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Provable Nonnegative Tensor Ring Approximation:
Stability and Optimality

Zhen Long, Ce Zhu, Jiani Liu, Yipeng Liu, Pierre Comon

Abstract—Tensor Ring (TR) decomposition provides a flexible
and powerful format to represent multi-way data. However, most
current works based on TR point out that the performance
of TR degrades with a choice of large ranks and/or with
few available entries. To alleviate this issue, optimal TR ranks
selection strategies or adding regularization on TR cores are
proposed. In this paper, we explain that the above issue is
caused by the fact that tensor representations in TR format with
predefined bounds on TR-ranks do not form a closed set, which
makes the computation of approximate TR unstable. Based on
this finding, we theoretically show that an optimal approximate
non-negative TR (NTR) decomposition always exists and can be
obtained. Computer experiments show that TR is more prone to
instability when there are fewer observations or when missing
data did not clearly exhibit a low rank. On the contrary, NTR
is stable and performs well on image recovery. Furthermore,
we discuss factor degeneracy of TR-cores, which is one of the
reasons for the instability of the TR decomposition, and build a
new bridge to existing works, where adding a norm regularization
on TR-cores is also a way to avoid factor degeneracy.

Index Terms—tensor ring decomposition, factor degeneracy,
non-negative TR (NTR) decomposition, image completion

I. Introduction

TENSORS, which can be regarded as higher-order exten-
sions of vectors and matrices, provide a natural way

to represent multidimensional data. For example, a color
image, including two space indices and one color index, is
a third-order tensor. As a powerful tool, tensor decomposition
has become increasingly popular in a series of applications
in signal processing [1]–[3], machine learning [4]–[6], or
Chemometrics [7], [8], etc.

Among the existing tensor decompositions, the Canoni-
cal Polyadic (CP) decomposition [9], [10] and the Tucker
decomposition [11]–[13] are the most popular. For a Dth-
order tensor, the aim of Tucker decomposition is to obtain
a (preferably small) core tensor contracted with a factor
matrix along each mode. In particular, when the core tensor
is diagonal, the Tucker decomposition reduces to the CP
decomposition. However, the storage complexity of Tucker
decomposition grows exponentially with the order of tensor,
which causes the curse of dimensionality when the order is
increasing. To address this issue, tensor networks (TNs) are
proposed in [14]–[17], which decompose higher-order tensors
into sparsely interconnected lower-order core tensors. One
instance of TNs is the Tensor Train (TT) decomposition [18],
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which divides a Dth-order tensor into D−2 third-order tensors
and two matrices at the ends. Besides, in recent tensor based
applications, TT-based methods perform well since they can
better explain links between different modes. For example,
in [19], authors used low-rank TT decomposition for tensor
completion and showed that TT can better capture the global
correlation among tensor entries from the perspective of von
Neumann entropy in quantum information theory [20].

However, TT ranks are unbalanced, where ranks are large
in the middle and small at the ends. Meanwhile, TT de-
composition is sensitive to the permutation of tensor dimen-
sions [21]–[23], which limits its representation flexibility. As
an extension of TT, Tensor Ring (TR) decomposition [21],
also referred to as Matrix Product State [24], [25], provides a
more flexible and powerful representation, which factorizes a
Dth-order tensor into D third-order tensors, as shown in Fig. 1.
Benefiting from the matrix trace operation, TR provides a more
balanced structure due to its circular invariance, which shows
an improvement in tensor completion [22], [26], [27], wide
compression [28]–[30], supervised learning [31]–[33], or hy-
perspectral image processing [34]–[36]. All these applications
are mainly based on a low-rank tensor ring approximation
model, where TR ranks are given in advance. In addition, a
series of low-rank TR based works [23], [37]–[41] point out
that the performance of low-rank TR decomposition becomes
worse when the TR ranks are imposed too large and/or when
observed entries are few.

