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The limited supply of vaccines against SARS-CoV-2 raises the ques-
tion of targeted vaccination. Many countries have opted to vacci-
nate older and more sensitive hosts first to minimize the disease bur-
den. But what are the evolutionary consequences of targeted vacci-
nation? We clarify the consequences of different vaccination strate-
gies through the analysis of the speed of viral adaptation measured
as the rate of change of the frequency of a vaccine-adapted variant.
We show that such a variant is expected to spread faster if vacci-
nation targets individuals who are likely to be involved in a higher
number of contacts. We also discuss the pros and cons of dose-
sparing strategies. Because delaying the second dose increases the
proportion of the population vaccinated with a single dose, this strat-
egy can both speed up the spread of the vaccine-adapted variant and
reduce the cumulative number of deaths. Hence, strategies that are
most effective at slowing viral adaptation may not always be epidemi-
ologically optimal. A careful assessment of both the epidemiological
and evolutionary consequences of alternative vaccination strategies
is required to determine which individuals should be vaccinated first.
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The development of effective vaccines against SARS-CoV-21

raises hope regarding the possibility of eventually halting2

the ongoing pandemic. But vaccine supply shortages have3

sparked a debate about the optimal distribution of vaccination4

among different categories of individuals. Typically, infections5

with SARS-CoV-2 are far more deadly in older individuals6

than in younger ones (1). Prioritizing vaccination for older7

classes may thus provide a direct benefit in terms of mortality8

(2, 3) . Yet, younger individuals are usually more active and,9

consequently, they may contribute more to the spread of the10

epidemic. Prioritizing vaccination for younger and more active11

individuals may thus provide an indirect benefit through a12

reduction of the epidemic size (4, 5). Earlier studies have com-13

pared alternative ways to deploy vaccination in heterogeneous14

host populations and showed that recommendation varies with15

the choice of the quantity one is trying to minimize (e.g., the16

cumulative number of deaths, the remaining life expectancy or17

the number of infections) (3, 6, 7). The recommendation also18

varies with the properties of the pathogen and the efficacy of19

the vaccine (3, 4, 8). For SARS-CoV-2, the increase in mor-20

tality with age is such that the direct benefit associated with21

vaccinating more vulnerable individuals tends to overwhelm22

the indirect benefits obtained from vaccinating more active23

individuals (2, 3, 9, 10). But some studies challenge this view24

and identified specific conditions where vaccinating younger25

and more active classes could be optimal (5, 7, 11, 12). A26

similar debate emerges over the possibility to delay the second27

vaccination dose to maximise the number of partially vacci-28

nated individuals. A quantitative exploration of alternative29

vaccination strategies can help provide useful recommenda-30

tions: a two-dose strategy is recommended when the level of 31

protection obtained after the first dose is low and/or when 32

vaccine supply is large (13–16). 33

Vaccine-driven evolution, however, could erode the benefit 34

of vaccination and alter the above recommendations which 35

are based solely on the analysis of epidemiological dynamics. 36

Given that hosts differ both in their sensitivity to the disease 37

and in their contribution to transmission, who should we vacci- 38

nate first if we want to minimise the spread of vaccine-adapted 39

variants? The effect of alternative vaccination strategies on the 40

speed of pathogen adaptation remains unclear. Previous stud- 41

ies of adaptation to vaccines focused on long-term evolutionary 42

outcomes (17, 18). These analyses are not entirely relevant for 43

the ongoing pandemic because what we want to understand 44

first is the short-term consequence of different vaccination 45

strategies (19). A few studies have discussed the possibility of 46

SARS-CoV-2 adaptation following different targeted vaccina- 47

tion strategies but did not explicitly account for evolutionary 48

dynamics (12, 20). A recent simulation study explored the 49

effect of a combination of vaccination and social distancing 50

strategies on the probability of vaccine-driven adaptation (21). 51

This model, however, did not study the impact of targeted 52

vaccination strategies on the speed of adaptation. 53

Here, we develop a theoretical framework based on the anal- 54

ysis of the deterministic dynamics of multiple variants after 55

they successfully managed to reach a density at which they are 56

no longer affected by the action of demographic stochasticity. 57

We study the impact of different vaccination strategies on 58

the rate of change of the frequency of a novel variant, which 59

allows us to quantify the speed of virus adaptation to vac- 60

cines. Numerical simulations tailored to the epidemiology of 61
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SARS-CoV-2 confirm the validity of our approximation of the62

