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Abstract
What is the influence of periodic environmental fluctuations on life-history evolution? We

present a general theoretical framework to understand and predict the long-term evolution of life-
history traits under a broad range of ecological scenarios. Specifically, we investigate how periodic
fluctuations affect selection when the population is also structured in distinct classes. This analysis
yields time-varying selection gradients that clarify the influence of the fluctuations of the envi-
ronment on the competitive ability of a specific life-history mutation. We use this framework to
analyse the evolution of key life-history traits of pathogens. We examine three different epidemio-
logical scenarios and we show how periodic fluctuations of the environment can affect the evolution
of virulence and transmission as well as the preference for different hosts. These examples yield
new and testable predictions on pathogen evolution, and illustrate how our approach can provide a
better understanding of the evolutionary consequences of time-varying environmental fluctuations
in a broad range of scenarios.

1 Introduction
Many organisms experience periodic fluctuations of their environment. These fluctuations may be
driven by abiotic variations of the environment at different time scales (e.g. diurnal and seasonal
variability), or by the dynamics of biotic interactions between organisms (e.g. predator-prey or host-
parasite limit cycles). In such periodically changing environments, selection on life-history traits is
likely to fluctuate over time, but we currently lack a good understanding of the feedback between
periodic environmental dynamics and long-term phenotypic evolution (Barraquand et al., 2017).

A good measure of selection in periodic environments should tell us whether, on average over
one period of the fluctuation, a mutation increases or decreases in frequency. But how should we
compute this average fitness when selection may vary both in time but also among different classes
of individuals? Floquet theory provides an answer to this question through the computation of the
invasion fitness of a rare mutant in the periodic environment produced by the wild type (Metz et al.,
1992; Meszéna et al., 2005; Klausmeier, 2008; Metz, 2008). However, the analysis based on Floquet
theory is numerical and yields little biological insight. It only provides a good understanding of
evolutionary dynamics when a single class of individuals is needed to describe the mutant dynamics.
In this case the invasion fitness is simply the average, over one period, of the per-capita growth rate
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of a rare mutant (Metz, 2008; Donnelly et al., 2013; Kremer & Klausmeier, 2013; Cornet et al., 2014;
Gandon, 2016; Ferris & Best, 2018; Pigeault et al., 2018). In class-structured populations, however,
the lack of an analytical expression for the invasion fitness hampers the biological interpretation of
the results obtained with Floquet analysis. In this paper, we fill this gap and provide a new method
to analyse selection in class-structured populations subject to periodic environmental fluctuations.

In constant environments, it has been shown that the direction of selection should depend on the
relative abundance of each class as well as the productivity of the focal organism in each class, so
that we need to keep track of both the quantity and the quality of different classes (Taylor, 1990;
Taylor & Frank, 1996; Gandon, 2004; Rousset, 2004; Lehmann & Rousset, 2014; Lion, 2018a). Our
approach extends this idea to periodic environments and allows us to derive, using only the standard
weak-selection assumption, an expression of the selection gradient in terms of the quantity and quality
of classes, which are now time-dependent variables (see figure 1 for a graphical summary). With this
approach, the selection gradients in periodic and constant environments are directly comparable and
conceptually similar.

We first provide a general description of eco-evolutionary dynamics in class-structured, polymor-
phic populations, then turn to the dynamics of a mutant invading a resident population. We show
that, under weak selection (that is, for mutations of small phenotypic effects), a separation of time
scales argument can be used to derive the selection gradient in periodically varying environments. To
illustrate the potential use of this approach, we focus on the evolution of pathogen life-history traits
(such as transmission and virulence) in three different epidemiological scenarios when there is periodic
variation in the availability of susceptible hosts. The focus on pathogens is not restrictive, and the
method can be applied to a variety of life cycles. Evolutionary epidemiology, however, provides a very
natural framework in which to think about potentially complex eco-evolutionary feedbacks.

2 Eco-evolutionary dynamics
We consider a focal population composed of K different classes of individuals. For instance, these
different classes may correspond to distinct developmental stages of the organism (e.g., young and old,
male or female), different immune states, or different locations in a spatially structured environment.
Because we are interested in evolution we also assume that the population composed of different
genotypes.

The life cycle is defined by a matrix of average transition rates, r̄kj(E, t), which refer to the net
production of class-k individuals by class−j individuals, averaged over all genotypes (Lion, 2018a,b).
These transitions can be due to reproduction, mortality, maturation, or dispersal depending on the
biological context. Crucially, these rates can vary with a change in the environment which is referred
to as E(t) (Metz et al., 1992; Metz, 2008; Lion, 2018b). These environmental variations may be
driven by density-dependent effects caused by changes in population densities n(t), by frequency-
dependent effects caused by changes in the frequencies p(t) of the different types, but also by changes
in extrinsic variables (such as the density of a resource) which we refer to as e(t), so that E(t) =(
n(t) p(t) e(t)

)⊤
. Table 1 gives a summary of the main notations.

The average transition rates depend on the transition rates of the various genotypes, rkj
i (E, t), and

on the frequencies f j
i of genotype i in class j. Thus, we have

r̄kj(E, t) =
∑

i

rkj
i (E, t)f j

i (t). (1)

Note that the vital rates may themselves be time-dependent, hence we make time an explicit argu-
ment of the transition rates rkj

i . Following Lion (2018a,b), this yields the following eco-evolutionary
dynamics:

dn(t)
dt

= R̄(E, t)n(t) (2a)

dfk
i (t)
dt

=
∑

j

(
rkj

i (E, t)f j
i (t) − r̄kj(E, t)fk

i (t)
) f j(t)

fk(t) (2b)
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Table 1: Definition of the main mathematical symbols

Mathematical symbol Description
nk(t) Density of individuals in class k (1 ≤ k ≤ K)
n(t) = ∑

k nk(t) Total density of individuals
fk(t) = nk(t)/n(t) Frequency of individuals in class k (with respect to the total population)
vk(t) Individual reproductive value for class k
n(t) Vector of class densities nk(t)
f(t) Vector of class frequencies fk(t)
v(t) Vector of individual reproductive values vk(t)
e(t) Vector of external ecological variables
fk

i (t) Frequency of genotype i within class k (1 ≤ i ≤ M)
p(t) Vector of genotype frequencies fk

i (dimension K × M)
fi(t) = ∑

k fk
i (t)fk(t) Global frequency of genotype i

f̃i(t) = ∑
k vk(t)fk

i (t)fk(t) Reproductive-value-weighted frequency of genotype i

rkj
i Per-capita transition rate of genotype-i individuals from class j to

class k

r̄kj = ∑
i rkj

i f j
i Average per-capita transition rate at from class j to class k

R̄ Matrix of average per-capita transition rates r̄kj .
Rw Matrix of per-capita transition rates for the resident type rkj

w .

where f j(t) = nj(t)/∑k nk(t) is the fraction of individuals in class j at time t, and R̄(E, t) is the
matrix of average per-capita transition rates between different classes of individuals. Note that if the
environment depends on extrinsic variables (e.g. the density of a resource or a predator), one needs to
specify the dynamics of e(t) to complete the characterisation of the dynamical system (2). Thus, the
eco-evolutionary dynamics are described by the M(K + 1) equations of system (2), plus the equations
needed to describe the dynamics of extrinsic variables.

2.1 Dynamics of mutant frequencies

Now suppose that, for simplicity, we only have two types in the population: a resident wild type (w)
and a mutant (m). The change in the global frequency of the mutant, fm = ∑

k fk
mfk, can then be

decomposed as follows (Day & Gandon, 2006; Osnas et al., 2015; Lion & Gandon, 2016; Lion, 2018a).

dfm

dt
=
∑

j

f j
m(t)(1 − f j

m(t))
∑

k

(rkj
m (E, t) − rkj

w (E, t))f j(t)
︸ ︷︷ ︸

within-class

+
∑

j

(f j
m(t) − fm(t))

∑

k

r̄kj(E, t)f j(t)
︸ ︷︷ ︸

between-class

.
(3)

The first line represents the average effect of within-class selection, given by the genetic variance
f j

m(1 − f j
m) within class j, times the difference in transition rates from class j to all other classes.

