαk), and the
combined mass function m∗ can be computed using (4) and
renormalization.

B. Dynamic consensus

In the approach described in Section III-A, the communi-
cation graph G was assumed to be static, and it was assumed
that nodes exchange information and update their states si-
multaneously. In this section, we relax these limitations by
considering time-varying graphs and asynchronous commu-
nication between nodes. More specifically, we consider the
symmetric gossip scheme [16], [14], in which at each time
step a node i transmits its information to one of its neighbors
j, which in turn transmits back it information to i. After this
information exchange, both nodes update their state using a
consensus scheme.

More formally, given a graph G = (N , E), assume that at
each time t a link (i, j) ∈ E is selected at random, and matrix
W (t) is defined as

W (t) = W ij = In −
1

2
(ej − ei)(ej − ei)T , (10)

where In is the identity matrix of dimension n, and ei is the
n-vector of all zeros except for the i-th entry which is set to
one. All matrices W (t) are doubly stochastic and GW (t) ⊆ G.
Furthermore, let W = E[W (t)]. As the graph GW is strongly
connected, the sequence W (t) solves the probabilistic average
consensus problem, i.e., we have

P
(

lim
t→∞

x·k(t) = αk

)
= 1

for all k. (See Theorem 3.3 in [14].)

IV. SIMULATIONS

In this section, we report some simulation results to demon-
strate the feasibility of the distributed fusion schemes outlined
in Section III. A simple illustrative example will first be given
in Section IV-A. A distributed classification application will
then be described in Section IV-B.

A. Illustrative example

As an illustrative example, consider the strongly connected
graph shown in Figure 1. The initial mass functions on a two-
element frame Ω = {ω1, ω2} are shown in Table I. The initial
values xik(0) = logQi(Ak) of the state variables, with A1 =
{ω1}, A2 = {ω2} and A3 = {ω1, ω2}, as well as the averages
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Fig. 1. Example of a strongly connected graph with n = 5 nodes.

TABLE I
INITIAL MASS FUNCTIONS.

i 1 2 3 4 5
mi(∅) 0.000 0.000 0.000 0.00 0.00

mi({ω1}) 0.848 0.092 0.353 0.43 0.48
mi({ω2}) 0.116 0.127 0.632 0.37 0.38

mi({ω1, ω2}) 0.036 0.780 0.016 0.20 0.14

αk are given in Table II. The weight matrix (9) for the static
consensus mechanism is

W =


0.417 0.333 0.25 0.00 0.00
0.333 0.667 0.00 0.00 0.00
0.250 0.000 0.25 0.25 0.25
0.000 0.000 0.25 0.75 0.00
0.000 0.000 0.25 0.00 0.75

 .

Figure 2 shows the evolution as a function of time t of
state variables xik(t) for i ∈ J1, 5K and k ∈ J1, 3K. Each
variable xik(t) converges to the mean value αk defined by
(5). After convergence, each node can compute the combined
commonality function (up to a multiplicative constant) as
Q(∅) = 1, Q({ω1}) = exp(α1) = 0.111, Q({ω2}) =
exp(α2) = 2.65·10−2, Q({ω1, ω2}) = exp(α3) = 1.24·10−5.
The unnormalized combined mass function computed from
(4) is m(∅) = 0.862, m({ω1}) = 0.111, m({ω2}) = 0.0265
and m({ω1, ω2}) = 1.24 · 10−5. After normalization, we get
m∗({ω1}) = 0.808, m∗({ω2}) = 0.192 and m∗({ω1, ω2}) =

TABLE II
INITIAL VALUES OF THE STATE VARIABLES xik(0) AND MEAN VALUES

αk .

Ak x1k(0) x2k(0) x3k(0) x4k(0) x5k(0) αk

{ω1} -0.124 -0.136 -0.998 -0.466 -0.473 -0.439
{ω2} -1.882 -0.097 -0.435 -0.554 -0.663 -0.726

{ω1, ω2} -3.325 -0.248 -4.150 -1.599 -1.977 -2.260
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Fig. 2. Convergence of state variables xik(t) to the averages αk for the static
consensus mechanism.
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Fig. 3. Convergence of state variables xik(t) to the averages αk for the
dynamic consensus mechanism.

8.99 · 10−5, which is the orthogonal sum of the initial mass
functions mi.

Figure 3 shows the evolution of state variables xik(t) for
the dynamic consensus scheme, where each link (i, j) is
picked at random at each time step, and the states of nodes
i and j are updated using matrix (10). As we can see, the
system converges to the same state as with the static consensus
scheme.