strength of selection for vaccine-adapted variants.63

Results64

We are interested in tracking the frequency pm of hosts infected65

by the vaccine-adapted variant among all the infected hosts. It66

is possible to show that under a broad range of conditions one67

can approximate the dynamics of the vaccine-adapted variant68

frequency as:69

ṗm ≈ pm(1− pm)S(t) [1]70

where S(t) is the selection coefficient on the vaccine-escape71

mutation. This selection coefficient measures the rate of change72

of the logit of the frequency of the vaccine-adapted variant73

(i.e., ln(pm/(1− pm)) and provides a relevant measure for the74

speed at which the viral population is adapting (see Methods).75

Targeted vaccination strategies aim to preferentially vacci-76

nate hosts according to specific epidemiological characteristics.77

For instance, we could target hosts that have more contacts,78

or are more at risk of a severe disease. In our model, we79

therefore introduce some heterogeneity among hosts. As a80

result, from the point of view of the parasite, the quality of81

the host may differ among infected hosts, and this variation82

is likely to affect the dynamics of vaccine-adapted variants.83

To quantify host quality, we use the concept of reproductive84

value, a key concept in demography and evolutionary biol-85

ogy (22–24). Reproductive value measures how much a virus86

infecting a given class of hosts will contribute to the future87

of the viral population. Our general mathematical analysis88

allows us to take the difference in host quality into account89

when calculating the selection coefficient S(t) (see Methods).90

We use this approach to analyse the speed of adaptation91

during the ongoing pandemic of SARS-CoV-2 under different92

scenarios. We use an epidemiological model tailored to the93

biology of SARS-CoV-2 (see Methods). However, it is impor-94

tant to keep in mind that, due to simplifying assumptions95

and uncertainty about parameter values, our results cannot96

be translated directly into public-health recommendations97

without further investigations (see Discussion). Nonetheless,98

our theoretical framework gives clear foundations for future99

applied work, and captures some of the most salient features100

of the COVID-19 pandemic. In particular, we introduce a101

time-varying parameter c(t) which measures the intensity of102

Non-Pharmaceutical Interventions (NPI). We assume that the103

epidemic is initially controlled by NPI which yields succes-104

sive epidemic waves before the deployment of vaccination at105

t = 150 days. We use this model to explore the effect of two106

different forms of heterogeneity on the speed of SARS-CoV-2107

adaptation.108

Heterogeneity in contact numbers and vulnerability: In the first109

scenario we assume that hosts differ in their ability to mix and110

thus to transmit the disease. More specifically, following the111

model used by (12), we assume that some hosts (L) have a112

low number of social interactions, while other hosts (H) have113

a higher number of contacts. These two types of hosts can114

be thought as corresponding to the older and younger halves115

of the population. The increased rate of social interactions116

amongH hosts is captured by a parameterM≥ 1. Susceptible117

hosts are initially naive (SL and SH) but they can become118

vaccinated (ŜL and ŜH) at rates νL and νH , respectively.119

When vaccinated, hosts have a lower probability to become120

infected (rσ measures the efficacy at blocking infection) and if 121

they become infected they have a lower probability to transmit 122

the virus (rτ measures the efficacy at blocking transmission) 123

and to die from the infection (rµ measures the efficacy at 124

reducing mortality). Viral adaptation, however, can erode 125

these benefits. We consider different viral strains characterised 126

by an escape trait e which takes values between 0 (no escape) 127

and 1 (full escape). The capacity of a variant to reduce the 128

effect of the vaccine on transmissibility (resp. infectivity) is 129

captured by a function Eτ (e) (resp. Eσ(e)), which allows us to 130

quantify the overall ability of the virus to escape the protective 131

effects of the vaccine as E(e) = Eτ (e)Eσ(e). Note that the 132

capacity of a variant to reduce mortality does not affect the 133

strength of selection in our model (i.e., the duration of infection 134

is affected neither by the variant nor by the vaccine). 135

In the Methods, we derive a simple approximation for the 136

strength of selection acting on the vaccine-adapted variant: 137

S(t) = (1− c(t))β∆E
(
ŜL +M2ŜH

)
[2] 138

where ∆E refers to the change in vaccine escape ability caused 139

by the mutation. This tells us that the intensity of selection 140

depends on (i) the ability of the virus mutant to escape the 141

protective effects of vaccine, (ii) the densities of uninfected 142

hosts (both L and H) who have been vaccinated and (iii) the 143

relative number of contacts of each class of hosts. Note that 144

the epidemiological impact of a higher contact rate (M > 1) 145

translates into a magnified selective impact (M2). Thus, 146

if we have to choose between vaccinating L and H hosts, 147

targeting H hosts is expected to select more strongly for 148

the vaccine-adapted variant. Figure 1B confirms that this 149

approximation captures very well the temporal dynamics of 150

the vaccine-adapted variant. In particular, the simulations 151

confirm that targeted vaccination of the L hosts slows down 152

the rate of adaptation of the virus. 153

Of course, the choice of the vaccination strategy should not 154

be based solely on the reduction of the speed of adaptation to 155

vaccines. Indeed, the best way to limit the spread of vaccine- 156

escape mutations would be to adopt the worst epidemiological 157

strategy: avoiding the use of vaccines. Yet, we urgently need 158

vaccines to save lives and halt the current pandemic. We can 159

use our numerical simulations to study the consequences of 160

distinct targeted vaccination strategies on the total number of 161

cases and on mortality (see Methods). Figure 1C shows that 162

targeting L hosts is expected to increase the number of cases 163

because H hosts contribute more to the spread of the disease. 164

Yet, Figure 1D shows that targeting L hosts is expected to 165

decrease the cumulative number of deaths after some time 166

because L hosts (i.e., older individuals) are also associated 167

with higher risks of dying from the infection. Hence, targeting 168

L hosts makes sense both for epidemiological and evolutionary 169

reasons. 170

We explored the robustness of the above results for a range 171

of alternative scenarios. First, we note that, as expected from 172

our analytic approximation, the use of a transmission-blocking 173

vaccine (instead of an infection-blocking vaccine) yields very 174

similar outcomes (compare Figure 1 and S1). Second, we show 175

in Figure S2 that evolution amplifies the increase in the cumu- 176

lative number of deaths whenH hosts are vaccinated compared 177

to a scenario without viral adaptation. Indeed, the spread 178

of a vaccine-adapted variant drives a large epidemic wave in 179

vaccinated populations. This evolutionary effect is maximized 180
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for intermediate values of the speed of the vaccination rollout181