The average is taken over the class distribution f j . In contrast, the second line represents the effect
of gene flow between classes, which depends on the relative contribution of the different classes when
there is variation in genotype frequencies (differentiation) among classes. Importantly, this second
term conflates both the effect of selection (which can shape the differentiation f j

m − fm) and of purely
demographic processes (what Grafen (2015) termed "passive changes" in allele frequencies), so that
any estimation of selection based on equation (3) may be biased by the existence of intrinsic differences
in qualities between classes (Gardner, 2015; Grafen, 2015; Lion, 2018a).

Thus, although there can be value in explicitly tracking the dynamics of the genetic differentiation
between classes (see e.g. Berngruber et al. (2013), Berngruber et al. (2015), and Lion & Gandon
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Environmental fluctuations
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Figure 1: Graphical summary of our approach. Environmental fluctuations are used to evaluate
the quality and quantity of individuals in the different classes at a given time. This information can
then be used to calculate the selection gradient.

(2016)), it is for our purpose more convenient to use an alternative measure of the mutant frequency,

f̃m =
∑

k

vk(t)fk
m(t)fk(t), (4)

which weights the mutant frequency in class k by the quantity (fk(t)) and quality (vk(t)) of individuals
in class k at time t. Specifically, we use the reproductive value of an individual in class k at time t
as the measure of quality vk(t). As previously shown (Lion, 2018a), the dynamics of this weighted
average frequency can then be written as

df̃m

dt
=
∑

j

f j
m(t)(1 − f j

m(t))︸ ︷︷ ︸
genetic variance

∑

k

vk(t)(rkj
m (E, t) − rkj

w (E, t))f j(t). (5)

In contrast to equation (3), equation (5) describes the net effect of selection on the change in mutant
frequency, without the confounding variations due to "passive changes" (Gardner, 2015; Grafen, 2015;
Lion, 2018a). It thus provides a more convenient measure of selection where the overall change in
mutant frequency is driven by the sum of the effects of the mutation on the rates rkj weighted by
the frequency of class j and the individual reproductive value of class k. Crucially, both the quantity
and the quality of the different classes can change in a fluctuating environment, so, unlike classical
equilibrium theory we need to characterise these fluctuations to understand and predict life-history
evolution. In order to characterise these fluctutations, we will use a weak selection assumption to
decouple the ecological fluctuations from the evolutionary dynamics.

3 Weak selection approximation
In this section, we use a weak-selection approximation of equation (5) to derive an expression of the
selection gradient using dynamical reproductive values. Our approach is based on a separation of time
scales, which readily occurs when the mutant phenotype, zm, is close to the resident phenotype zw, so
that zm = zw +ε, where ε is small. Under this separation of time scales, the population will settle on a
population dynamical attractor, such as a fixed point or a limit cycle, and we can compute the quality
and quantity of each class at any given time on the attractor. The fixed point case corresponds to the
classical theory developed for constant environments (Taylor, 1990; Rousset, 2004; Otto & Day, 2007),
and the limit cycle case corresponds to an extension of this theory to periodic population dynamics,
which we now present.
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3.1 Selection gradient

In appendix A, we show that the class densities n(t), class frequencies f(t) and individual reproductive
values v⊤(t) are fast variables. This means that, under weak selection, the environment E(t) settles on
a periodic attractor which is well approximated by the attractor of a monomorphic resident population,
Ê(t). On this monomorphic attractor, we only need the densities n̂(t) and the external variables ê(t)
to fully characterise the environment experienced by the mutant type.

In contrast, the weighted mutant frequency f̃m is a slow variable. To first-order in ε, we can write
the dynamics of f̃m as

df̃m

dt
= εf̃m(1 − f̃m)S(t) + O(ε2) (6)

where the instantaneous selection gradient is given by

S(t) =
∑

j

∑

k

v̂k(t)∂rkj
m (Ê, t)
∂zm

∣∣∣
zm=zw

f̂ j(t). (7)

Note that, in equation (6), we have replaced the class variances f j
m(1 − f j

m) in equation (5) by the
population variance f̃m(1 − f̃m). This is because the differences f j

m − f̃m will typically be O(ε) and
therefore this substitution will only contribute an extra O(ε2) term to equation (6).

As a result of periodic fluctuations on the fast time scale, the value and sign of the selection
gradient may fluctuate. However, under weak selection, these fast fluctuations can be averaged out.
This is known as the averaging principle (see e.g. Cai & Geritz (2020)), which allows us to approximate
the dynamics of the mutant frequency on the slow time scale by the solution of the so-called averaged
system

df̃m

dt
= εf̃m(1 − f̃m)S (8)

where
S =

〈∑

j

∑

k

v̂k(t)∂rkj
m (Ê, t)
∂zm

∣∣∣
zm=zw

f̂ j(t)
〉

(9)

is the selection gradient averaged over one period of the resident attractor (i.e. ⟨X⟩ = 1
T

∫ τ+T
τ X(t) dt

for any given τ on the periodic attractor).
The selection gradient (9) takes the form of a sum of marginal selective effects (giving the influence

of the evolving trait on between-class transitions) weighted by the time-varying quantity and quality of
different classes and is therefore reminiscent of the expressions obtained in equilibrium class-structured
populations. In fact, for constant environments, the class frequencies, reproductive values and envi-
ronment are constant, and therefore equation (9) exactly reduces to the classical expression of the
selection gradient for class-structured equilibrium populations (Taylor, 1990; Rousset, 2004; Otto &
Day, 2007). For periodic environments, equation (9) provides an analytical approximation, for weak
selection, of the invasion fitness of a mutant typically calculated as a Floquet exponent (Appendix B).
Note that this first-order approximation gives information on the direction of selection and its poten-
tial evolutionary endpoints, but not on the evolutionarily stability of these singularities, for which a
numerical computation of the Floquet exponent is still needed (Appendix B).

In equation (9), the class frequencies and reproductive values are calculated on the attractor of
the monomorphic resident population. In the next two sections, we show how these quantities can be
calculated using dynamical equations of the resident population.

3.2 Dynamics of class frequencies

Following Lion (2018a), the class frequencies follow the dynamics:

df
dt

= Rw(E, t)f(t) − rw(E, t)f(t), (10)
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where rw(E, t) = ∑
k

∑
j rkj

w (E, t)f j(t) is the per-capita growth rate of the monomorphic resident
population and Rw(E, t) is the matrix of resident transition rates rkj

w (E, t). If we focus on the frequency
of class j we have:

df j

dt
=
∑

k

rjk
w (E, t)fk(t) − rw(E, t)f j(t). (11)

Hence, the change in frequency of class j depends on the current class frequencies and on the relative
contributions of all the classes to class j. Note that we need to account for the overall growth rate
rw(E, t) of the whole population. This is because we are monitoring the change in class frequencies,
not class densities. The sum of class densities can increase (i.e. when rw(E, t) > 0) but the sum of
class frequencies must remain equal to 1 at all times (i.e. ∑j f j(t) = 1).

Mathematically, we can calculate the class frequencies at time t by integrating equation (10) for-
ward in time from an appropriate initial condition (i.e. an initial condition that leads to a biologically
relevant periodic attractor after some time). For instance, we can use an initial condition where all
the f j are equal to indicate that there is no a priori information on the relative quantities of the
different classes. In other words, the quantity of class j at time t depends on the past trajectory of
the population (Figure 2, top panels).

3.3 Dynamics of individual reproductive values

Similarly, the individual reproductive values, collected in the row vector v⊤(t), follow the dynamics
(Lion, 2018a):

dv⊤

dt
= −v⊤(t)Rw(E, t) + rw(E, t)v⊤(t). (12)

If we focus on the individual reproductive value in class j, we have:

dvj

dt
= −

∑

k

vk(t)rkj
w (E, t) + rw(E, t)vj(t). (13)

Mathematically, equation (12) is the adjoint of equation (10), which generalises the fact that, in
constant environments, class frequencies and individual reproductive values are respectively right and
left eigenvectors of the transition matrix of the resident population. Biologically, vk(t) gives the
relative quality of class k at time t. As in equation (10), we take into account the change in total
population size (through rw(E, t)) so that f and v⊤ are co-normalised at all times (i.e. v⊤(t)f(t) = 1).
In other words, the reproductive value of an average individual, ∑k vk(t)fk(t) is equal to 1 at all
times, and vk(t) measures the contribution to the future of the population of an individual sampled
in class k at time t, relative to a randomly sampled individual.