To address this drawback, one way is to find the opti-
mal TR ranks. For example, Long et al [37] proposed a
Bayesian tensor ring completion model to automatically infer
TR ranks and adjust the trade-off between TR ranks and fitting
error. Moreover, Liu et al [38] proposed a compact tensor
ring regression model, which adds the group sparsity norm
minimization on the TR-cores to enforce every two adjacent
TR-cores to be group-sparse. These two works pruned the
zero components in the TR-cores and reduced TR ranks in
each iteration, which permitted to find the optimal TR ranks.
Instead, Sedighin [39] proposed a new rank selection model,
which increases TR ranks gradually in each iteration according
to the sensitivity of the fitting error to each TR-core, achieving
the optimal selection of TR ranks until the model achieves
a desired approximation accuracy. Another way is to add a
regularization term to the TR-core fitting error. For instance,
Yuan et al [40] proposed a TR low-rank factor (TRLRF)
method, which introduces the nuclear norm minimization on
the TR cores to improve the performance of image completion.
Furthermore, Yu et al [23] proposed a low-rank sparse tensor-
ring completion (LRSTR) model, which is robust to rank
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selection by imposing the Frobenius norm regulation on the
TR cores.

In this paper, we provide a new understanding of why fitting
a tensor to a TR format performs worse with large TR ranks
or with few observations. Firstly, we show that the problem
is mainly caused by the tensor ring cyclic structure, which
makes TR approximation with predefined TR-ranks an ill-
posed problem [42]–[45]. In this case, the best low-rank TR
approximation does not exist, similar to the CP decomposi-
tion [46]–[48]. This is often referred to as instability [24, ch.9].
In the nonnegative reals, this problem does not exist. We give
the proof in Section III that the optimal nonnegative tensor ring
(NTR) approximation always exists. Lee-Seung multiplicative
update formulate [49] is used to compute the best low-rank
NTR approximation model. Moreover, we employ NTR for
image completion. Finally, experimental results on simulated
data show that TR decomposition often proves unstable when
there are fewer entries in the observed data, e.g. SR< 0.2
or when missing data do not have an obvious low rank,
e.g. R2 > I, R being the TR ranks and I the data size. In
addition, experiments on image completion show that NTR is
stable with few observations and large TR ranks. The recovery
performance of NTR is generally superior to others in terms of
Relative Square Error, Peak Signal to Noise Ratio, and CPU
time. Note that some works [50], [51] also consider NTR for
multiway representation learning, where their focus is on the
application and non-negative constraints on TR cores are to
provide physically meaningful features for better interpreting
the boost performance.

Compared to previous works, the contributions of our work
are three-fold:
• We provide the basic reason why TR decomposition is

sensitive to rank selection: it is due to the fact that TR
format is not topologically closed, which often leads to
TR factor divergence. Furthermore, we prove that the
nonnegative tensor ring (NTR) format is closed, which
avoids TR factor divergence.

• We verify that TR decomposition is more prone to
instability when there are fewer observations, or when
the missing data do not have a low rank, but in these
cases, the NTR decomposition remains stable.

• We also build a bridge with previous works, such as
LRTRF and LRSTR, which demonstrates that imposing
norm-constrained on TR-cores is a way to alleviate the
TR-core factor divergence.

The rest of this article is organized as follows. Section II
introduces some notations and preliminaries for TR decompo-
sition. Section III provides a proof showing that the optimal
nonnegative TR approximation can be obtained and describes
how to apply it on tensor completion. In section IV, some
experiments on simulated data and color image completion
are provided. The conclusion is drawn in section V.

II. Notations and Preliminaries

A scalar, a vector, a matrix, and a tensor are written as x, x,
X, and X, respectively. The i-th entry of a vector x is denoted
as xi or x(i), the (i, j)-th element of a matrix X is denoted as
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Fig. 1: TR decomposition.

xi, j or X(i, j) and (i, j, k)-th element of a third-order tensor X
is denoted as xi, j,k or X(i, j, k). Indices typically range from 1
to their capital version, e.g., i = 1, · · · , I. An nonnegative set
in RI is defined by RI

+ = {x ∈ RI |x ≥ 0} and the unit sphere in
RI is defined by SI−1 = {x ∈ RI | ‖X‖2 = 1}.

The definitions given in this section have been already
introduced in the literature by several authors, for instance,
[24], [25], [52]. We recommend [45], which is the most
general and particularly elegant.