because when vaccine rollout is very fast the vaccine-adapted182

variant is rapidly favoured, whatever the targeted vaccination183

strategy (Figure S3). Finally, we note that maintaining social184

distancing for longer can substantially decrease the speed of185

adaptation (Figure S4).186

Heterogeneity in the number of vaccination doses: In our second187

scenario, we assume that the heterogeneity among hosts is188

determined by differential strength of immunity induced by189

distinct vaccination status. We distinguish between unvacci-190

nated hosts (S), hosts partially vaccinated with one dose (ŜI)191

and hosts fully vaccinated with two doses (ŜII). Using the192

same approach as before, we obtain the following expression193

for the strength of selection acting on the strength of selection194

on the vaccine-adapted variant:195

S(t) = (1− c(t))β
(
∆EI ŜI + ∆EII ŜII) [3]196

Equation Eq. (3) is very similar to equation Eq. (2), but now197

we have to account for the fact that the escape mutation198

has different effects in each class. Hence, the influence of an199

increase in the densities of hosts vaccinated by a single or two200

doses of vaccines are weighted by ∆EI and ∆EII, respectively.201

A single vaccine dose is likely to induce a lower protection202

against the virus (i.e. EI > EII) but this does not necessarily203

imply that ∆EI > ∆EII. In fact, we can show that if the204

vaccine is acting on a single step of the virus’ life cycle (e.g.,205

only blocking infection) we expect ∆EII > ∆EI. Delaying the206

acquisition of the second dose will have two effects: (i) a lower207

density ŜII of fully vaccinated hosts decreases the more intense208

selection imposed by these hosts, (ii) but delaying the second209

dose allows for more hosts to be vaccinated and the increase210

in ŜI may result in stronger selection for the vaccine-adapted211

variant. We show in Figure 2B that this second effect can be212

more important than the first one and delaying the second dose213

can result in faster adaptation. However, Figure 2D shows214

that delaying the second dose may reduce the cumulative215

number of deaths because a larger fraction of the population216

would benefit from the protection of the vaccine (but higher217

rates of vaccination rollout can reverse this effect on mortality,218

see Figures S5 and S6). Hence, in contrast to the previous219

scenario, the strategy that maximises the speed of adaptation220

may result in a lower mortality. The contrast between our221

two scenarios illustrates the necessity to quantify both the222

epidemiological and the evolutionary consequences of different223

targeted vaccination strategies to identify the optimal way to224

distribute vaccines.225

Discussion226

The speed of the spread of SARS-CoV-2 variants has baffled227

the scientific community (25, 26). In spite of a relatively228

small mutation rate (27, 28) SARS-CoV-2 has the ability to229

produce mutations with variable phenotypic effects that fuel230

the adaptation to human populations. The growing concern231

regarding the ability of the virus to escape host immunity calls232

for tools allowing us to anticipate the speed of the spread of233

vaccine-escape mutants. We show here that heterogeneity in234

the behaviour (scenario 1) and/or immune status (scenario 2)235

can induce variation in the strength of selection for vaccine-236

escape mutations. We contend that it is important to quantify237

this variation because it could be used to carry out targeted238

vaccination strategies that, for a given vaccination coverage, 239

could limit the speed of adaptation of the virus. 240

We show that targeted vaccination on older hosts which 241

are associated with lower number of contacts but higher risks 242

of mortality may be a good strategy to reduce both the spread 243

of the vaccine-escape variant and the cumulative number of 244

deaths. (12) used a different approach to identify vaccination 245

strategies that could reduce what they call ‘vaccine escape pres- 246

sure’, a quantity proportional to the density of infected hosts 247

who are vaccinated. In contrast, we show that the strength of 248

selection on the vaccine-adapted mutant is proportional to the 249

density of susceptible hosts who are vaccinated. Their analysis 250

relies on the assumption that the incidence of the infection 251

remains small (i.e., no depletion of susceptible hosts) and they 252

do not track explicitly the rate of spread of a vaccine-adapted 253

variant. They conclude that vaccinating most of the vulnerable 254