Hence, measuring the quality of a class at time t depends on the descendants and thus on the future
of the population. In contrast with class frequencies, we compute the individual reproductive values by
integrating equation (12) backward in time, from a terminal condition at a time tf in the distant future
(Figure 2, bottom panels). Typically, we set vk(tf ) = 1 for all classes at time tf (Barton & Etheridge,
2011; Lion, 2018a). This terminal condition indicates that there is no a priori information on the
relative qualities of the different classes of individuals at that point in time and we use between-class
transitions on the periodic attractor to acquire information on these relative qualities, by integrating
the system (12) backward in time.

3.4 A general recipe to study evolution in periodic environments

Equation (9) is the central result of our article and leads to a general recipe to study the evolution
of life-history traits in class-structured populations experiencing periodic environmental fluctuations.
The main steps of this method are summarised in Box 1. We start by computing the dynamics of
the class densities in the resident monomorphic population, which allows us to calculate the class
frequencies at a given time on the periodic attractor (i.e. in the gray zone in figure 2). We then use
this information to calculate the dynamics of the individual reproductive values, which depend on the
class frequencies through the computation of the transition rates rkj

w (E, t). Although in general these
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t + dtt

(∑

k

rjk
w (t)fk(t) − rw(t)f j(t)

)
dt

f j(t)

t0 tf

0

1
2

1 f̂ j(t)
fB

fA

T

•

t − dt t

(∑

k

vk(t)rkj
w (t) − rw(t)vj(t)

)
dt

vj(t)

t0 tf

1

v̂j(t)

vB

vA

T

•

Figure 2: Calculating the class frequencies and reproductive values on the resident periodic
attractor. Top panels: The class frequencies are calculated forward in time using equation (11) (left).
Integrating from t = t0 to tf , this gives dynamics that settle on a periodic attractor (right). In this
figure, we assume that both classes are initially equifrequent (i.e. fA(t0) = fB(t0) = 1/2) which
amounts to saying that we have no a priori information about their relative abundance. – Bottom
panels: Next, we insert the values f j(t) into equation (13) to calculate the individual reproductive
values. This is a backward process, because we need the values at t to compute the values at t − dt
(left). We therefore integrate equation (12) using the final condition vA(tf ) = vB(tf ) = 1, which
means that there is initially (i.e. at time tf ) no a priori information on the relative quality of the two
classes. We can then choose a period of the attractor (e.g. the gray zone) and calculate the values
f̂ j(t) and v̂j(t) for any t in the period.

solutions can only be computed numerically, we show in the next section that algebraic manipula-
tions of equations (9), (11) and (13) can be used to shed light on the interplay between fluctuating
environmental dynamics and selection. We do so by applying our general method to the evolution of
pathogen life-history traits when the density of hosts fluctuates.

4 Pathogen evolution in periodic environments
Many pathogens have to cope with environmental fluctuations (Altizer et al., 2006; Martinez, 2018).
In this section, we use the approach in Box 1 to study pathogen evolution under three distinct
epidemiological scenarios corresponding to three different pathogen life cycles. In all scenarios the
pathogen can be present in two distinct classes of hosts (A and B) and the environmental fluctuations
are captured by a periodic function ν(t) that gives the probability of production of susceptible hosts
at time t. Hence, using our general terminology, the forcing function ν(t) causes periodic fluctuations
in the vector e(t) (collecting the densities of susceptible hosts), which in turn drives fluctuations in
the vector n(t) (collecting the densities of infected hosts in classes A and B). The general approach
outlined in Box 1 can be applied to any periodic function, but for simplicity we consider a smooth
version of a step function with minimum 0, maximum νmax, and mean νmax/2 (figure 3).

4.1 Scenario 1: the Curse of the Pharaoh hypothesis

The claim that long-lived pathogen propagules could select for higher pathogen virulence has often
been presented as the "Curse of the Pharaoh hypothesis" (Bonhoeffer et al., 1996; Gandon, 1998).
Previous theoretical analyses focused mainly on temporally constant environments. Here we want
to analyse the influence of fluctuations on the availability of susceptible hosts on the evolution of
virulence for pathogens with free-living stages.

Let us assume that there is a single class of susceptible hosts S but two different classes of the
pathogens, which are (i) the infected host (IA) and (ii) the propagule stage (which lives outside the
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Box 1: How to study life-history evolution in periodically fluctuating environments?

We detail below the different steps allowing us to derive the selection gradient driving life-history
evolution in a class-structured population in a periodic environment.

Step 1 - Formalise the description of the life cycle of the focal organism in a monomorphic
resident population. This is captured in the dynamical system:

dn
dt

= Rw(E, t)n, (A)

where Rw(E, t) is the matrix of between-class transition rates in the resident population, to-
gether with the dynamical equations for the extrinsic variables in e(t).
Step 2 - Determine which life-history traits are under selection (and the trade-off between
these traits). Indeed, multiple life-history traits may be involved in the life-cycle and it is crucial
to be very explicit about the constraints acting on the evolving traits.
Step 3 - Derive the selection gradient using equation (9). This step may often yield insight
through the decomposition of selection into biologically meaningful quantities (see section 4 for
examples). But in general, moving to steps 4 and 5 is needed to predict the influence of periodic
fluctuations on life-history evolution.
Step 4 - Use equation (A) and (11) to determine the periodic attractor of the resident
population. This will yield the forward dynamics of class frequencies.
Step 5 - Use equation (12) and the numerical solution derived in step 4 to solve the backward
dynamics of individual reproductive values (using a final condition where individual reproduc-
tive values are all equal to 1).
Step 6 - The results of steps 4 and 5 can then be plugged into the selection gradient (step 3)
to obtain a mathematical expression (or a numerical computation) of the selection gradient on
the trait. This can be used to identify evolutionary singularities, the evolutionarily stability of
which can be checked using Floquet analysis (Appendix B).

infected host but that we still denote IB for consistency with the general framework). Thus, the vector
of population densities is n(t) =

(
IA(t) IB(t)

)
and S(t) is the extrinsic environmental variable e(t).

The epidemiological dynamics are given by

dS

dt
= θ(t) − dS(t) − βBS(t)IB(t) (14a)

dIA

dt
= βBS(t)IB(t) − (dA + αA)IA(t) (14b)

dIB

dt
= βAIA(t) − dBIB(t) (14c)

where θ(t) = bν(t) refers to the periodic influx of susceptible hosts in the population. A susceptible
host becomes infected upon contact with the propagules, which occurs at rate βBIB(t). Infected
hosts die at rate dA + αA, where dA is the background mortality rate and αA represents virulence,
and produce propagules at rate βA. These propagules die at a rate dB. Next, we follow the steps
presented in Box 1 to explore how higher propagule survival (e.g. lower values of dB) can affect the
evolution of pathogen virulence αA in the infected host.

Step 1: We can use equations (14) to derive the matrix Rw(E, t) which captures the transition rates
between classes A and B in a monomorphic resident population:

Rw(E, t) =
(

−dA − αA βBS(t)
βA −dB

)
. (15)
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Figure 3: Environmental fluctuation. We model fluctuations in the environment with a smoothed
step function with minimum 0, maximum νmax and mean νmax/2. This is captured by the following
function: ν(t) = (νmax/2)(1 + (2ζ/π) arctan (sin (2πt/T )/δ). We typically use ζ = 1 and δ = 0.01.
Note that ζ = 0 corresponds to a constant environment with value ν = νmax/2.

Step 2: At this stage it is important to specify the constraints acting on the underlying trait z that
controls the evolution of pathogen virulence αA. As in previous studies, we assume that an increase
in virulence is associated with an increase in pathogen transmission rate and in particular on the
production of propagules βA (so that the derivatives of βA and αA with respect to z are both positive;
Bonhoeffer et al. (1996) and Day & Gandon (2006)).

Step 3: We use equation (7) to obtain the instantaneous selection gradient on the trait z:

S(t) = fA(t)
(

vB(t)dβA

dz
− vA(t)dαA

dz

)
. (16)

The first term between brackets represents the gain in fitness if a pathogen in class A invests in the
production of propagules (weighted by the individual reproductive value vB(t) of propagules). The
second term between brackets accounts for the loss in fitness if a pathogen in class A dies (weighted
by the individual reproductive value vA(t)). The selection gradient on z is obtained by integrating
equation (16) over one period of the fluctuation which yields:

S =
〈
vBfA

〉 dβA

dz
−
〈
vAfA

〉 dαA

dz
. (17)

An analysis of the dynamics of class frequencies f(t) and individual reproductive values v(t) is required
to better understand selection on virulence and transmission.

