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Infectious diseases remain a major problem for human health 
and agriculture1–4 and are increasingly recognized as important 
in ecosystems and conservation5. This has led to the develop-

ment of extensive theoretical literature on the epidemiology, ecol-
ogy and evolution of host–pathogen interactions6–9. Understanding 
the drivers of the evolution of virulence, typically defined in the 
evolutionary literature as the increased death rate of individuals 
due to infection, is a key motivator of this theoretical work7,9–13. 
Generally, models assume that a higher transmission rate trades off 
against the intrinsic cost of reducing the infectious period due to 
higher death rates (virulence), and classically predict the evolution 
of virulence that maximizes the parasite epidemiological R0

7,9–13. In 
fact, this result only holds in models where ecological feedbacks 
take a constrained form, such that even relatively simple processes 
such as density-dependent mortality, multiple infections and spa-
tial structure may lead to diversification or different optima9,11,12,14. 
Moreover, this classic evolutionary theory examines the long-term 
equilibrium evolutionary outcome in the context of stable endemic 
diseases; however, in nature, infectious diseases often exhibit com-
plex dynamics, with potentially important impacts on pathogen 
fitness15–18.

Antibody-mediated immunity is a critical factor driving the 
dynamics of important infectious diseases such as seasonal influ-
enza, leading to selection for novel variants that can escape immu-
nity to the current predominant variant19–21. Such antigenic escape 
typically causes the optimal variant of the parasite to change 
through time as it moves through antigenic space. Moreover, par-
tial cross immunity between the different parasite variants may 
lead to recurrent epidemics, fluctuations in parasite variants and 
potentially, variant coexistence22–25. Previous theory has shown that 
the evolution of immune escape can lead to dramatic disease out-
breaks23–25, but the implications of these epidemiological dynamics 
for the evolution of disease virulence are unknown. This question 

is challenging, in part because much of the theoretical framework 
used to study virulence evolution typically considers diseases that 
are at an endemic equilibrium7,9–13. As such, we currently lack a 
broad theoretical understanding of the evolution of virulence in the 
presence of antigenic escape, despite its importance as an epidemic 
process and the probable implications of its inherently dynamical 
epidemic nature.

Here we examine the impact of antigenic escape on the evolu-
tion of infectious disease in the context of the well-studied trans-
mission–virulence trade-off9,26. We first analytically examine the 
case without cross immunity and then apply a recently introduced 
‘oligomorphic’ analysis that combines quantitative genetic and 
game theoretical approaches27 to examine the impact of antigenic 
jumps and epidemic outbreaks due to cross immunity. Specifically, 
oligomorphic analysis explicitly models not only changes in the 
mean trait but also changes in the variance of the trait. This vari-
ance is critical to the evolutionary outcome under non-equilibrium 
dynamics and the approach allows us to model the evolutionary 
dynamics of populations with multiple peaks in the character dis-
tribution. This analysis can be applied across a range of ecological 
and evolutionary timescales and allows us to examine evolutionary 
outcomes under non-equilibrium conditions. Our key result is that 
antigenic escape selects for higher transmission and virulence due 
to the repeated epidemics caused by immune escape, leading to the 
long-term persistence of acute pathogens. Indeed, antigenic escape 
has the potential to select for infectious diseases with substantially 
higher virulence than that predicted by the maximization of R0 in 
classic disease models.

Results
To tractably model antigenic escape with multiple variants and cross 
immunity, we follow the simplifying approaches of Gog and Grenfell25. 
Effectively, the role of cross immunity is to generate protection against 
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Despite the propensity for complex and non-equilibrium dynamics in nature, eco-evolutionary analytical theory typically 
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of antigenic escape that occurs across pathogens and our results may help to explain the difference in virulence between related 
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becoming infectious with variants not yet encountered. In particular, 
we assume that cross immunity reduces the transmissibility of, rather 
than the susceptibility to, future variants. Furthermore, we assume 
that there is polarizing immunity, such that cross immunity results 
in a proportion of individuals being completely immune. These 
assumptions allow tractability and have been shown not to impact the 
predictions of the model25. Specifically, we consider a population of 
pathogens structured by a one-dimensional antigenic trait x, so that 
I(t,x) is the density of hosts infected with antigenicity variant x at time 
t. Following Gog and Grenfell25, we assume that an individual is either 
perfectly susceptible or perfectly immune to a variant. A variant of 
pathogen can infect any host, but will be infectious only when the host 
is susceptible to that variant. When a variant y of pathogen infects 
a host that is susceptible to a variant x, the host may become (per-
fectly) immune to the variant x with probability σ(x−y). This is the 
partial cross immunity function between variants x and y, which takes 
a value between 0 and 1 and is a decreasing function of antigenic dis-
tance |x−y| between variants x and y. The density of hosts susceptible 
to antigenicity variant x at time t is noted as S(t,x).