Definition 1. (mode-d unfolding) The mode-d unfolding of
a Dth order tensor X ∈ RI1×I2×···×ID is expressed as X(d) =

unfold1(X, d) or X[d] = unfold2(X, d). Mathematically, the
elements of X(d) or X[d] satisfy

X(d)(id, j1) = X(i1, · · · , id, · · · , iD)

or
X[d](id, j2) = X(i1, · · · , id, · · · , iD)

where j1 = id+1, · · · , iD, i1, · · · , id−1 and j2 =

i1, · · · , id−1, id+1, · · · , iD. The inverse operator is defined
as X = fold1(X(d), size(X), d) or X = fold2(X[d], size(X), d).

Definition 2. (rank-one tensor) A rank one Dth order tensor
X ∈ RI1×I2×···×ID can be written as the outer product of D
vectors, i.e.,

X = u1 ⊗ u2 ⊗ · · · ⊗ uD

where ⊗ represents the vector outer product. Then

‖X‖F = ‖u1‖F ‖u2‖F · · · ‖uD‖F . (1)

Definition 3. (Tensor Ring decomposition) For a Dth-
order tensor X ∈ RI1×···×ID , there exists a D-uplet,
[R1, · · · ,Rd, · · · ,RD], such that

X(i1, i2, · · · , iD) = Trace(G1(:, i1, :)G2(:, i2, :) · · · GD(:, iD, :)). (2)

This representation format is called a Tensor Ring (TR) de-
composition, where Gd ∈ R

Rd×Id×Rd+1 ,d = 1, · · · ,D, RD+1 = R1
are core factors. Meanwhile, it can be rewritten as the sum of
rank one tensors, i.e.,

X =

D∑
d=1

Rd∑
rd=1

G1(r1, :, r2) ⊗ G2(r2, :, r3) ⊗ · · · ⊗ GD(rD, :, r1)). (3)
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When we use Gd(rd, :, rd+1) = grdrd+1Ud(rd, :, rd+1), with
‖Ud(rd, :, rd+1)‖F = 1, the TR format can be rewritten as:

X =

D∑
d=1

Rd∑
rd=1

zr1,r2,··· ,rD U1(r1, :, r2) ⊗U2(r2, :, r3)

⊗ · · · ⊗ UD(rD, :, r1). (4)

where zr1,r2,··· ,rD = gr1r2 gr2r3 · · · grDr1 , rd = 1, · · · ,Rd, d =

1, · · · ,D.
For simplicity, we denote the TR decomposition of X

by X = R(G1, · · · ,GD). The graphical illustration of TR
decomposition is shown in Fig. 1.

Definition 4 (TR ranks). Let X ∈ RI1×···×ID be a Dth-order
tensor. The TR ranks of X is the D-uplet of minimal integers
[R1, . . . ,RD], such that X can be exactly written as in (2). The
TR ranks of X is then denoted:

rankTR(X) = [R1, · · · ,Rd, · · ·RD], (5)

Definition 5 (TR closure). Denote by

TR(D; R1, · · · ,RD; I1, · · · , ID)

the set of Dth order tensors X of size I1 × · · · × ID whose TR
ranks are bounded by (R1, . . . ,RD):

rankTR(X) ≤ [R1, · · · ,Rd, · · ·RD]

where the inequality is satisfied entry-wise. Also denote its
Zariski closure as TR(D; R1, · · · ,RD; I1, · · · , ID). In other
words, every element of TR is the limit of a sequence in TR.

Definition 6 (TR border rank). Let X ∈

TR(D; R1, · · · ,RD; I1, · · · , ID). Then it is clear that
X ∈ TR(D; R′1, · · · ,R

′
D; I1, · · · , ID), with R′d ≤ Rd. If

(R′1, . . . ,R
′
D) is minimal, it is called the TR border rank of X

and denoted as

rankTR(X) = [R′1, · · ·R
′
D], (6)

Similarly to the usual tensor rank (defined via the CP de-
composition), the set TR(D; R1, · · · ,RD; I1, · · · , ID) of tensors
having TR ranks smaller than a given value is generally not
a closed set (except in the case of TT), as shown in the next
theorem, stated in a more general framework in [45, Theorem
9.10].