Steps 4 and 5: For our life cycle, equation (12), which gives the dynamics of reproductive values,
can be written as:

dvA

dt
= −βAvB(t) + (dA + αA)vA(t) + rwvA(t), (18a)

dvB

dt
= −βBS(t)vA(t) + dBvB(t) + rwvB(t). (18b)

Fluctuations in the availability of susceptible hosts cause fluctuations of the reproductive values which
can be obtained numerically from (18), using the solution of system (14) to evaluate S(t) and r̄(t).
But equation (18) also yields a useful expression for the average of the ratio of individual reproductive
values (Appendix S.1): 〈

vB

vA

〉
= dA + αA

βA
. (19)

The right-hand side of equation (19) is the ratio of individual reproductive values in the absence of
fluctuations, so that we see that the ratio vB(t)/vA(t) fluctuates around its equilibrium value in a
constant environment.
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Step 6: Equation (19) can be used to rewrite the selection gradient (17) which yields:

S =
〈
cA
〉

Scst + dβA

dz
Cov

(
cA(t), vB(t)

vA(t)

)
(20)

where cA(t) = vA(t)fA(t) is the class reproductive value at time t and

Scst = d + αA

βA

dβA

dz
− dαA

dz

refers to the gradient of selection in the absence of fluctuations. This expression shows that, as
pointed out by earlier studies (Bonhoeffer et al., 1996; Day & Gandon, 2006), the mortality rate of the
propagule has no effect on the evolutionary stable virulence in a constant environment. However, with
periodic fluctuations, we will see that the mortality rate of the propagule does affect the evolutionary
outcome. Equation (20) is particularly insightful because it shows how periodic fluctuations of the
environment can affect the evolution of the pathogen: because

〈
cA
〉

> 0, periodic fluctuations will

affect the direction of selection only if the temporal covariance between cA(t) and vB(t)
vA(t) is non-zero.

In words, this means that, if infected hosts tend to be more abundant at times when propagules are
relatively more valuable (e.g. the covariance is positive), the ES virulence will be higher than in
a constant environment because the pathogen then reaps fitness benefits from increased propagule
production.

Numerical simulations show that this covariance is expected to be positive when dB is low and
negative when dB is large (figures 4a, 4b, 4d; see the SOM for an attempt to understand the sign of
this covariance). In contrast with the analysis of Bonhoeffer et al. (1996) we thus expect fluctuations
to alter the predictions regarding the influence of dB on the evolution of virulence and transmission
rates. As shown in figure 4c, higher rates of survival (i.e. lower values of dB) tend to select for
higher virulence and transmission (as in the Curse of the Pharaoh hypothesis). However, this effect is
non-monotonic: when dB gets very low (i.e. when propagule live very long), the covariance vanishes
because fA → 0 and thus cA → 0, and therefore the ES virulence is the same as predicted in a constant
environment. Note that Figure 4c also shows that, as expected, the ESS predicted from the selection
gradient using time-dependent reproductive values is consistent with the value predicted from a more
standard Floquet analysis (dashed line).

Conclusion of Scenario 1: In a constant environment the longevity of pathogen propagules does
not affect the long-term evolution of pathogen virulence. In contrast, we show that periodic fluc-
tuations of the environment (i.e., fluctuations in the availability of susceptible hosts) can select for
higher (when the fluctuations are fast) or lower (when the fluctuations are slow) pathogen virulence.
The selection gradient given in equation (20) allows us to capture the effect of fluctuations through
a single temporal covariance which measures the deviation from the selection gradient in a constant
environment.

4.2 Scenario 2: host preference

Many pathogens can infect several host species. Intuitively, which host the pathogen should prefer will
depend on the relative qualities of the hosts. But what would be the best strategy when the qualities
or abundances of the different host species fluctuate? In our second scenario, we investigate the effect
of periodic fluctuations in the abundance of different host species on the evolution of the pathogen’s
preference strategy.

We consider an epidemiological model with contact transmission (no free-living propagules) and
assume that the pathogen can exploit two different hosts (A or B). When a pathogen enters a
susceptible host SA (resp. SB), we assume that the infection is successful with probability pA (resp.
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Figure 4: Scenario 1: The Curse of Pharaoh. (a) Parametric plot of vB(t)/vA(t) versus cA(t) for
dB = 1 and zw = zeq. The grey diamond gives the equilibrium for a constant environment. The slope of
the regression line (dashed) is proportional to the temporal covariance between cA(t) and vB(t)/vA(t).
(b) Same as (a) but with dB = 3. (c) Predicted ESS as a function of the mortality rate of propagules,
dB using the reproductive-value-based approach (dots) and the Floquet exponent (dashed line). The
dotted line gives the prediction of the corresponding equilibrium model, zeq = 1. (d) Temporal
covariance between the class reproductive value cA(t) and the ratio of individual reproductive values
vB(t)/vA(t) as a function of dB for zw = zeq, where zeq is the ESS in the absence of fluctuations.
Parameters: ν(t) = 0.5(1 + (2/π) arctan (sin (2πt/T )/0.01)), b = 8, d = dA = 1, βA(z) = β0z/(1 + z),
βB = β0 = 10, αA(z) = z, T = 10.
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pB). With these assumptions, the dynamical system becomes:

dSA

dt
= θA(t) − dAS(t) − h(t)pASA(t) (21a)

dSB

dt
= θB(t) − dBS(t) − h(t)pBSB(t) (21b)

dIA

dt
= h(t)pASA(t) − (dA + αA)IA(t) (21c)

dIB

dt
= h(t)pBSB(t) − (dB + αB)IB(t) (21d)

where h(t) = βAIA(t) + βBIB(t) is the force of infection. The two infection routes differ by their
epidemiological parameters, so that one infection route may be more contagious or virulent than the
other. Furthermore, we assume that the production of susceptible hosts is periodic, and such that
θA(t) = b(1 − ν(t)) and θB = bν(t), where ν(t) is the probability of production of B hosts (figure 3).

Step 1: From equations (21), we derive the transition matrix

Rw(E, t) =
(

βApASA(t) − (dA + αA) βBpASA(t)
βApBSB(t) βBpBSB(t) − (dB + αB)

)
. (22)

Step 2: We assume that there is a trade-off between pA and pB such that pA = z = 1−pB. Hence, if
z = 1, infection is only possible on A hosts, while if z = 1/2, both host classes are equally susceptible to
infection. The trait z can thus be interpreted as measuring preference towards A hosts. For simplicity,
we assume that the pathogen’s virulence is lower in host A, but its transmissibility is independent of
the host (i.e. αA > αB, but βA = βB = β).

Step 3: Based on these assumptions on the life cycle, a naive prediction could be that the pathogen
should always prefer the "good" host B, in which it enjoys a longer lifespan because the pathogen is
less virulent on this host. However, the optimal strategy depends on the relative availability of the
two classes of hosts, which can fluctuate over time. To better understand the selective pressures on
the preference trait, we use our approach to derive the selection gradient at time t and obtain:

S(t) = β[vA(t)SA(t) − vB(t)SB(t)]. (23)

The terms vk(t)Sk(t) have a simple interpretation as the expected reproductive output of a pathogen
propagule at time t through class k. Thus, the direction of selection is determined by whether this re-
productive output is larger through class A than through class B. Furthermore, potential evolutionary
endpoints satisfy the balance condition

〈
vASA

〉
=
〈
vBSB

〉
, (24)

which simply states that selection halts when average reproductive outputs are the same in both
classes.