Assuming that all pathogen variants have the same transmission 
rate β and virulence α, we can describe the dynamics with the fol-
lowing structured ‘susceptible-infected-recovered’ model:

∂S (t, x)
∂t = −βS (t, x)

∞

∫

−∞

σ (x− y) I (t, y) dy, (1a)

∂I (t, x)
∂t = [βS (t, x)− (γ + α)] I (t, x) + D∂2I (t, x)

∂x2 , (1b)

where γ is the recovery rate and D = μσ2
m/2 is the diffusion con-

stant due to random mutation in the continuous antigenic space, 
which is defined by one half of the mutation variance μσ2

m, where μ 
is the mutation rate and σ2

m is the variance in the difference between 
parental and mutant traits28,29. The dynamics for the density of 
recovered hosts is omitted from equation (1) as it does not affect the 
dynamics of the densities of susceptible and infected hosts.

Invasion of a single pathogen. In our first scenario, we start with a 
population where all hosts are susceptible to any variant (S(0,x) = 1) 
and a small number of hosts infected by pathogen variant with anti-
genicity trait x = 0 is initially introduced. The system then exhibits 
travelling wave dynamics in antigenicity space30. At the front of the 
travelling wave, I(t,x) is sufficiently small and S(t,x) is sufficiently 
close to 1. Equation (1a) can then be linearized as

∂I(t,x)
∂t = rI (t, x) + D ∂2I(t,x)

∂x2 , (2)

where r = β − (γ + α) is the rate of increase of an antigenicity vari-
ant before it spreads in the population and causes the build-up of 

herd immunity. The system (equation 1) asymptotically approaches 
travelling waves of both pathogen antigenicity distributions I(t,x), 
which have an isolated peak around the current antigenicity and 
host susceptibility profile S(t,x), which smoothly steps down 
towards a low level after the pathogen antigenicity distribution 
passes through, with a common constant wave speed31 (Fig. 1a)

v = 2
√

rD = 2
√

(β − (γ + α))D. (3)

As the width of the partial cross-immunity function σ(x− y) 
increases, the travelling wave with static shapes described above is 
destabilized (Extended Data Fig. 1), and the system shows inter-
mittent outbreaks that occur periodically both in time and in anti-
genicity space25,31 (Fig. 1b). However, the wave speed is unchanged 
from equation (3), as the linearized system (equation 2) towards the 
frontal end remains the same irrespective of the stability of the wave 
profile that lags behind (Extended Data Fig. 1).

Evolution of antigenic escape with cross immunity. To predict 
how cross immunity affects the evolution of antigenic escape, we 
use an oligomorphic dynamics analysis27. In this analysis, we con-
sider a population composed of different antigenicity ‘morphs’ that 
can be seen as quasi-species. Specifically, we use the term ‘morph’ 
to describe the phenotypic trait mean and the continuous variance 
around this mean. The analysis in the methods allows us to track 
the dynamics of morph frequencies, pi, and mean trait values, x̄i, as:

dpi
dt = β(̄si − s̄)pi, (4a)

dx̄i
dt = Viβs′ (x̄i) , (4b)

where s(x) is the susceptibility profile of the population, which 
depends on the cross-immunity function σ, s̄i is the mean suscep-
tibility perceived by viral morph i, and s̄ the mean susceptibility 
averaged over the different viral morphs. Note that, in general, s(x), 
s̄i and s̄ will be functions of time, as the susceptibility profile is 
moulded by the epidemiological dynamics of S(t,x) and I(t,x).