Theorem 1. The set TR(D; R1, · · · ,RD; I1, · · · , ID) is
not closed. In fact, there exists at least one Dth-order
tensor X ∈ RI1×···×ID with D > 3 and Id > 1,
such that X ∈ TR(D; R′1, · · · ,R

′
D; I1, · · · , ID) and X <

TR(D; R1, · · · ,RD; I1, · · · , ID).

As shown above, a sequence of tensors with a given TR-
rank may converge towards a limit with a larger TR-rank,
which causes the divergence of at least two tensor factors.
Therefore, TR decomposition is unstable and the algorithms
used to compute it may get stuck in a false local minimum.

III. Nonnegative tensor ring decomposition

In this section, we will show that imposing nonnegative
constraints on TR core tensors allows the set of tensors
TR(·) to become closed, which will avoid instabilities. The
nonnegative tensor ring (NTR) decomposition factorizes a
nonnegative tensor into a sum of nonnegative rank-one tensors.
For example, given a Dth order tensor X ∈ RI1×I2×···ID

+ , we wish
to write it as

X =

D∑
d=1

Rd∑
rd=1

G1(r1, :, r2)⊗G2(r2, :, r3)⊗ · · ·⊗GD(rD, :, r1). (7)

where Gd(rd, :, rd+1) ∈ RId
+ , rd = 1, · · · ,Rd, d = 1, · · · ,D. Write

Gd(rd, :, rd+1) = grdrd+1Ud(rd, :, rd+1) where Ud(rd, :, rd+1) be-
longs to the nonnegative portion of the Euclidean unit sphere
SId−1

+ . Then X can be rewritten as:

X =

D∑
d=1

Rd∑
rd=1

zr1,r2,··· ,rD U1(r1, :, r2)⊗U2(r2, :, r3)⊗· · ·⊗UD(rD, :, r1).

(8)
where zr1,r2,··· ,rD = gr1r2 gr2r3 · · · grDr1 , rd = 1, · · · ,Rd, d =

1, · · · ,D. Denote Z the tensor with entries zr1,r2,··· ,rD .

Theorem 2. Given a Dth order tensor X ∈ RI1×I2×···ID
+ ,

inf{f(Q)|Q ∈ Q} (9)

is attained, where f(Q) = ‖X −
∑D

d=1
∑Rd

rd=1 zr1,r2,··· ,rD U1(r1, :
, r2)⊗U2(r2, :, r3)⊗· · ·⊗UD(rD, :, r1)‖2F, Q = (Z,U1, . . . ,UD) ∈
Q, and Q = RR1×R2×···×RD

+ × (SI1−1
+ )R1R2 × · · · × (SID−1

+ )RDR1 .

Proof. It is noted that Q is closed but unbounded. The key idea
of the proof is to show that the sublevel set of f restricted to
Q,

Pα = {Q ∈ Q| f(Q) ≤ α} (10)

is compact for all α, so that the infimum of f on Q must
be attained. We will show Pα = Q ∩ f−1(0, α] is closed and
bounded, where f−1 is the inverse function of f.

Firstly, Pα is closed since f is continuous.
Secondly, let us prove by contradiction that Pα is bounded.

Suppose there is a sequence {Qt}
∞
t=1 ∈ Q with ‖Qt‖F → ∞ but

f(Qt) ≤ α for all t. ‖Qt‖F → ∞ implies that at least one entry
zp1,p2,··· ,pD , pd ∈ {rd, d = 1, · · · ,D} → ∞.

By Cauchy-Schwarz ‖A − B‖2F ≥ (‖A‖F − ‖B‖F)2, we have

f(Qd) ≥ (‖X‖F − ‖
D∑

d=1

Rd∑
rd=1

zr1,r2,··· ,rD

U1(r1, :, r2) ⊗U2(r2, :, r3) ⊗ · · · ⊗ UD(rD, :, r1)‖F)2

(11)

where X ∈ RI1×I2×···ID
+ and

‖

D∑
d=1

Rd∑
rd=1

zr1,r2,··· ,rD U1(r1, :, r2) ⊗U2(r2, :, r3) ⊗ · · · ⊗ UD(rD, :, r1)‖F

≥ ‖zp1,p2,··· ,pDU1(p1, :, p2) ⊗U2(p2, :, p3) ⊗ · · · ⊗ UD(pD, :, p1)‖F
= zp1,p2,··· ,pD‖U1(p1, :, p2) ⊗U2(p2, :, p3) ⊗ · · · ⊗ UD(pD, :, p1)‖F
= zp1,p2,··· ,pD‖U1(p1, :, p2)‖F‖U2(p2, :, p3)‖F · · · ‖UD(pD, :, p1)‖F
= zp1,p2,··· ,pD ,