Steps 4 and 5: To better understand the impact of periodic fluctuations in host availability on the
evolution of the preference trait, we now need to numerically calculate the dynamics of the reproductive
values and densities of susceptible hosts. A detailed discussion of these dynamics is given in the SOM,
but we show in figures 5a-5b that the period of ν(t) has a strong impact on the dynamics of the
difference in reproductive output D(t) = vA(t)SA(t) − vB(t)SB(t). When the period is small (figure
5a), D fluctuates rapidly around a mean that is close to its value in a constant environment (which
is zero). In contrast, for large periods (figure 5b), D(t) better tracks the environmental fluctuations
ν(t) (it is minimal when there are only B hosts and maximal when there are only A hosts) and its
mean ⟨D⟩ is greater than zero.
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Step 6: Using the dynamics of the ecological variables, it is possible to calculate the ES strategy for
different values of T (Appendix S.2) and Figure 5c shows that the ESS increases with the period of
fluctuations. For small periods, the ecological variables fluctuate rapidly and the ESS is close to the
prediction of the constant model: host preference is biased towards the B hosts because pathogens
infecting these hosts have a higher reproductive value. In contrast, when the period of fluctuations
is large, host preference is biased towards the A hosts even if their reproductive value is always
lower (Figure S2). To understand this counter intuitive result it is important to note that, with the
periodic fluctuation we consider, the mean gradient of selection is simply the average over a half-
period dominated by host A and a half-period dominated by host B. When the period is large, the
epidemiological dynamics reach an endemic equilibrium within each half-period, and this yields:

S = β

2 [SA
e − SB

e ]. (25)

where SA
e and SB

e are the densities of the susceptible hosts at the endemic equilibrium of the corre-
sponding single-class models. It is possible to show that SA

e = (d+αA)/(zβ) and SB
e = (d+αB)/((1−

z)β). Solving S = 0 then yields the evolutionary stable strategy z∗ = (d + αA)/(2d + αA + αB) which
predicts that, indeed, this preference strategy is biased towards host A which suffers more from the
infection (i.e., αA > αB).

Conclusion of Scenario 2: In a constant environment the pathogen evolves a preference for the
host which suffers less from the infection because it prolongs the duration of infection. In contrast,
we show that slow fluctuations in the abundance of the two hosts can select for the opposite strategy
where pathogens evolve a preference for the host that suffers more from the infection. The selection
gradient given in equation (23) allows us to shed some light on the effect of temporal fluctuations on
pathogen evolution.

4.3 Scenario 3: imperfect vaccines

The use of imperfect vaccines may affect the evolution of pathogen virulence and transmission. These
evolutionary consequences have been studied by Gandon et al. (2001, 2003) when the coverage of
vaccination does not fluctuate in time. In our third epidemiological scenario, we ask how periodic
fluctuations in vaccination coverage may affect the evolution of virulence, building on a recent study
by Walter & Lion (2021).

We consider the same epidemiological dynamics as in Scenario 2 (equation (21)), but assume that
hosts are inoculated at birth with an imperfect vaccine at a rate ν(t) that fluctuates periodically
(figure 3). This yields a fluctuating influx of A hosts that are unvaccinated (θA(t) = b(1 − ν(t))) and
B hosts that are vaccinated (θB(t) = bν(t)).

Steps 1 and 2: As in scenario 2, the transition matrix Rw is given by equation (22). We now
assume that pA = pB = 1, and consider that the vaccine can either act by reducing the transmissibility
of hosts B (βB = (1 − rb)βA) or by decreasing virulence (αB = (1 − ra)αA). This corresponds to
the anti-transmission and anti-virulence vaccines introduced by Gandon et al. (2001) (noted r3 and
r4 respectively in that paper). Finally, we assume that, as in Scenario 1, the trait under selection is
the pathogen strategy of host exploitation, z, and that transmission and virulence both depend on z.

Step 3: With these assumptions, the selection gradient at time t takes the form

S(t) = cA(t)
[

dβA

dz
ωA(t) − dαA

dz

]
+ cB(t)

[
dβB

dz
ωB(t) − dαB

dz

]
(26)

where cA(t) and cB(t) = 1 − cA(t) are the class reproductive values in class A and B respectively, and

ωk(t) = vA(t)SA(t) + vB(t)SB(t)
vk(t) . (27)
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Figure 5: Scenario 2: host preference. (a) Dynamics of D = vA(t)SA(t)−vB(t)SB(t) for T = 1 and
zw = zeq. The dashed line indicates the mean value of D, the dotted line corresponds to the equilibrium
value of D in the constant environment, which is zero, and the grey line gives the dynamics of ν(t).
(b) Same as (a) but with T = 80. (c) Predicted ESS as a function of the period of ν(t) using the
reproductive-value-based approach (dots) and the Floquet exponent (dashed line). The dotted line
gives the prediction of the corresponding equilibrium model, zeq = 0.368652. (d) Mean value of the
difference in reproductive output vA(t)SA(t) − vB(t)SB(t) as a function of the period for zw = zeq.
Parameters: ν(t) = 0.5(1 + (2/π) arctan (sin (2πt/T )/0.01)), b = 2, dA = dB = 1, βA = βB = β = 10,
αA = 2, αB = 1.
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Note that ωk(t) has a useful intepretation: the denominator gives the quality of an "adult" pathogen in
class k, while the numerator is the expected quality of a pathogen propagule and therefore quantifies the
reproductive value of an "offspring" pathogen. So ωk(t) gives a measure of how valuable reproduction
is compared to survival in class k at any given time.

Steps 4, 5 and 6: In general, the densities and reproductive values have complex periodic
dynamics (figures S.3 and S.4). However, using the dynamics of reproductive values, it is possible to
analytically show (Appendix S.3) that, in the resident population on its periodic attractor:

〈
ωk
〉

= d + αk

βk
. (28)

The term on the right-hand-side is one over the basic reproduction ratio Rk of a pathogen when only
class k is present, and corresponds to the equilibrium value in a model with constant vaccination
coverage.

This useful result allows us to rewrite the average selection gradient as

S ≈
〈
cA
〉 [dβA

dz

d + αA

βA
− dαA

dz

]

︸ ︷︷ ︸
SA

+
(
1 −

〈
cA
〉) [dβB

dz

d + αB

βB
− dαB

dz

]

︸ ︷︷ ︸
SB

(29)

where we have neglected the covariances Cov
(
ck, ωk

)
that arise when taking the mean. Extensive

numerical simulations show that this approximation fits very well the prediction of a Floquet analysis
(Walter & Lion, 2021).

A full analysis is beyond the scope of this paper, and we refer the reader to the more complete
study by Walter & Lion (2021). Nonetheless, is is interesting to see that the selection gradient takes
the form of a weighted sum of the selection gradients in class A and B respectively, exactly as in
constant environments. For a constant vaccination coverage, the ES strategy of host exploitation is
a weighted mean of the optima in class A and in class B, respectively given by the zeros of SA and
SB. For our anti-transmission vaccine (rb > 0) SA = SB, and therefore vaccination has no effect on
the optimum. Equation (29) shows that the same holds true for periodic environment, and this is
confirmed by numerical calculations of the Floquet exponents (Walter & Lion, 2021). For a vaccine
that reduces virulence (ra > 0), however, SA ̸= SB, and the position of the ESS is determined by a
single variable, which is the mean value, over one period, of the class reproductive value cA(t) in the
resident population.

Figure 6b shows that the class reproductive value cA(t) closely tracks the environmental fluctuation
ν(t) when T is large (it is close to 1 when ν(t) = 0, so that only A hosts are produced, and close to zero
otherwise), whereas for short periods it quickly fluctuates around its value in a constant environment
(figure 6a). An interesting consequence is that, when the period of fluctuations increases,

〈
cA
〉

increases (figure 6d), which selects for lower virulence compared to a scenario with constant vaccination
coverage (figure 6c). For large periods,

〈
cA
〉

converges towards 1/2 (the mean of ν(t)), which allows
the ES virulence to be analytically calculated (Walter & Lion (2021), appendix S.3). Note that, in
the latter figure, the slight quantitative discrepancy between the prediction of equation (29) and the
Floquet analysis is due to the fact that we have neglected the covariances Cov

(
ck, ωk

)
.