Equation (4a) reveals that, as intuitively expected, morph i will 
increase in frequency if the susceptibility of the host population 
to this variant is higher on average. Equation (4b) shows that the 
increase in the mean antigenicity trait of morph i depends on: (1) 
the variance of the morph distribution, Vi; (2) the transmission rate; 
and (3) the slope of the susceptibility profile close to the morph 
mean x̄i. Together with an equation for the dynamics of variance 
under mutation and selection (see Methods), equations (4a) and 
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Fig. 1 | continuous antigenic drift (a) and periodic antigenic shifts (b) of the model. The grey coloured surface denotes the infected density I(t, x) varying in 
time t and antigenicty x, and the yellow coloured surface denotes the density of hosts S(t, x) that are susceptible to antigenicity variant x of pathogen at time t. 
The cross immunity σ (x) = exp(−x2/2ω2) has a width of ω = 0.2 in a and ω = 0.6 in b. Other parameters are β = 2,α = 0.1, γ = 0.5, andD = 0.001.
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(4b) allow us to quantitatively predict the change in antigenicity 
after a primary outbreak, as shown in Fig. 2.

For instance, after a primary outbreak caused by a variant with 
antigenicity x̄0 = 0 at t = 0, the susceptibility profile is approxi-
mately constant and given by s (x) = (1− ψ0)

σ(x), where ψ0 is the 
final size of the epidemic of the primary outbreak at antigenicity x 
= 0 (see Methods). Thus, for a decreasing cross-immunity function, 
σ(x), the slope of the susceptibility profile is positive, which selects 
for increased values of the mean antigenicity trait x̄1 of a second 
emerging morph (see Methods). As the process repeats itself, this 
leads to successive jumps in antigenic space. In addition, a more 
peaked cross-immunity function, σ, yields larger slopes to the sus-
ceptibility profile and thus selects for higher values of the antigenic-
ity trait.

Long-term joint evolution of antigenicity, transmission and viru-
lence. We now extend our analysis to account for mutations affect-
ing pathogen life-history traits such as transmission and virulence. 
To simplify, we use the classical assumption of a transmission–viru-
lence trade-off7,9–13 and consider that a pathogen morph, i, has fre-
quency, pi, mean antigenicity trait, x̄i, and mean virulence ᾱi. In the 
methods, we show that the morph’s mean traits change as

d
dt

(

x̄i
ᾱi

)

= Gi

(

β(ᾱi)s′ (x̄i)
β′(ᾱi)s (x̄i)− 1

)

where Gi is the genetic (co)variance matrix, and the vector on the 
right-hand side is the selection gradient. Note that, while the selec-
tion gradient on antigenicity depends on the slope of the antigenic-
ity profile at the morph mean, the selection gradient on virulence 
depends on the slope of the transmission–virulence trade-off at the 
morph mean, weighted by the susceptibility profile at the morph 
mean.

Assuming we can neglect the build-up of correlations between 
antigenicity and virulence due to mutation and selection, the genetic 
(co)variance matrix is diagonal with elements Vx

i  and Vα
i . Then, as 

shown previously, antigenicity increases if the slope of the suscep-
tibility profile is locally positive, while mean virulence increases as 
long as β′(ᾱi) > 1/s (x̄i). For a fixed antigenicity trait, x = x*, the 
susceptibility profile converges towards s (x∗) = (γ + α)/β and the 
evolutionary endpoint satisfies

β′(α) =
β (α)

γ + α
,

which corresponds to the classical result of R0 maximization for the 
unstructured susceptible infected (SI) model14,26. However, when 
antigenicity can evolve, selection will also lead to the build-up of 
a positive covariance C between antigenicity and virulence, result-
ing in a synergistic effect (Methods). As the antigenicity trait 
increases, the evolutionary trajectory of virulence converges to 
the solution of

β′ (α) = 1,
which corresponds to maximizing the rate of increase of pathogen 
r (α) = β (α)− (γ + α) in a fully susceptible population. This is 
equivalent to maximizing the wave speed v (α) = 2

√

r (α)D, as 
shown in Methods. Figure 3a shows that, in the absence of cross 
immunity, the evolutionarily stable (ES) virulence is well predicted 
by r maximization. With cross immunity (Fig. 3b), virulence evolu-
tion is characterized by jumps that reflect the sudden shifts in anti-
genicity due to cross immunity.