hosts and few of the mixers could be the most risky for vaccine 255

escape. Yet, it is difficult to evaluate how the ‘vaccine escape 256

pressure’ criteria used in (12) may affect the speed of viral 257

adaptation. A high incidence among vaccinated hosts may 258

speed up viral adaptation because a vaccine-adapted variant 259

generated by mutation is more likely to escape extinction in 260

a vaccinated host. But a quantification of this effect would 261

require an explicit description of the interplay between within- 262

host selection and demographic stochasticity. In other words, 263

their model focuses on the process that limits the emergence 264

of vaccine-adapted variants while our analysis focuses on the 265

strength of selection after emergence. It would thus be partic- 266

ularly interesting to explore the robustness of our results with 267

a model that would account for the effects of demographic 268

stochasticity and within-host selection on the emergence of 269

new variants. 270

We also discuss the effect of delaying the second dose of 271

the vaccine on viral adaptation and on mortality. In a recent 272

model, (29) found that imperfect immunity induced by a 273

single dose may lead to stronger within-host selection for 274

vaccine-escape variants. This is the same argument used 275

by (12) where the infection of imperfectly immunized hosts 276

may speed up viral adaptation. But, as discussed above, this 277

effect relies on the interplay between demographic stochasticity 278

and within-host selection. In contrast, we focus on between- 279

host selection and ask whether vaccine-adapted variants can 280

increase in frequency at the population level. We contend 281

that once vaccine-adapted variants reach a significant fraction 282

of the population, the fate of those mutations will be driven 283

by between-host selection. Our analysis clarifies the balance 284

between the effects of mutations in different types of hosts (i.e. 285

the relative magnitudes of ∆EI and ∆EII) and the quantity of 286

the different types of hosts (i.e. the relative densities of hosts 287

with one or two doses of the vaccine). We show that a higher 288

speed of adaptation may be the price to pay for a reduced 289

number of deaths (Figure 2B). Indeed, delaying the second 290

dose allows for protecting (albeit partially) a larger fraction 291

of the population (see (15) for an exploration of this effect). 292

This positive effect can outweigh the negative consequences of 293

an erosion of vaccine efficacy due to viral adaptation. 294

Interestingly, we found that combining vaccination and 295

NPI can delay the rise of vaccine-adapted variant (Figures S4 296

and S7). Our analysis clarifies the origin of the positive effect 297

of NPI discussed in previous studies (21, 30). In our deter- 298

ministic model, this effect emerges from the reduction in the 299
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ŜH ÎH
i

MΛi

Mρσ(ei)Λi

νL

νH

δ

1− µH R

µH D

δ

1− µ̂H R

µ̂H D

Vaccination

B

Target H hosts
Target L hosts

No vaccination

NPI NPI

0.00

0.25

0.50

0.75

1.00

M
u
ta

n
t 
fr

e
q
u
e
n
cy

C

0.00

0.05

0.10

0.15

0.20

In
ci

d
e
n
c
e

D

0.00

0.01

0.02

D
e
a
th

s

0 100 200 300 400 500

Time

Fig. 1. Scenario 1 – heterogeneity in contact numbers and vulnerability. (A) A graphical presentation of the epidemiological life-cycle with L hosts who are more
vulnerable to the disease and H hosts who have a higher number of contacts. Infected hosts are indicated with a light-red shading and vaccination with a bold circle border.
The force of infection on naïve hosts is noted Λi = hi + ĥi (see Methods and Table 1 for additional details on this model). (B) Dynamical change of the frequency pm of the
vaccine-adapted mutant for two distinct targeted vaccination strategies: (i) mostly L hosts are vaccinated (blue lines), (ii) mostly H hosts are vaccinated (red lines). The full
lines indicate the exact numerical computation and the dashed line indicates the approximation obtained from (2). The gray areas indicate the period where Non-Pharmaceutical
Interventions were used to control the epidemic (c(t) = 0.7 with NPI). (C) Incidence of the epidemic (fraction of the total host population that is infected) in the absence of
vaccination (dotted black line) or under the two alternative vaccination strategies used in (B) (blue and red lines). (D) Cumulative number of deaths (fraction of the total host
population) in the absence of vaccination (dotted black line) or under the two alternative vaccination strategies used in (B) (blue and red lines).