(12)
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where the last two equalities follow from equation (1) and
‖U1(p1, :, p2)‖F = ‖U2(p2, :, p3)‖F = · · · = ‖UD(pD, :, p1)‖F =

1. Therefore, ‖Qd‖F → ∞, zp1,p2,··· ,pD → ∞ and f(Qd) → ∞,
and the assumption f(Qd) ≤ α for all n cannot be held. �

Theorem 2 implies that zr1,r2,··· ,rD is bounded in the NTR
form, and there are no rank-1 components that cancel out each
other, avoiding TR-core factor degeneracy discussed in Section
II. Note that if the `1 norm is used instead of the Euclidean
norm, Theorem 2 still holds true, and the proof is similar, by
using the inequality ||A − B||1 ≥

∣∣∣ ||A||1 − ||B||1 ∣∣∣.
A. LS-NTR

In this section, we describe an algorithm that minimizes the
fitting error of nonnegative tensor ring decomposition, which
can be expressed as:

min
{Gd}

D
d=1

1
2
‖X−

D∑
d=1

Rd∑
rd=1

G1(r1, :, r2)⊗G2(r2, :, r3)⊗· · ·⊗GD(rD, :, r1)‖2F,

(13)
where Gd(rd, :, rd+1) ∈ RId

+ , rd = 1, · · · ,Rd, d = 1, · · · ,D.
The minimization can be conducted by a block coordinate
descent algorithm, which splits the problem (13) into several
subproblems, where one variable Gd is updated in turns while
the others are fixed. The subproblem of (13) with respect to
Gd can be written as

min
Gd

1
2
‖X(d) −Gd(G,d

(2))
T‖2F (14)

where Gd = unfold2(Gd, 2) ∈ RId×RdRd+1
+ and G,d

(2) =

unfold1(G,d, 2) ∈ RId+1,··· ,ID,I1,··· ,Id−1×RdRd+1
+ and G,d is a merging

tensor, which is defined as:

G,d(rd+1, j, rd) = Gd+1(rd+1, id+1, :) · · ·
GD(:, iD, :)G1(:, i1, :) · · · Gd−1(:, id−1, rd), (15)

where j = id+1, · · · , iD, i1, · · · , id−1.
According to Lee-Seung multiplicative update formula, the

update of Gd can be obtained by

Gd = Gd. ∗ (X(d)G,d
(2))./(Gd(G,d

(2))
TG,d

(2)), (16)

where Gd = fold2(Gd, size(Gd), 2), .∗ and ./ are element-
wise multiplication and division, respectively. We call this
algorithm Lee-Seung nonnegative tensor ring approximation
method (LS-NTR) and summarize it in Algorithm 1.

B. LS-NTR for tensor completion

In this section, we will apply LS-NTR to the tensor comple-
tion task with nonnegative missing data. It is a common fact
that there are some missing entries in observed data during
acquisition or transmission. The goal of tensor completion
is to infer missing entries from their observed data. Given a
Dth order incomplete tensor X ∈ RI1×I2×···ID

+ , the mathematical
expression allowing nonnegative tensor ring completion is

min
{Gd}

D
d=1

1
2
‖PO(X −

D∑
d=1

Rd∑
rd=1

G1(r1, :, r2) ⊗

G2(r2, :, r3) ⊗ · · · ⊗ GD(rD, :, r1))‖2F, (17)

Algorithm 1 LS-NTR

Input: A Dth-order data tensor X ∈ RI1×I2×···×ID
+ , predefined

nonnegative TR rank [R1, · · · ,RD], maximum number of
iterations (Maxiter), and the threshold for stopping the
algorithm tol = 10−6