As such antigenic escape selects for higher transmission and 
virulence and more acute infectious diseases. This has paral-
lels with the results that show that there is a transient increase in 
virulence at the start of an epidemic with r rather than R0 being 
maximized15,16,18,32, but here we predict the long-term persistence 
of highly transmissible and virulent disease variants due to anti-
genic escape.

Although we have so far assumed a never-ending antigenic 
escape process, it is easy to extend our analysis to consider that anti-
genic escape is constrained by pleiotropic effects. Then, once the 
antigenicity trait has stabilized, the ES virulence would satisfy

β′ (α) =
1− ρβ (α) s′(x)

s (x) ,

where ρ = C/Vα measures the correlation between antigenicity and 
virulence. Thus, the slope to the transmission–virulence trade-off 
at the evolutionarily stable strategy (ESS) now takes an intermediate 
value between β/(γ + α) and 1, as shown in Fig. 4.

Short-term joint evolution of antigenicity and virulence. 
Although our analysis allows us to understand the long-term evo-
lution of pathogen traits, it can also be used to accurately predict 

a b
20

15

10

5

0
0 50 100

Time

150 200 0 50 100

Time

150 200

M
ea

n 
an

tig
en

ic
ity

20

15

10

5

0

A
nt

ig
en

ic
ity

Fig. 2 | oligomorphic dynamics prediction of the emergence of antigenicity shift. a, Oligomorphic prediction for the change in the mean antigenicity after 
the primary outbreak at x = 0 and the change after the second outbreak starting around x = 5.5 (red curves), compared with that obtained by numerical 
simulations (blue curves). b, Heat map representation of the time change of the antigenic drift model (equation 1). Parameters: β = 2, γ + α = 0.6, 
σ (x) = exp(−x2/2ω2) with ω = 2, D = 0.001. Initially, all hosts are equally susceptible, with S(0,x) = 1. The primary pathogen variant is introduced at x = 
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the short-term dynamics of antigenicity and virulence. We now 
consider that a primary outbreak has moulded a susceptibility 
profile s(x) that we assume constant. Although this assumption 
will cause deviations from the true susceptibility profile, it allows 
us to decouple our evolutionary oligomorphic dynamics from the 
epidemiological dynamics. Figure 5 shows that the approximation 
accurately predicts the jump in antigenic space and joint increase 
in virulence during the secondary outbreak. The accuracy of the 
prediction depends on the time at which we seed the oligomorphic 
dynamical system, as detailed in the methods, but remains high for 
a broad range of values of this initial time. Hence, our analysis can 
be used to successfully predict the trait dynamics after the emer-
gence of a new antigenic variant. Simulations show that this result 
is not dependent on the assumption of a one-dimensional antigenic 
space (Supplementary Information).

Discussion
We have shown how antigenic escape selects for more acute infec-
tious diseases with higher transmission rates that cause increased 
mortality (virulence) in infected hosts. This result is important 
given the number of major infectious diseases, such as seasonal 
influenza, that have epidemiology driven by antigenic escape. Until 
recently, the evolution of virulence literature has mostly focused 
on equilibrium solutions that, in simple models, lead to the clas-
sic idea that pathogens evolve to maximize their basic reproduc-
tive number R0

7,9–13. Our results show that the process of antigenic 
escape leading to the continual replacement of variants22–25, creates 
a dynamical invasion process that in itself selects for more acute, 
fast transmitting, highly virulent variants that do not maximize 
R0. This has parallels with the finding that more acute variants are 
selected transiently at the start of epidemics23–25, but critically, in 
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our case the result is not a short-term transient outcome. Rather, 
the eco-evolutionary process leads to the long-term persistence of 
more acute variants. As such, antigenic escape may be an important 
driver of high virulence in infectious disease.