strength of between-host selection due to lower opportunities300

of transmission (i.e., see the effect of larger values of c(t) in301

equations (2) and (3)).302

Vaccination is urgently needed to control the SARS-CoV-2303

pandemic but the limited supply of vaccines is raising major304

ethical and practical issues. Public health policies need to305

strike a balance between social, ethical and short-term epi-306

demiological considerations. Our work illustrates that the307

long-term evolutionary consequences of specific vaccination308

strategies also need to be considered and evaluated using309

quantitative models. Indeed, viral adaptation could erode the310

efficacy of vaccines and targeted vaccination may provide a way311

to delay this adaptation. Yet, as illustrated with the second312

scenario, a strategy that minimizes the cumulative number of313

deaths may not necessarily minimize the speed of adaptation.314

Hence, as for any therapeutic interventions that may result 315

in the evolution of pathogen resistance, the identification of 316

an optimal vaccination strategy that reduces the death toll 317

of the pandemic requires specific models accounting for both 318

the epidemiology and the evolution of the virus (31–33). Be- 319

cause our model relies on several simplifying assumptions and 320

because our knowledge of the biology of SARS-Cov-2 and of 321

several key parameter values (e.g., vaccine efficacy, virulence, 322

contact rates...) remain imperfect, our model cannot be used 323

directly to make quantitative public-health recommendations. 324

Nonetheless, our framework lays a clear conceptual foundation 325

to analyse the consequences of targeted vaccination strate- 326

gies. In order to make more precise applied predictions, it 327

would be interesting to investigate how other realistic factors 328

(such as age structure, difference in transmissibility among 329
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Fig. 2. Scenario 2 – heterogeneity in the number of vaccination doses. (A) A graphical presentation of the epidemiological life-cycle where the superscripts I and II refer
to the first and second doses of vaccine. Infected hosts are indiccated with a light-red shading and vaccination with a bold circle border. The force of infection on naïve hosts
is noted Λi = hi + ĥi (see Methods and Table 2 for additional details on this model). (B) Dynamical change of the frequency pm of the vaccine-adapted mutant for two
distinct targeted vaccination strategies: (i) vaccinated hosts receive two doses sequentially (purple lines), (ii) a single dose is used for each host (orange lines). The full lines
indicate the exact numerical computation and the dashed line indicates the approximation obtained from (3). The gray areas indicate the period where Non-Pharmaceutical
Interventions where used to control the epidemic (c(t) = 0.7 with NPI). (C) Incidence of the epidemic (fraction of the total host population that is infected) in the absence of
vaccination (dotted black line) or under the two alternative vaccination strategies used in (B) (purple and orange lines). (D) Cumulative number of deaths (fraction of the total
host population) in the absence of vaccination (dotted black line) or under the two alternative vaccination strategies used in (B) (purple and orange lines).

hosts classes, or alternative vaccination schedules) may affect330

our results. Furthermore, the present work could be readily331

extended to combine the two forms of heterogeneities in the332

same model to allow for alternative ways to distribute the333

vaccines (e.g., two doses for L individuals and one dose for334

H individuals). It would also be possible to use the same335

framework to account for other factors that have been shown336

to affect the outcome of vaccination strategy like assortative337

mixing (4) and compensatory behavior after vaccination (34).338

In all these scenarios, our framework could be used to identify339

which strategy manages to strike the right balance between the340

epidemiological and the evolutionary consequences of targeted341

vaccination strategies.342

Materials and Methods343

General approach. We first give a general overview of the method 344

used to calculate the selection coefficient in structured host popula- 345

tions. The dynamics of hosts infected by pathogen strain i can be 346

captured by a matrix Ri collecting the transition rates between host 347

classes. Assuming that mutations have small phenotypic effects (i.e. 348

em = ew + ε), we can write the change in frequency of the mutant 349

strain as 350

dpm
dt

= εpm(1− pm) v>
dRm

dem
f +O(ε2) [4] 351

where v> is the vector of reproductive values and f is the vector of
class frequencies. These vectors are conormalised such that v>f = 1
and satisfy the following dynamical equations

df
dt

= Rwf − λ(t)f [5]

dv>

dt
= −v>Rw + λ(t)v> [6]

Gandon et al. PNAS | November 12, 2021 | vol. XXX | no. XX | 5
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where Rw is the transition matrix for the wild-type strain and352