Conclusion of Scenario 3: In a constant environment, vaccination with an imperfect vaccine that
affects the within-host growth of the pathogen can select for higher virulence. Here we show that
temporal fluctuations in the proportion of vaccinated hosts can mitigate this effect. Importantly, the
deviation from the prediction in the absence of fluctuations can be captured by a single quantity,
which is the average, over one period, of the class reproductive value cA(t) (see the equation of the
selection gradient (29)).
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Figure 6: Scenario 3: imperfect vaccines and virulence. (a) Dynamics of the class reproductive
value cA(t) for T = 1 and zw = zeq. The dashed line indicates the mean value, the dotted line the
value in a constant environment, and the grey line gives the dynamics of ν(t). (b) Same as (a) but
with T = 80. (c) Predicted ESS as a function of the period of ν(t) using the reproductive-value-based
approach (dots) and the Floquet exponent (dashed line). The dotted line gives the prediction of the
corresponding equilibrium model, zeq ≈ 1.667. (d) Mean value of the class reproductive value cA(t)
as a function of the period for zw = zeq. Parameters: ν(t) = 0.5(1 + (2/π) arctan (sin (2πt/T )/0.01)),
b = 2, dA = dB = 1, βA(z) = βB(z) = β = 10z/(1 + z), αA = z, αB = (1 − ra)z, ra = 0.8.
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5 Discussion
We present a theoretical framework to analyse evolution in periodically fluctuating environments in
class-structured populations, and use it to study the evolution of pathogen traits in three epidemio-
logical scenarios. In Scenario 1, we revisit the "Curse of Pharaoh" hypothesis and show that, while
propagule longevity is not predicted to affect the evolution of virulence when the environment is con-
stant (Bonhoeffer et al., 1996; Day & Gandon, 2006), fluctuations in the density of susceptible hosts
can strongly alter the predictions on the effect of propagule longevity on the evolution of virulence.
In Scenario 2, we show that periodic fluctuations in the availability of two types of hosts can bias
pathogen preference towards the host where the pathogen has higher virulence, in contrast to the
prediction in a temporally constant environment. Finally, in Scenario 3, we show that the evolution of
virulence in response to the use of imperfect vaccines is affected by periodic fluctuations in vaccination
coverage, which can select for lower virulence compared to constant environments. These three sce-
narios illustrate how the derivation of the selection gradient (using the general recipe detailed in Box
1) can yield important insights on the influence of temporal fluctuations on life-history evolution.

From a methodological standpoint, our analysis extends previous adaptive dynamics studies, which
use the Lyapunov (or Floquet, for periodic environments) exponent of a rare mutant as a measure
of invasion fitness (Metz et al., 1992; Geritz et al., 1998; Klausmeier, 2008; Metz, 2008; Donnelly
et al., 2013; Cornet et al., 2014; Gandon, 2016; Ferris & Best, 2018; Pigeault et al., 2018). Here, we
circumvent this problem and derive an expression of the selection gradient on life-history traits, which
represents the first-order approximation of invasion fitness for weak selection. We show how it can be
used to better understand the impact of environmental fluctuations on the direction of selection and
the potential evolutionary endpoints of life-history evolution. In contrast with previous optimisation
approaches (e.g. McNamara (1997)), our method does not rely on the assumption that there is no
frequency- or density-dependence in the population, and allows us to take into account a variety of
ecological feedbacks.

Our approach is based on the analysis of the dynamics of a reproductive-value-weighted frequency
of a mutant. This is a recurring idea in evolutionary biology (Fisher, 1930; Taylor & Frank, 1996;
Lehmann & Rousset, 2014; Gardner, 2015; Grafen, 2015; Lion, 2018a), but, in contrast to previous
approaches (see e.g. Gardner (2014)), the novelty here is that we use a dynamical definition of
reproductive value to quantify the fluctuating quality of a class in a periodic environment (see Lion
(2018a) for a general discussion on this topic, and Brommer et al. (2000), Caswell (2001), and Bacaër
& Abdurahman (2008) for other approaches). The resulting expression of the selection gradient can
then be obtained by weighting the effect, at time t, of a mutation on the transition rates from class j
to k by the frequency of class j at time t and by the individual reproductive value of class k at time
t. This has two main implications. First, this allows us to quantify selection at time t in terms of the
quantity and quality of each class. As in constant environments, the quantity of a class is given by
the frequency of individuals in that class, and the quality of a class is measured by their reproductive
value, which gives the relative share of future descendants left by individuals in that class. The only
difference is that the quantity and quality of each class are allowed to fluctuate periodically over time.
Second, the direction of selection can be obtained by computing the average, over one period of the
resident attractor, of the instantaneous selection gradient, and we recover a periodic extension of the
"invasion implies fixation" principle (Geritz, 2005; Cai & Geritz, 2020; Priklopil & Lehmann, 2020).

It could be argued that, with our approach, the problem of numerically computing a Floquet
exponent is replaced by the problem of numerically computing the time-dependent reproductive values
and class frequencies. This is of course true if we are simply interested in the quantitative result, but
the expression of the selection gradient allows for a qualitative discussion of the selective pressures. The
different examples we examine above illustrate that this approach allows us to better understand the
often counter-intuitive effects of the periodic fluctuations of the environment on life-history evolution.
However, as our approach is currently limited to first-order effects (e.g. convergence stability), the
numerical calculation of invasion fitness using Floquet exponents is required to evaluate evolutionary
stability and determine whether the predicted evolutionary singularities are ESSs or branching points
(Appendix B).

Although periodic environmental fluctuations are important in nature, many organisms also expe-

17



rience stochastic environmental fluctuations. An interesting avenue for future work would be to extend
our approach to stochastic stationary ecological dynamics. Since the "invasion implies fixation" prin-
ciple has also been proven for stochastic fluctuations in the environment (Cai & Geritz, 2020), we
think this extension is feasible and would help link our method with classical theory on the influence
of environmental stochasticity on life-history evolution (Frank & Slatkin, 1990; Sasaki & Ellner, 1995;
Lande et al., 2017). However, this would require a careful definition of the concept of time-dependent
reproductive value in stochastic environments.

Our general recipe to study adaptation in periodically fluctuating environments relies on the clas-
sical Adaptive Dynamics assumption that the mutation rate is small. This analysis may predict the
evolution of generalist strategies that balance the exploitation of the habitats that fluctuate period-
ically. Yet, as the period of the fluctuation between different environments increases, one may also
expect that new mutations will introduce enough genetic variation to allow the population to adapt to
this time-varying environment through the recurrent selection of genotypes specialised to each habitat.
This would be an interesting avenue for future work.

Although we assumed in our scenarios that all life-history traits are constant, so that temporal
fluctuations only come from periodic variations in birth rates which cause fluctuations in densities, it
is straightforward to consider time-dependent traits (such as a seasonal transmissibility β(t)). This
would give rise to additional terms capturing the temporal covariance between the trait and some
life-cycle-specific ecological variable (Kamo & Sasaki, 2005; Koelle et al., 2005; Cornet et al., 2014;
Pigeault et al., 2018).

More generally, fluctuating environments often select for plasticity in life-history traits, which
allows an organism to switch between phenotypes specialised to each habitat. It would be interesting
to take this into account in our scenarios, especially since there are numerous examples of plastic
life-history strategies in pathogens. For instance, malaria parasites have evolved plastic transmission
strategies to cope with the fluctuations of their within-host environment as well as the fluctuations
of the availability of their mosquito vectors (Mideo & Reece, 2012; Cornet et al., 2014; Birget et al.,
2017). In addition, many viruses have the ability to change their host exploitation strategy when they
perceive a change in the within-cell environment or other cues from the environment (Gandon, 2016).
Our approach can be a valuable tool to understand the evolution of fascinating strategies that enable
viruses to coordinate the exploitation of their host population in fluctuating environments (see Bruce
et al. (2021) for a recent application of our method).

Our approach provides a general theoretical framework to extend the study of the evolution of
life-history plasticity to class-structured life cycles.
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Appendix A: Weak-selection approximation of transition rates

To derive the weak selection approximation of the transition rates, we write rkj
i (E, t) as explicit

functions of the phenotypes:
rkj

i (E, t) = rkj(zi, E, t), (A.1)

where zi is the trait of type i. Writing zm = zw + ε, for small ε, we use a Taylor expansion to obtain
(see e.g. Iwasa et al. (1991), Abrams et al. (1993), Sasaki & Dieckmann (2011), and Lion (2018b))

rkj(zm, E, t) = rkj(zw, E, t) + ε
∂rkj

∂zm
(zw, E, t) + O(ε2). (A.2)

As a result, we have

r̄kj(E, t) = rkj(zw, E, t) + O(ε)

rkj
m (E, t) − rkj

w (E, t) = ε
∂rkj

∂zm
(zw, E, t) + O(ε2)

which implies that the dynamics of the class frequencies and individual reproductive values (as well
as extrinsic environmental variables) are O(1) and functions of rkj

w (E, t) only, while the dynamics
of f̃m are O(ε). This leads to a separation of time scales, with the class frequencies and individual
reproductive values being fast variables and the weighted mutant frequency f̃m being a slow variable.
Importantly, the unweighted average, fm, is not a slow variable because its dynamics (3) depends on
O(1) terms (see also Priklopil & Lehmann (2020)).