Initialization: Initialize Gd ∈ R
Rd×Id×Rd+1
+ , d = 1, · · · ,D

while i ≤ Maxiter do
for d = 1 : D do

obtain X(d) = unfold1(X, d)
obtain G,d

2 = unfold1(G,d, 2)
update Gd via equation (16)
obtain Gd = fold2(Gd, size(Gd), 2)

end for
X̂ = R(G1, · · · ,GD)
if ‖X̂−X‖F

‖X‖F
≤ tol then

break
end if
i = i + 1;

end while
Output: Gd, d = 1, · · · ,D

where Gd(rd, :, rd+1) ∈ RId
+ , rd = 1, · · · ,Rd, d = 1, · · · ,D and

PO is a random sampling operator, which is defined as:

PO =

X(i1, i2, · · · , iD) (i1, i2, · · · , iD) ∈ O
0 otherwise

and O is the set of indices of observed entries in X. We apply
LS-NTR to solve the optimization problem (17). The update
of Gd in the tensor completion task is obtained by

Gd(id, :) = Gd. ∗ (X(d)(id,Oid )G,d
(2)(Oid , :))./(GdP), (18)

P = (G,d
(2)(Oid , :))

TG,d
(2)(Oid , :) ∈ R

RdRd+1×RdRd+1
+ ,id = 1, · · · , Id,

Oid is the index set of known entries in X(d)(id, :), and Gd =

fold2(Gd, size(Gd), 2). Note that the solution for Gd is slightly
different from that in equation (16) since we only use observed
entries instead of all entries to update Gd.

IV. Experimental results

Before conducting this experiment, we give two important
definitions. For a Dth-order tensor X ∈ RI1×I2×···×ID

+ , the
sampling ratio (SR) is defined by

SR =
|O|∏D
d=1 Id

where |O| is the number of observed entries. The relative
square error (RSE) is used to measure the recovery perfor-
mance, which is defined as ‖X(O)−X̂(O)‖F

‖X(O)‖F
, where X is the original

tensor and X̂ is the recovered tensor. Note that the maximum
value of RSE is 1 by definition; also note the algorithm
definitely fails to recover the data if RSE>0.5. All tests are
conducted 100 times on simulated data and 10 times on real
data. All tests are accomplished on a desktop computer with a
3.30GHz Intel(R) Xeon(R)(TM) CPU and 256GB RAM using
MatLab 2018a.
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A. Experimental results on simulated data

In this part, we conduct two groups of experiments to study
the instability of TR decomposition under different conditions.
We choose TR-ALS as our baseline algorithm and LS-NTR as
a comparison algorithm. The original tensors are generated by
core tensors Gd ∈ R

Rd×Id×Rd+1
+ , d = 1, · · · ,D whose entries are

independently randomly drawn from half-normal distribution.
For simplicity, we assume all TR ranks are the same, e.g.,
R1 = R2 = · · · = Rd = R.

1) Recovery performance on different SR and TR ranks
selection: The goal of this group is to explore the relationship
between the recovery performance and TR ranks selection on
different SR conditions, where SR is chosen from {0.05, 0.1,
0.5, 1}, and the predefined TR ranks R1 = R2 = · · · = Rd = R
are varied in {2, 3, 4, 5, 6}.

The observed data is generated with D = 3,R = 3, I = 30
using different SRs. Fig. 2 shows RSE variations as a function
of predefined TR ranks and SRs; in this figure, circular marks,
red lines and pink asterisks are the mean, the median, and the
outliers results of 100 repeated tests, respectively. From Fig.
2(a), we can see TR-ALS fails to recover the data with few
observations when the predefined TR ranks are larger than or
equal to the real ranks. Instead, the recovery performance of
TR-ALS with underestimated TR ranks is better than that with
overestimated ones. Interestingly, the change of RSE on LS-
NTR is stable with different rank selections when SR = 0.05.
With SR increased, LS-NTR still performs more steadily than
TR-ALS. Specifically, as shown in Fig. 2(b), the RSE value of
TR-ALS is larger than that of LS-NTR when the predefined
TR ranks are overestimated and SR=0.1. Meanwhile, when
the predefined TR ranks are underestimated with SR=1, the
recovery performance of LS-NTR is superior to that of TR-
ALS.
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Fig. 2: Recovery performance on different SRs and predefined
TR ranks