λ(t) is the per-capita growth rate of the resident population353

at time t (see (24, 35) for a more detailed description). The354

dRm/dem term in Eq. (6) refers to the differentiation of each355

elements of the transition matrix Rm with respect to the effect356

of the mutant. For small ε, the mutant frequency pm changes357

slowly compared to the ecological variables f and v, and we can358

use a quasi-equilibrium approximations obtained by setting the359

right-hand-sides of equations Eq. (5) and Eq. (6) to zero. This360

allows us to obtain analytical expressions for the class frequencies361

and reproductive values and thus to calculate the selection362

coefficient for a specific life cycle (scenario 1 vs scenario 2). Note363

that, although the weak selection assumption (small ε) is driving364

the separation of time scale, the approximation remains good when365

selection is strong as discussed in the two scenarios below and366

shown in the figures. The Mathematica notebooks used to generate367

the figures will be accessible from a data repository upon publication.368

369

Scenario 1: should we preferentially vaccinate individuals with more370

contacts?. We assume that susceptible hosts in class k (where k = L371

or H) are vaccinated at rate νk representing the speed of vaccination372

rollout in that host class. We noteM > 1 the relative number of373

contacts of H hosts compared to L hosts and ρτ (resp. ρσ) the374

relative transmissibility (resp. susceptibility) of vaccinated hosts375

compared to naive hosts of the same class. Both ρτ and ρσ are376

functions of the vaccine escape trait. With these assumptions, the377

force of infection of a pathogen strain i due to naive infected hosts378

is hi = βLi I
L
i +MβHi I

H
i , and ĥi = ρτ (ei)(βLi ÎLi +MβHi Î

H
i ) for379

vaccinated infected hosts. Note that vaccinated hosts are indicated380

by a "hat" (denoting protection). Hosts in class k infected by381

pathogen strain i eventually leaves the class at rate δki (resp. δ̂ki for382

vaccinated hosts) and can either recover or die. We assume that the383

probability µki (resp µ̂ki ) of dying after leaving the class Iki (resp.384

Îki ) may depend on the host class k and pathogen strain i. We track385

the cumulative number of deaths D. This quantity can be used386

to compare the efficacy of different vaccination strategies. Note387

that the probabilities µki and µ̂ki have no impact on evolutionary388

dynamics because these events occur when the host is assumed to be389

no longer infectious and consequently they do not affect pathogen390

fitness.391

This yields the following dynamical system (see also figure 1A):392

ṠL = −νLSL − (hi + ĥi)SL

˙̂
SL = νLSL − (hi + ĥi)ρσ(ei)ŜL

ṠH = −νHSH −M(hi + ĥi)SH

˙̂
SH = νHSH −M(hi + ĥi)ρσ(ei)ŜH

İLi = (hi + ĥi)SL − δLi ILi
˙̂
ILi = (hi + ĥi)ρσ(ei)ŜL − δ̂Li ÎLi
İHi =M(hi + ĥi)SH − δHi IHi
˙̂
IHi =M(hi + ĥi)ρσ(ei)ŜHi − δ̂Hi ÎHi

Ḋ =
∑
i

(
µLi δ

L
i I

L
i + µ̂Li δ̂

L
i Î

L
i + µHi δ

H
i I

H
i + µ̂Hi δ̂

J
i Î
H
i

)

[7]393

We analyse this general model under two simplifying but reasonable394

assumptions.395

1. We assume that the pathogen strains only differ through their396

effect on the parameters ρτ and ρσ (that is, we only look at397

vaccine escape mutations, not mutations that can also affect398

transmissibility or virulence).399

2. We assume that host classes L and H only differ through their 400

number of contacts, so that δLi = δ̂Li = δHi = δ̂Hi = δ and 401

βLi = βHi = β(1− c(t)) where β is the baseline transmissibility 402

and 1− c(t) captures the effect of Non-Pharmaceutical Inter- 403

ventions (NPI) aimed at controlling the epidemic by reducing 404

transmission. The parameter c(t) varies between 0 and 1 and 405

quantifies the intensity of the control, which may vary over 406

time as observed during the COVID-19 pandemic. 407

The latter assumption implies that the duration of infection is the 408

same in all classes, but the effect of vaccination on the mortality 409

of the different classes of hosts can be captured through the proba- 410

bilities µL, µ̂L, µH , µ̂H (again, note that there is no influence of 411

the pathogen genotype on disease outcome). For instance, in our 412

simulations, we assume that L hosts tend to have fewer contacts 413

but a higher mortality risk, while H hosts have more contacts but 414

a lower mortality risk. This may reflect the observed differences 415

between age classes. 416

The transition matrix Ri is the 4×4 matrix of per-capita transi- 417

tion rates of the pathogen between the 4 different types of hosts, 418

given by equation Eq. (8) (see page bottom). 419

We are interested in the dynamics of the frequency of the vaccine- 420

escape mutant, which is: 421

pm = ILm + IHm + ÎLm + ÎHm∑
i

(
ILi + IHi + ÎLi + ÎHi

) [9] 422

The dynamics of pm can be calculated by plugging the expressions 423

of Rw and Rm into equations Eq. (4), Eq. (5) and Eq. (6). After 424

some rearrangements, we obtain 425

S(t) = dρσ
dem

hw
(
v̂LŜL +Mv̂H ŜH

)
+ dρτ

dem
ĥw
(
vLSL + ρσ(ew)v̂LŜL +MvHSH +Mρσ(ew)v̂H ŜH

)
[10]

426

where the vector v =
(
vL v̂L vH v̂H

)
collects the reproduc- 427

tive values of an individual resident pathogen in classes IL, ÎL, 428

IH and ÎH respectively. Note that this result only depends on 429

assumption (i) above. 430

It is possible to simplify the expression of the selection coef- 431

ficient by treating the reproductive values as fast variables. In 432

particular, using our assumption (ii), this leads to the following 433

quasi-equilibrium approximations: 434

v̂L

vL
= v̂H

vH
= ρτ (ew), vH

vL
=M,

v̂H

vL
=Mρτ (ew) [11] 435

Similarly, we have the following quasi-equilibrium approximations 436

for the class frequencies, which give the fraction of infected individ- 437

uals in a given class: 438

f̂L

fL
= ρσ(ew) Ŝ

L

SL
,

fH

fL
=MSH

SL
,

f̂H

fL
=Mρσ(ew) Ŝ

H

SL
.