Appendix B: The Floquet approach for a rare mutant
The classical Adaptive Dynamics approach is based on the assumption that the mutant is rare and on
the derivation of invasion fitness as the Lyapunov exponent of the mutant on the resident attractor
(Metz et al., 1992; Geritz et al., 1998; Metz, 2008). For periodic attractors, this amounts to calculating
the so-called Floquet exponent of the mutant invasion dynamics (Klausmeier, 2008). Unfortunately,
Floquet exponents typically have to be numerically calculated, and only in specific cases can an
analytical expression be derived. For instance, when the population has only one class (K = 1), it is
generally straightforward to derive an analytical expression for the invasion fitness of the mutant by
integrating its per-capita growth rate over one period (see e.g. Donnelly et al. (2013) and Ferris &
Best (2018)).

The general procedure to calculate the invasion fitness of a rare mutant is to evaluate the mutant
dynamics on the resident attractor. This leads to a matrix Rm(Ew, t), where Ew denotes the environ-
ment on the resident attractor. One then numerically integrates the matrix differential equation

dX
dt

= Rm(Ew, t)X (B.1)
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over one period (from t = t0 to t = t0 + T ) from the initial condition X(t0) = I, the identity matrix.
The eigenvalues of X(t0 + T ) are called the Floquet multipliers, and the invasion fitness can then be
expressed as the dominant Floquet exponent

λ(zm, zw) = 1
T

ln µ (B.2)

where µ is the dominant Floquet multiplier. This numerical procedure can be repeated for any combi-
nation of the mutant and resident traits, which makes it possible to develop the full toolbox of Adaptive
Dynamics to investigate the convergence and evolutionarily stability of the singularities. Although
well established in theory, this method is very rarely encountered in practice in the literature, because
very few studies have actually analysed long-term life-history evolution in periodic environments for
class-structured populations (but see e.g. Ferris & Best (2018)).
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Appendix S: Supplementary Online Material

S.1 Scenario 1: Curse of the Pharaoh

Figure S.1a shows that fluctuations in the production of susceptible hosts (top panel) cause fluctuations
in the quantity and quality of classes A and B (middle and bottom panels). By averaging over these
fast fluctuations, it is possible to track the frequency fm(t) of the mutant. Figure S.1b shows that
our reproductive-value-weighted selection gradient (S, equation (9); dashed line) gives a very accurate
prediction for the dynamics of the mutant frequency fm(t) (grey) on the slow time scale (top panel).
When one zooms in, we recover the fast fluctuations of the instantaneous selection gradient S(t)
(bottom panel). Note that the direction of selection is well predicted by the sign of S(t).

For the life cycle of Scenario 1, we can use equation (10) to derive the following dynamics of class
frequencies:

dfA

dt
= βBS(t)fB(t) − (dA + αA)fA(t) − rwfA(t) (S.1a)

dfB

dt
= βAfA(t) − dBfB(t) − rwfB(t) (S.1b)

together with the dynamical equation for S(t). There is no analytical solution in the general case,
but numerical integration allows us to investigate the dynamics of the class frequencies. Note that
the frequency of free-living pathogens (class B) will always tend to lag behind the class A of infected
hosts because these free-living pathogens are produced from class A.

In the absence of fluctuations (ζ = 0), the system reaches an equilibrium, which can be calculated
by setting dfk/dt and rw to zero. We thus obtain

fA
cst

fB
cst

= dB

βA
and Scst = dA + αA

βB

dB

βA
. (S.2)

In the presence of fluctuations (ζ > 0), an explicit expression of fA(t) on the periodic attractor is
beyond our reach, but, because 〈

d ln(fk)
dt

〉
= ⟨rw⟩ = 0,

we can show that 〈
fA

fB

〉
= dB

βA
and

〈
SfB

fA

〉
= dA + αA

βB
. (S.3)

Hence, the ratio of class frequencies, fA(t)/fB(t), fluctuates around an average value dB/βA, which
corresponds to the ratio of class frequencies in the absence of fluctuations. In particular, this implies
that, when dB → 0 (i.e. when propagules live very long), fA(t) → 0. However, this information
cannot be used to further simplify the selection gradient (17).

In contrast, the dynamics of reproductive values yield a very useful expression for the average of
the ratio of individual reproductive values, vB(t)/vA(t), on the periodic attractor. From equation (12)
we obtain

dvA

dt
= −βAvB(t) + (dA + αA)vA(t) + rwvA(t)

dvB

dt
= −βBS(t)vA(t) + dBvB(t) + rwvB(t)

and, using the fact that
〈
d ln(vk)/dt

〉
= 0 on the periodic attractor, we obtain

〈
vB

vA

〉
= d + αA

βA
and

〈
vAS

vB

〉
= dB

βB
. (S.4)

It is straightforward to check that the right-hand sides correspond to the equilibrium values in the
absence of fluctuations.
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This result suggests that it may be useful to rewrite equation (17) to reveal the selection gradient
in a constant environment. We thus write:

S(t) = cA(t)
(

vB(t)
vA(t)

dβA

dz
− dαA

dz

)
(S.5)

where cA(t) = vA(t)fA(t) is the class reproductive value at time t (Taylor, 1990; Rousset, 2004; Lion,
2018a). Averaging over the period then gives equation (20) in the main text:

S =
〈
cA
〉

Scst + dβA

dz
Cov

(
cA(t), vB(t)

vA(t)

)
. (S.6)

In the absence of fluctuations, or when the covariance is zero, the ESS is predicted from Scst = 0,
which takes the form of a simple marginal value theorem:

dβA

dz
dαA

dz

= βA

d + αA
.

In other words, the ESS maximises the ratio βA/(d + αA). Any departure from this prediction is
caused by a non-zero covariance between cA(t) and vB(t)

vA(t) . We can develop this covariance and use
(S.4) to express this covariance as a function of the reproductive outputs through class A (vA(t)fA(t))
and through class B (vBfA(t)). We obtain:

Cov
(

cA(t), vB(t)
vA(t)

)
=
〈
vBfA

〉
−
〈
vAfA

〉〈vB

vA

〉
=
〈
vBfA

〉
−
〈
vAfA

〉 dA + αA

βA
(S.7)

so that the sign of this covariance tells us whether the ratio of the average reproductive outputs is
greater or smaller than the average of the ratio of reproductive outputs. In other words, the covariance
is positive if 〈

vBfA
〉

〈
vAfA

〉 >

〈
vBfA

vAfA

〉
=
〈

vB

vA

〉
= dA + αA

βA

and negative otherwise.
As a final remark on this model, we note that, as in earlier studies (Bonhoeffer et al., 1996; Day &

Gandon, 2006), we have neglected the decrease in propagule density due to the infection of new hosts.
This effect can be captured by adding a −βBS(t)IB(t) term to the dynamics of IB, but this has no
qualitative impact on our results.

S.2 Scenario 2: host preference

Figure S.2a shows that, with our choice of periodic fluctuations in ν(t) (top panel), the system alter-
nates between periods of high densities of susceptible A hosts and intermediate densities of susceptible
B hosts (middle panel). When one host is present, the other is either absent or present at low densi-
ties. The resulting dynamics of reproductive values (bottom panel) show that the qualities of A and
B hosts fluctuate over time, but that B hosts are always more valuable than A hosts. However, some
degree of preference for A hosts (z > 0) may evolve because the densities of susceptible hosts are not
equal. This can be shown both for constant and periodic environments.

In the constant case, it is easy to show that, in the resident population at equilibrium

vA
cst

vB
cst

= RA

RB

where Rk = βk/(d + αk) is the basic reproductive ratio in a fully suceptible populations with only k
hosts present. Thus at the ESS the following condition must be satisfied:

RASA
cst = RBSB

cst
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(a) Fast variables
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(b) Slow variable
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Figure S.1: Scenario 1: The Curse of Pharaoh. (a) Ecological dynamics on the fast time scale.
Top: periodic probability of production of susceptible hosts, ν(t). Middle: dynamics of host densities
(blue: susceptible hosts, red: infected hosts (solid line: A class, dashed line: B class (propagules)).
Bottom: dynamics of individual reproductive values for pathogens in A (solid) and B (dashed) hosts.
(b) Slow-time dynamics of the frequency of a mutant fm(t) (grey) compared to the prediction using
the average selection gradient (dashed line). The lower panel is a zoom showing the oscillations of
the mutant frequency on the fast time scale. The direction of selection is well predicted by the sign
of the instantaneous selection gradient S(t) (black: positive, grey: negative). Parameters: ν(t) =
0.5(1 + (2/π) arctan (sin (2πt/T )/0.01)), b = 8, d = dA = dB = 1, βA(z) = β0z/(1 + z), βB = β0 = 10,
αA(z) = z, zw = 1, zm = zw + 0.005, T = 10. The value of zw is the ESS value in a constant
environment with ν = 0.5.
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which can be numerically solved to yield an intermediate ES value z∗
eq.