In the simpler case where there is no cross immunity, there is a 
travelling wave of new variants invading due to antigenic escape. In 
this case, we can use established methods to gain analytical results 
that not only predict the speed of change of the variants, but also 
the evolutionarily stable virulence. With our model’s assumptions, 
without antigenic escape, we would get the classic result of the 
maximization of the reproductive number R0

7,9–13, but once there 
is antigenic escape, we show analytically that the intrinsic growth 
rate of the infectious disease r is maximized. Maximizing the intrin-
sic growth rate leads to selection for higher transmission and, in 
turn, higher virulence. Effectively, this is the equivalent ‘live fast, 
die young’ strategy of an infectious disease. The outcome is due to 
the dynamical replacement of variants, with new variants invad-
ing the population continually, leading to a continual selection 
for the variants that invade better23–25. As such, we predict that any 
degree of antigenic escape will, in general, select for more acute 
faster-transmitting variants with higher virulence in the presence 
of a transmission–virulence trade-off. Although such a trade-off is 
a classical assumption in evolutionary epidemiology, it would be 
interesting to examine the impact of antigenic escape under differ-
ent assumptions.

Partial cross immunity leads to a series of jumps in antigenic 
space that are characteristic of the epidemiology of a number of 
diseases and, in particular, of the well-known dynamics of influ-
enza A in humans22–25. Here a cloud of variants remains in antigenic 
space until there is a jump that, on average, overcomes the cross 

immunity and leads to the invasion of a new set of variants that are 
distant enough to escape the immunity of the resident variants22–25. 
To examine the evolutionary outcome in this scenario, we applied 
a novel oligomorphic analysis27 and again we find that antigenic 
escape selects for higher virulence towards the maximization of the 
intrinsic growth rate r. Both our analysis and simulations show that 
in the long term, virulence increases until it reaches a new opti-
mum, potentially of an order of magnitude higher than would be 
expected by the classic prediction of maximizing R0. Therefore, 
antigenic escape, whether it is through a continuous wave of anti-
genic drift or through large jumps, selects for higher virulence. We 
therefore expect this result to apply across the wide range of ‘jumpi-
ness’ that we see across different viruses between these two extremes 
of continuous drift and punctuated jumps. We show that virulence 
increases after each antigenic jump, falling slightly at the next jump 
before increasing again until it reaches this new equilibrium. It is 
also important to note that the diversity within the morph increases 
in both antigenicity and virulence as we move towards the next epi-
demic, reaching a maximum just at the point when the jump occurs. 
This increase in diversity could, in principle, be used as a predictor 
of the next jump in antigenic space.

Clearly, the virulence of any particular infectious disease 
depends on multiple factors, including both host and parasite traits, 
and critically, the relationship between transmission and virulence. 
This makes comparisons of virulence across different infectious dis-
eases problematic since the specific trade-off relationship between 
transmission and virulence is often unknown. However, our model 
shows that antigenic escape will, all things being equal, be a driver 
of higher virulence favouring more acute variants. It is also impor-
tant to note that since antigenic escape is a very general mecha-
nism that selects for higher virulence, it follows that we may see 
high virulence in parasites even when the costs in terms of reduced 
infectious period are substantial. Among the influenzas, although 
there is paucity of data, influenza C does not show obvious anti-
genic escape and is typically much less virulent than the other influ-
enzas33. Furthermore, influenza A/H3 tends to show much more 
antigenic escape than influenza B and influenza A/H1, and again in 
line with our predictions, influenza A/H3N2 is typically the more 
virulent type34,35. It is important to note that these differences can 
be ascribed to multiple factors, including circumvention of vacci-
nation, and that cross immunity may itself directly impact disease 
severity. Furthermore, the higher virulence of influenza A is often 
posited to be due to a more recent zoonotic emergence36. Moreover, 
direct comparisons of the rates of antigenic escape between influ-
enza A/H1 and influenza B are difficult, and clearly, there are also 
highly virulent pathogens that do not show antigenic escape, such 
as measles. Therefore, a formal comparative analysis is confounded 
by multiple factors. Nevertheless, our model suggests that differ-
ences in the rates of antigenic escape of the different influenzas may 
impact their virulence and the evidence from influenza is at least 
consistent with the predictions of the model.