[12] 439

Together with the normalisation condition vLfL + v̂Lf̂L + vHfH + 440

v̂H f̂H = 1, we can use these relationships to obtain: 441

S(t) = εβ(1− c(t))
(
ŜL +M2ŜH

) d(ρσρτ )
dem

∣∣∣
em=ew

[13] 442

To recover equation Eq. (2) in the main text, we use the notations 443

Eτ = ρτ , Eσ = ρσ , E = EτEσ and 444

∆E = ε
dE
dem

∣∣∣
em=ew

445

which is the first order approximation of the difference E(em) − 446

E(ew). 447

Ri =

 βLSL − δL βLρτ (ei)SL MβHSL MβHρτ (ei)SL

βLρσ(ei)ŜL βLρτ (ei)ρσ(ei)ŜL − δ̂L MβHρσ(ei)ŜI MβHρτ (ei)ρσ(ei)ŜL
MβLSH MβLρτ (ei)SH M2βHSH − δH M2βHρτ (ei)SH

MβLρσ(ei)ŜH MβLρτ (ei)ρσ(ei)ŜH M2βHρσ(ei)ŜH M2βHρτ (ei)ρσ(ei)ŜH − δ̂H

 [8]
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Table 1. Main parameters and default values used in scenario 1

Virus parameters Symbol Values

Basic reproduction ratio R0 3
Transmission β 0.12 day−1

Recovery rate δ 0.1 day−1
Baseline probability of death µ 0.001
Increased contact rate of H hosts M 2
Increased mortality of L hosts D 20
Infectivity of wild type on vaccinated hosts ew 0
Infectivity of mutant type on vaccinated hosts em 0.8

Vaccine parameters Symbol Values

Vaccination rate of L hosts νL 0.02 day−1 (blue) 0.002 day−1 (red)
Vaccination rate of H hosts νH 0.002 day−1 (blue) 0.02 day−1 (red)
Efficacy at blocking infection rσ 0.9
Efficacy at blocking transmission rτ 0
Efficacy at reducing mortality rµ 0.9

Numerical simulations: In our applications, we use a linear model
of vaccine escape:

ρτ (ei) = 1− rτ (1− ei) [14]
ρσ(ei) = 1− rσ(1− ei) [15]

where rτ and rσ give the vaccine efficacy in the absence of vaccine
escape mutation (i.e. ei = 0). When ei = 1 (full vaccine escape),
the vaccine offers no reduction in transmissibility and susceptibility
(ρσ = ρτ = 1). As explained above, we assume that L hosts have a
higher risk of mortality due to the disease, and note D the relative
increase in mortality of L hosts vs H hosts, µ the baseline mortality
probability, and ρµ = 1 − rµ the reduction in mortality due to
the vaccine (which we assume independent of host classes and of
pathogen genotype). We thus have

µL = D µ
µ̂L = ρµD µ

µH = µ

µ̂H = ρµ µ

with D > 1 and 0 < ρµ < 1.448

Initial conditions used in Figure 1B-D: SL(0) = SH(0) = 1/2,449

ŜL = ŜH = 0, IL(0) = IH(0) = 10−6, ÎL(0) = ÎH(0) = 10−6,450

D(0) = 0, pm(0) = 10−3. The intensity of Non-Pharmaceutical451

Interventions varies with time (c(t) = 0.7 when t ∈ [40, 140] and452

t ∈ [150, 250], c(t) = 0 otherwise). Vaccination starts at t = 150453

and the other parameters used in Figure 1B-D are listed in Table 1.454

Scenario 2: should we delay the second dose?. For our second sce-455

nario, we consider three classes of susceptible hosts: unvaccinated456

(S), vaccinated with 1 dose (SI) and vaccinated with 2 doses (SII).457

Unvaccinated susceptible hosts can be given a first dose of vaccine458

at rate νI. Susceptible hosts that have received one dose can be459

given a second dose at rate νII. With one dose, the relative trans-460

missibility (resp. susceptibility) of vaccinated hosts with respect to461

pathogen strain ei is ρI
τ (ei) (resp. ρI

σ(ei)). With two doses, we use462

the notation ρII
τ (ei) and ρII

σ (ei). Apart from these assumptions, the463

life cycle is similar to the one used for scenario 1, and we have the464

following dynamics (see also figure 2A): 465

Ṡ = −νIS − (hi + ĥi)S
˙̂
SI = νIS − νIIŜI − (hi + ĥi)ρI

σ(ei)ŜI

˙̂
SII = νIIŜI − (hi + ĥi)ρII

σ (ei)ŜII

İi = (hi + ĥi)S − δiIi
˙̂
II
i = (hi + ĥi)ρI

σ(ei)ŜI − δ̂I
i Î

I
i

˙̂
III
i = (hi + ĥi)ρII

σ (ei)ŜII − δ̂II
i Î

II
i

Ḋ =
∑
i

(
ciδiIi + ĉI

iδ̂
I
i Î

I
i + ĉII

i δ̂
I
i Î

II
i )
)