In the periodic case, the selection gradient vanishes when
〈
vASA

〉
=
〈
vBSB

〉
.

To see how periodic fluctuations can affect the ES preference strategy, we now fix the resident trait
at zw = z∗

eq, and track the frequency of a mutant with a slightly increased preference for A hosts
(zm = zw + 0.001). In the absence of fluctuations, this mutant should be counter-selected. In figure
S.2b, we show that the dynamics of the mutant frequency in the full eco-evolutionary model (solid grey
line) is very well predicted, on the slow time scale, by equation (8) with S = β(

〈
vASA

〉
−
〈
vBSB

〉
)

(dashed line), as expected from our general mathematical analysis. Biologically, this means that,
although at all times pathogens in B hosts have a higher individual reproductive value than pathogens
in A hosts (figure S.2a, bottom panel), a mutant with increased preference for A hosts can still be
favoured if the fluctuations in the densities of susceptible hosts tilt the balance in the right direction.
In the main text, we show that the deviation from the ESS in the constant environment, z∗

eq, becomes
larger as the period, T , increases.

In the limit of large periods, for a function ν that approaches a step function with minimum 0,
maximum 1 and mean 1/2, it is possible to obtain an analytical expression of the ESS. We note that,
for large periods, the system approximately behaves as an alternance of single-class equilibria. When
only A hosts are present, we have SB = 0, vA = 1 and SA = SA

e = 1/(pARA), where SA
e is the

equilibrium solution for a population with only A hosts. When only B hosts are present, we have
SA = 0, vB = 1 and SB = SB

e = 1/(pBRB), where SB
e is the equilibrium solution for a population

with only B hosts. Thus, we haveS = β ⟨D⟩ where ⟨D⟩ =
〈
vASA

〉
−
〈
vBSB

〉
= (1/2)(SA

e − SB
e ) =

(1/2)[1/(pARA) − 1/(pBRB)], so that, for pA = z = 1 − pB, the solution of S = 0 is given by

z∗ = RB

RA + RB
= d + αA

2d + αA + αB
.

which is the upper limit in figure 5c.
Note that the simulations are performed without any cost of preference, so that the singularity is

actually degenerate (i.e. the second isocline of the PIP is vertical near the ESS). However, adding a
small constant cost c = 1.5(z − 1/2)2 to the death rates of infected hosts in both classes is enough
to make the singularity evolutionarily stable. This only adds a small negative term to the selection
gradient that is independent of fluctuations, and has no qualitative impact on our results.

S.3 Scenario 3: imperfect vaccines

As for scenario 2, figure S.3 shows the dynamics on both the fast, ecological time scale and the slow,
evolutionary time scale for a given set of parameter values (chosen such that the trait is at the ESS
value in the absence of fluctuations). Again, figure S.3b shows that the averaged selection gradient
using reproductive values accurately predicts the dynamics of the mutant frequency fm(t).

The dynamics of the individual reproductive values are given by the system:

dvA

dt
= βA(vApASA + vBpBSB) − (d + αA + rw)vA, (S.8)

dvB

dt
= βB(vApASA + vBpBSB) − (d + αB + rw)vB. (S.9)

Because on the periodic attractor, we have
〈

d ln (vk)
dt

〉
= 0 and ⟨rw⟩ = 0,

it follows that 〈
vApASA + vBpBSB

vk

〉
= d + αk

βk
= 1

Rk
. (S.10)
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(a) Fast variables
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(b) Slow variable
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Figure S.2: Scenario 2: host preference. (a) Ecological dynamics on the fast time scale. Top: pe-
riodic probability of production of A susceptible hosts, ν(t). Middle: dynamics of host densities (blue:
susceptible hosts, red: infected hosts, solid lines: A hosts, dashed lines: B hosts). Bottom: dynamics
of individual reproductive values for pathogens in A (solid) and B (dashed) hosts. (b) Slow-time dy-
namics of the frequency of a mutant fm(t) (grey) compared to the prediction using the average selection
gradient (dashed line). The lower panel is a zoom showing the oscillations of the mutant frequency on
the fast time scale. The direction of selection is well predicted by the sign of vA(t)SA(t) − vB(t)SB(t)
(black: positive, grey: negative). Parameters: ν(t) = 0.5(1 + (2/π) arctan (sin (2πt/T )/0.01)), b = 2,
dA = dB = 1, βA = βB = β = 10, αA = 2, αB = 1, zw = 0.368652, zm = zw + 0.001, T = 10. The
value of zw is the ESS value in a constant environment ν = 0.5.

27



In figure S.4 (bottom panel), we show that the mean of the ratio ωk = (vApASA + vBpBSB)/vk is
indeed equal to 1/Rk. Furthermore, as the period becomes large, ωk is nearly always equal to 1/Rk

except for brief deviations when the environment changes. On the other hand, the middle panel shows
that the mean of the reproductive values

〈
vk
〉

are close to their values in a constant environment vk
eq

for short periods, but as the period increases, so does the difference between
〈
vk
〉

and vk
eq.

In the limit of large periods, cA(t) converges towards ν(t). This can be seen by noting that, for
large periods, the model essentially behaves as a succession of single-class equilibria. Half the time,
only A hosts are present, so that cA = 1. The rest of the time, there are only B hosts and cA = 0.
Hence the mean value of the class reproductive value converges towards 1/2, and the selection gradient
simplies to ⟨S⟩ = (SA + SB)/2. With a trade-off αA = z, αB = (1 − ra)z and βB = βA = β0z/(1 + z),
the ES virulence for large periods has the very simple expression:

z∗ = 1√
1 − ra/2

(see also Walter & Lion (2021) for a slightly more general result).
Finally, we note that the dynamics of the individual reproductive values can be used to show that,

for a vaccine that linearly reduces transmission (i.e. ra = 0 and rb > 0), we have

d
[
(1 − rb)vA − vB

]

dt
= 0

which means that, although the reproductive values fluctuate due to the dynamics of the host densities,
their ratio vA(t)/vB(t) remains constant and equal to 1/(1 − rb) at all times. This can be confirmed
numerically (results not shown).
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(a) Fast time scale
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(b) Slow time scale
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Figure S.3: Scenario 3: imperfect vaccine and virulence. (a) Ecological dynamics on the fast
time scale. Top: periodic probability of production of A susceptible hosts, ν(t). Middle: dynamics of
host densities (blue: susceptible hosts, red: infected hosts, solid lines: A hosts, dashed lines: B hosts).
Bottom: dynamics of individual reproductive values for pathogens in A (solid) and B (dashed) hosts.
(b) Slow-time dynamics of the frequency of a mutant fm(t) (grey) compared to the prediction using the
average selection gradient (dashed line). Parameters: ν(t) = 0.5(1 + (2/π) arctan (sin (2πt/T )/0.01)),
b = 2, dA = dB = 1, βA(z) = βB(z) = β = 10z/(1 + z), αA = z, αB = (1 − ra)z, ra = 0.8, zw = 1.667,
zm = zw − 0.01, T = 10. The value of zw is the ESS value in a constant environment ν = 0.5.
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(a) T = 1
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(b) T = 10
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(c) T = 80
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Figure S.4: Scenario 3: imperfect vaccine and virulence. (a) Ecological dynamics on the
fast time scale for increasing periods. (a) T = 1. (b) T = 10. (c) T = 80. Top: dynamics
of host densities (blue: susceptible hosts, red: infected hosts, solid lines: A hosts, dashed lines:
B hosts). Middle: dynamics of individual reproductive values for pathogens in A (solid) and B
(dashed) hosts. The gray and dotted lines indicate the equilibrium and mean values respectively.
Bottom: dynamics of ωk = (vASA + vBSB)/vk compared to the mean value (d + αk)/βk. Parameters:
ν(t) = 0.5(1+(2/π) arctan (sin (2πt/T )/0.01)), b = 2, dA = dB = 1, βA(z) = βB(z) = β = 10z/(1+z),
αA = z, αB = (1 − ra)z, ra = 0.8, zw = 1.667. The value of zw is the ESS value in a constant
environment ν = 0.5.
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