An important implication of our work is that antigenic escape 
selects for variants with a higher virulence than the value that maxi-
mizes R0 and therefore leads to the evolution of infectious diseases 
with lower R0. From this point of view, it may be naively concluded 
that diseases with antigenic escape may be easier to eliminate and 
control with vaccination. Of course, in practice the opposite is often 
true since producing an effective vaccine is much more problematic 
when there is antigenic escape37,38. On the other hand, with lower 
R0, epidemics will tend to be less explosive than they otherwise 
would be, having a lower peak but lasting longer, with evolution 
here effectively ‘flattening the curve’. Infectious diseases that show 
punctuated antigenic escape are characterized by repeated epidem-
ics, but our work suggests that due to the selection for a lower R0, 
the eco-evolutionary feedback would have substantially impacted 
the pattern of these epidemics. More generally our results highlight 
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β

Fig. 4 | graphical representation of the predicted eS virulence with or 
without antigenic escape under the assumption of a transmission–virulence 
trade-off. In the absence of antigenic escape, the ES virulence, α∗

R, can be 
predicted from the maximization of the pathogen’s epidemiological basic 
reproduction ratio, R0 = β/(γ + α), or equivalently by the minimization of 
the total density of susceptible hosts since, at equilibrium, s∗ = 1/R0. The 
slope of the transmission–virulence trade-off at the ESS is then 1/s∗ = R0. 
With antigenic escape, the ES virulence, α∗

r , can be predicted from the 
maximization of the pathogen’s growth rate in a fully susceptible population, 
r0 = β (α)− (γ + α). The slope of the transmission–-virulence trade-off at 
the ESS is then 1. This holds true in the limit of a large antigenicity trait, but 
intermediate values of ES virulence, corresponding to intermediate slopes, 
can also be selected for if other processes constrain the evolution of the 
antigenicity trait, as explained in the main text.
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how ecological/epidemiological dynamics can impact evolutionary 
outcomes that, in turn, feedback into the epidemiology characteris-
tics of the disease.

We have used oligomorphic dynamics27 to make predictions on 
the waiting times and outcomes of the antigenic jumps in our model 

with cross immunity. This approach tracks changes in both mean 
trait values and trait variances in models with explicit ecological 
dynamics. As such, it combines aspects of eco-evolutionary the-
ory39,40 and quantitative genetics approaches41,42 to provide a more 
complete understanding of the evolution of quantitative traits. Our 
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Fig. 5 | oligomorphic dynamics predictions compared to the simulation results of the emergence of the next variant during antigenicity–virulence 
coevolution. a,b, Simulation results showing snapshots of contour plots for the joint trait distribution observed near the starting (a) and finishing (b) 
time of emergence. The overlaid curves are the trajectory of mean traits (x̄, ᾱ) up to t = 104.8 and t = 109 observed in the simulation. c–h, Dynamics of 
the total density of infected hosts, mean antigenicity, mean virulence, variance in antigenicity, variance in virulence, and covariance between antigenicity 
and virulence, respectively predicted by the oligomorphic analysis compared to the simulation results. Parameters: γ = 0.5, β (α) = 5

√

α, Dx = 0.005, Dα 
= 0.0002. As in Fig. 2, we assume a Gaussian cross-immunity kernel, σ (x− y) = exp(− (x− y)2 /2ω2), with width ω = 5. The oligomorphic dynamics 
describing the changes in the frequency p0 (t) = 1− p1(t) of the currently prevailing morph at time ts = 104.8, the frequency p1(t) of the upcoming morph, 
the mean antigenicity x̄i(t) and mean virulence ᾱi(t) of the two morphs (i = 0,1), the within-morph variances Vx

i  and Vα
i  in antigenicity and virulence, and 

the within-morph covariance Ci(t) between antigenicity and virulence in each morph (i = 0,1) are defined as equations (48)–(53) in the methods.
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approach can take into account a wide range of different ecologi-
cal and evolutionary timescales and therefore allows us to address 
fundamental questions on eco-evolutionary feedbacks and on the 
separation between ecological and evolutionary timescales. This is 
important since it allows us to test the implications of the different 
assumptions of classical evolutionary theory and to better under-
stand the role of eco-evolutionary feedbacks on evolutionary out-
comes. Furthermore, the approach can be applied widely to model 
transient dynamics, and to predict the waiting times and extent of 
diversification that occurs in a range of contexts27,43. Moreover, anti-
genic evolution is known to also lead to diversification and variant 
coexistence44–47, and it would be interesting to extend our analysis to 
these other evolutionary outcomes.