2) Recovery performance on different SR and data struc-
ture: The aim of this group is to investigate the relationship
between the recovery performance and different data struc-
tures, e.g., R2 < I, R2 = I, R2 > I. Three cases of exper-
iments, namely TR(3; 2, 2, 2; 10, 10, 10), TR(3; 3, 3, 3; 9, 9, 9),
and TR(3; 4, 4, 4; 5, 5, 5), are performed with each one being
repeated 100 times. Fig. 3 shows the variations of RSE along
SRs using TR-ALS and LS-NTR. From Fig. 3, we can see LS-
NTR almost outperforms TR-ALS on different relationships
between R2 and I. Meanwhile, the recovery performance
of TR-ALS is sensitive to the high-rank structure of data
according to the results shown in Fig.3(a) and Fig.3(c). For
example, TR-ALS can recover the missing data when R2 < I
and SR>0.2, but it will fail if R2 > I and SR<1. It may imply
that TR decomposition is more unstable when the rank of data
is large, e.g., R2 > I.

To conclude, the instability of TR is related to the sample
ratio SR and the data structure. Especially, when SR is smaller
or when low-rank structure of missing data is not obvious, the
recovery performance of TR-ALS will be worse. Instead, LS-
NTR performs well in these cases.

B. Application on image completion

In this section, we consider eight color images for com-
pletion, as shown in Fig. 4. Two unconstrained TR-based
methods including TR-ALS [22] and TRWOPT [26] are taken
as baseline methods. In addition, some improved TR-based
methods, which are robust to TR ranks selection, including
LRSTR [23], TRLRF [40] and TR-VBI [37], are used for
comparison. The initialization of core tensors in all TR-based
methods are the same and tensor ring ranks Rd, n = 1, 2, 3 are
chosen in {2,4,6,8,10,12,14,16,18,20}.

In addition, to verify whether the poor performance of
TR decomposition on image completion is caused by the
instability of TR decomposition or by a parameter overfitting,
we add a TT-based algorithm (TTWOPT [53]) since TT
decomposition is stable. In this case, TT ranks are determined
by the parameters of the TRWOPT algorithm. For instance, TT
ranks can be determined according to the same parameters of
TTWOPT and TRWOPT with respect to different TR ranks.
The observations are chosen from SR={0.03,0.05,0.1,0.15,0.2},
and each test is repeated 10 times. Two kinds of performance
metrics are employed to evaluate the estimation accuracy,
which are Peak Signal-to-Noise Ratio (PSNR) and RSE.

Fig. 5, Fig. 6 and Fig. 7 show the comparison results
with different TR ranks using different methods with a few
observations, e.g. SR = 0.03, SR = 0.05 and SR = 0.1.
It can be observed that TR-ALS and TRWOPT are sensi-
tive to the TR ranks, especially, when few observations are
available: the larger R, the poorer the recovery performance.
Instead, other improved TR-methods including LRSTR, LS-
NTR, TRLRF and TR-VBI show the advantage of a robust
TR rank selection. Among them, the recovery results of LS-
NTR and TRLRF perform better when SR=0.03. In addition,
the recovery performance of LRSTR, LS-NTR and TR-VBI is
superior to others in terms of image resolution when SR=0.05
and SR=0.1. Interestingly, TTWOPT and TRWOPT have the
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Fig. 3: Recovery performance on different relationships between R2 and I.
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Fig. 4: Testing images.
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Fig. 5: Examples on image completion using different methods
when SR=0.03.

same parameters, but TTWOPT outperforms TRWOPT when
TR ranks are large with few samples.

In addition, Fig. 8 illustrates the average change perfor-
mance of all methods on eight color images along the TR
ranks in terms of RSE with SR=0.05. It can be observed TR-
ALS and TRWOPT almost fail to recover the image when
R > 4. Fortunately, the recovery performance of improved TR
methods is stable with the change of TR rank. Among them,
LS-NTR performs better with large TR ranks in most cases.
Meanwhile, TTWOPT performs better than TRWOPT under
identical parameter conditions.