B. Distributed classification

Let us now consider a simple distributed classification
problem with two classes Ω = {ω1, ω2} and n decision nodes.
Each node i collects a measurement yi, which is a realization
of a random variable Yi with class-conditional densities f1(y)
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Fig. 4. Communication graph for the distributed classification example.

and f2(y). If the prior class probabilities are unknown, then
an unnormalized mass function on Ω given Yi = yi can be
computed using the Generalized Bayes Theorem (GBT) [17],
[18], [19] as

mi(∅) = (1− cf1(yi))(1− cf2(yi))

mi({ω1}) = (1− cf2(yi))cf1(yi)

mi({ω2}) = (1− cf1(yi))cf2(yi)

mi({Ω}) = c2f1(yi)f2(yi),

where c is a positive constant ensuring that cf1(y) ≤ 1
and cf2(y) ≤ 1 for all y. This mass function quantifies
one’s beliefs in the class of the object given yi and without
any prior belief on the class. Combining mi with a prior
probability mass function π on Ω yields the Bayesian posterior
distribution, with

(mi ⊕ π)({ωk}) = p(ωk|yi) ∝ fk(yi)p(ωk), k = 1, 2.

To illustrate in this context the behavior of the consensus
mechanisms outlined in Section III, we considered the com-
munication graph with 10 decision nodes shown in Figure 4.
We assumed Yi to have normal class-conditional distributions:

Yi|ωk ∼ N (µk, σk), k = 1, 2,

with µ1 = 0, σ1 = 1, µ1 = 0.1, σ1 = 1.1. As an example, we
considered the following measurement values:

0.56, 0.54, 1.01, 1.07, 0.29, 2.47, 0.49, 0.16, 0.64,−0.18

Figure 5 shows the masses mi({ω1}), mi({ω2}) and
mi({Ω}) as a function of the number of iterations, for the
static consensus mechanism. To compute a mass function for
each node at each time step, we converted the state vectors
xi· into mass functions using the procedure outlined above.

Figure 6 displays the same information in a barycentric plot,
where a mass function mi is represented as the barycenter
of the three vertices of the triangle, with weights mi({ω1}),
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Fig. 5. Convergence of masses mi({ω1}), mi({ω2}) and mi({Ω}) to the
orthogonal sum, for the static consensus mechanism.

mi({ω2}) and mi(Ω). The vacuous mass function m? such
that m?(Ω) = 1 corresponds to the upper vertex of the triangle,
while the certain mass functions focussed on {ω1} and {ω2}
correspond, respectively, to the lower left and right vertex. The
initial mass functions (shown as circles) converge to the mass
function represented by a triangle, which is the orthogonal
sum of the initial mass functions,

m∗({ω1}) = 0.391,m∗({ω2}) = 0.604,

m∗({Ω}) = 0.005.

A maximum-plausibility classifier would then select class ω2

based on the complete information. From Figure 5, we can see
that the same decision would be reached by all the nodes after
only 10 iterations, i.e., long before the network has actually
converged to the belief consensus. As shown in Figure 7, a
similar behavior is obtained using the asynchronous symmetric
gossip mechanism.

V. CONCLUSION

We have shown that Dempster’s rule of combination can
be implemented in a distributed way, using synchronous
or asynchronous linear consensus mechanisms. This finding
makes it possible to design distributed data fusion schemes
based on Dempster-Shafer theory. The intended application of
this theoretical work is collaborative perception in a fleet of
intelligent vehicles [11]. Other potential applications include
distributed decision in sensor networks [20], and modeling
the dynamics of beliefs in social networks [21]. Taking into
account the degrees of confidence of each of the agents in the
other agents, and implementing alternative combination rules
are open problems left for further research.

ω1

Ω

ω2

Fig. 6. Barycentric plot of the mass functions in the distributed classification
example. Each mass function mi at a given iteration is represented as the
barycenter of the three vertices of the triangle, with weights mi({ω1}),
mi({ω2}) and mi(Ω). The initial mass functions are shown as circles, and
the final one is shown as a triangle. The solid lines correspond to the trajectory
of the mass functions from the initial state to the consensus state.
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Fig. 7. Convergence of masses mi({ω1}), mi({ω2}) and mi({Ω}) to the
orthogonal sum, for the dynamic (symmetric gossip) consensus mechanism.
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