[16] 466

where the forces of infection by virus strain i are hi = βiIi and ĥi = 467

ρI
τ (ei)βI

i Î
I
i + ρII

τ (ei)βII
i Î

II
i . For simplicity, we will also assume, as in 468

scenario 1, that βi = βI
i = βII

i = β(1− c(t)) and δi = δ̂I
i = δ̂II

i = δ, 469

so that (1) hosts only differ through the parameters ρτ and ρσ , and 470

(2) the viral strains only differ through the parameters ρτ and ρσ . 471

We also assume that µi = µ, µ̂I
i = µ̂I and µ̂II

i = µ̂II to account 472

for potential differences between mortality rates between different 473

classes of hosts (but no influence of the pathogen genotype). 474

With these assumptions, the matrix Ri is 475

Ri =

(
βS − δ ρI

τ (ei)βIS ρII
τ (ei)βIIS

βρI
σ(ei)ŜI ρI

τ (ei)βIρI
σ(ei)ŜI − δI ρII

τ (ei)βIIρI
σ(ei)ŜI

βρII
σ (ei)ŜII ρI

τ (ei)βIρII
σ (ei)ŜII ρII

τ (ei)βIIρII
σ (ei)ŜII − δII

)
[17] 476

and the quasi-equilibrium relationships for class frequencies and 477

reproductive values, when βI = βII = β and δki = δ are: 478

vI

v0 = ρI
τ (ew), vII

v0 = ρII
τ (ew) 479

and 480

f I

f0 = ρI
σ(ew) Ŝ

I

S
,

f II

f0 = ρII
σ (ew) Ŝ

II

S
481

where v =
(
v0 vI vII

)
and f =

(
f0 f I f II

)
. Together 482

with the normalisation condition v0f0 + vIf I + vIIf II = 1, these 483

relationships allow us to rearrange equation Eq. (4) to obtain 484

S(t) = εβ(1−c(t))

(
ŜI d(ρI

σρ
I
τ )

dem

∣∣∣∣
em=ew

+ ŜII d(ρII
σ ρ

II
τ )

dem

∣∣∣∣
em=ew

)
[18] 485

which is equation Eq. (3) in the main text using the same notations 486

as in Scenario 1. 487
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Table 2. Main parameters and default values used in scenario 2

Virus parameters Symbol Values

Basic reproduction ratio R0 3
Transmission β 0.3 day−1

Recovery rate δ 0.1 day−1
Baseline probability of death µ 0.01
Infectivity of wild type on vaccinated hosts ew 0
Infectivity of mutant type on vaccinated hosts em 0.8

Vaccine parameters Symbol Values

Vaccination rate for 1st dose ν I 0.002 day−1 (purple) 0.004 day−1 (orange)
Vaccination rate for 2nd dose ν II 0.002 day−1 (purple) 0.0002 day−1 (orange)
Efficacy at blocking infection (1st and 2nd dose) rI

σ , rII
σ 0.6 (1st dose) and 0.9 (2nd dose)

Efficacy at blocking transmission (1st and 2nd dose) rI
τ , rII

τ 0 (1st dose) and 0 (2nd dose)
Efficacy at reducing mortality (1st and 2nd dose) rI

µ, rII
µ 0.5 (1st dose) and 0.95 (2nd dose)

Numerical simulations: We use the same linear model of vaccine
escape as in scenario 1, but we allow for different vaccine efficacies
depending on the number of doses:

ρI
τ (ei) = 1− rI

τ (1− ei) [19]
ρI
σ(ei) = 1− rI

σ(1− ei) [20]
ρII
τ (ei) = 1− rII

τ (1− ei) [21]
ρII
σ (ei) = 1− rII

σ (1− ei) [22]

where rτ and rσ give the vaccine efficacy in the absence of vaccine488

escape mutation (i.e. ei = 0). When ei = 1 (full vaccine escape),489

the vaccine offers no reduction in transmissibility and susceptibility490

(ρσ = ρτ = 1). We assume that vaccination can also protect491

against disease induced mortality and we define rI
µ and rII

µ so that492

µ̂I
i = µ(1− rI

µ) and µ̂II
i = µ(1− rII

µ ).493

Initial conditions used in Figure 2B-D: S(0) = 1, ŜI(0) = ŜII(0) = 0,494

I(0) = ÎI(0) = ÎII(0) = 10−6, D(0) = 0, pm(0) = 10−3. The495

intensity of Non-Pharmaceutical Interventions varies with time496

(c(t) = 0.7 when t ∈ [40, 140] and t ∈ [150, 250], c(t) = 0 otherwise).497

Vaccination starts at t = 150 and the other parameters used in498

Figure 2B-D are listed in Table 2.499
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