Fig. 9, Fig. 10 and Fig. 11 provide the recovery performance
of all methods with different TR ranks on eight color images

along different SRs in terms of RSE, PSNR and CPU time,
respectively. In these figures, the circular marks and red lines
are the average and the median results of different TR ranks
and 10 repeated tests, respectively. We can see the RSE of
LRSTR, LS-NTR and TRLRF remain almost unchanged with
respect to different TR ranks when SR=0.03, as shown in Fig.
9. Meanwhile, constrained TR-based methods outperform TR-
ALS in all cases. In addition, we can see when SR=0.2, the
recovery performance of TR-ALS is greatly influenced by the
predefined TR ranks. From Fig. 10, it can be observed that
the PSNR of the improved TR-based methods is stable with
different predefined TR ranks and different SRs. Interestingly,
the recovery performance of TRWOPT is superior to that of
TR-ALS when SR=0.2. It can be seen from the data in Fig.
11 that the computational complexity of TT-based methods is
smaller than that of TR-based ones. Among all constrained
TR-based methods, the CPU Time of LS-NTR and TRLRF
cost less than that of LRSTR and TR-VBI.

C. Discussion

1) Analysis of the causes of instability: To further explore
the reason for the instability of TR decomposition, the changes
of stability metric σ of TR-ALS and LS-NTR are shown in
Fig. 12(a) and Fig.12(b). The ratio σ =

‖G‖

‖X‖F
is used to measure

the stability [24], where X =
∑D

d=1
∑Rd

rd
Z, Z = G1(r1, :, r2) ⊗

G2(r2, :, r3)⊗· · ·⊗GD(rD, :, r1)) is a rank-one tensor, and ‖G‖ =∑D
d=1

∑Rd
rd
‖Z‖F =

∑D
d=1

∑Rd
rd

(
∏D

d=1 ‖Gd(rd, :, rd+1)‖F). Note that
the negative data in Fig.12 are ignored. From Fig.12(a-b), we
could observe that the changing trend of σ is consistent with
that of RSE in Fig. 2 and Fig. 3. The larger the RSE, the
more unstable the TR decomposition. In addition, Fig. 12 (a-
b) further testify that the instability of TR decomposition is
mainly caused by tensor factor degeneracy, e.g. ‖Z‖F is very
large.

2) The link to existing works: These results on image
completion indicate that TR decomposition easily exhibits
instability, especially when few observations are available.
Instead, adding some constraints, including adding the norm-
regularized (LRSTR, TRLRF) or nonnegative (LS-NTR) on
TR-cores, can improve the recovery performance.

To explore the reason, we plot the change in the mean of σ
on comparison recovery methods along different TR-ranks in
Fig.12(c). We can see that the σ of TR-ALS and TR-WOPT
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Fig. 6: Examples on image completion using different methods when SR=0.05.
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Fig. 7: Examples on image completion using different methods when SR=0.1.
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Fig. 8: Comparison recovery performance on eight color images using different methods when SR=0.05 (RSE vs. R).

are much larger than that of others, which demonstrates that
the instability of TR decomposition is caused by the TR-
core factor divergence. The norm or non-negative constraint

is imposed on the TR-core factors to make them bounded,
which can further improve the stability of the TR decompo-
sition. Furthermore, when comparing the recovery results of
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Fig. 9: The change of RSE along different SRs on eight color images using different methods.

Fig. 10: The change of PSNR along different SRs on eight color images using different methods.

Fig. 11: The change of CPU time along different SRs on eight color images using different methods.
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Fig. 12: The change of stability metric under different conditions.

TTWOPT and TRWOPT with similar parameters, the recovery
performance of TTWOPT is significantly better than that
of TRWOPT, especially when there are few observations.
This means that the reason for the poor recovery results
of TRWOPT may mostly originate from TR decomposition
instability.

V. Conclusion

This paper provides an understandable explanation from
the perspective of mathematical analysis that TR-core factor
degeneracy leads to instability of the TR decomposition, thus
making the TR-based methods perform worse. On the other
hand, we prove that the optimal low-rank NTR approximation
exists. Moreover, NTR decomposition is applied to image
completion. Simulation experiments show that the TR decom-
position is more prone to instability on few observations, or
when the missing data do not actually have a low rank, but the
NTR decomposition remains stable in these cases. In addition,
experimental results on image completion show the proposed
method performs well in terms of recovery accuracy and time
efficiency. At the same time, experiments confirm that the TR-
core factor divergence is one of the reasons that affect the
instability of the TR decomposition.
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