Our results emphasize that epidemiological dynamics may have 
important implications for the evolution of infectious disease. To facil-
itate its broader application, the oligomorphic methodology should 
be extended to structured populations and combined with stochas-
tic evolutionary theory to fully address the evolutionary dynamics 
of emerging disease. Human coronaviruses can evolve antigenically 
to escape antibody immunity48, and it would be useful to apply our 
approaches to a more specific model of the Severe acute respiratory 
syndrome coronavirus 2 (SARS-Cov-2) epidemic. In particular, our 
ability to predict the waiting time until the emergence of the next anti-
genic cluster has the potential to be important in such applied contexts.

In principle, epidemics of new variants that adapt to a novel 
host would display equivalent dynamics to those described here 
for antigenic escape. It also follows that interventions that impact 
epidemiological dynamics may also have impacts on the evolution 
of pathogen traits, such as virulence or transmission. Our results 
suggest that immune escape driven by transmission blocking 
imperfect vaccination might also select for higher virulence in the 
longer term49,50, although these effects are probably overwhelmed 
by selection on transmission in an emerging pandemic such as 
SARS-CoV-251,52. Furthermore, dynamical feedbacks are important 
in a range of contexts beyond infectious disease, and our approach 
may help us examine the importance of interactions between 
frequency-dependent ‘stabilizing’ and equalizing evolutionary driv-
ers53. The oligomorphic analytical approaches we use here are there-
fore likely to be useful in understanding a wide range of dynamical 
evolutionary outcomes.

Methods
Oligomorphic dynamics (OMD) of antigenic escape. We considered a model of 
the antigenic escape of a pathogen from host herd immunity on a one-dimensional 
antigenicity space (x). We tracked the changes in the density S(t, x) of hosts that 
are susceptible to antigenicity variant x of pathogen at time t, and the density I(t, x) 
of hosts that are currently infected and infectious with antigenicity variant x of 
pathogen at time t:

∂S (t, x)
∂t = −S (t, x)

∞

∫

−∞

βσ (x − y) I (t, y) dy, (5)

∂I (t, x)
∂t = βS (t, x) I (t, x) − (γ + α) I (t, x) + D ∂2I (t, x)

∂x2 , (6)

where β, α and γ are the transmission rate, virulence (additional mortality due to 
infection) and recovery rate of pathogens, which are independent of antigenicity. 
The function σ(x−y) denotes the degree of cross immunity: a host infected by 
pathogen variant y acquires perfect cross immunity with probability σ(x−y), 
but fails to acquire any cross immunity with probability 1−σ(x−y) (this is called 
polarized cross immunity by Gog and Grenfell25). The degree σ(x−y) of cross 
immunity is assumed to be a decreasing function of the distance |x−y| between 
variants x and y. When a new variant with antigenicity x = 0 is introduced at time 
t = 0, the initial host population is assumed to be susceptible to any antigenicity 
variant of pathogen: S(0,x) = 1. In equation (6), D = μσ2

m/2 is one half of the 
mutation variance for the change in antigenicity, representing random mutation in 
the continuous antigenic space.

Susceptibility profile moulded by the primary outbreak. We first analysed 
the dynamics of the primary outbreak of a pathogen and derived the resulting 

susceptibility profile, which can be viewed as the fitness landscape subsequently 
experienced by the pathogen. For simplicity, we assumed that mutation can be 
ignored during the first epidemic initiated with antigenicity strain x = 0. The 
density S0 (t) = S(t, 0) of hosts that are susceptible to the currently prevailing 
antigenicity variant x = 0, as well as the density I0 (t) = I(t, 0) of hosts that are 
currently infected by the focal variant change with time as

dS0
dt = −S0βI0, (7)

dI0
dt = S0βI0 − (γ + α) I0, (8)

dR0

dt = γI0, (9)

with S0 (0) = 1, I0 (0) ≈ 0 and R0 (0) = 0. The final size of the primary outbreak,

ψ0 = R0 (∞) = 1 − S0 (∞) = exp





−β

∞
∫

0

I0 (t) dt



 ,

is determined as the unique positive root of

ψ0 = 1 − e−ρ0ψ0 , (10)

where ρ0 = β/ (γ + α) > 1 is the basic reproductive number6. Associated with 
this epidemiological change, the susceptibility profile Sx (t) = S(t, x) against 
antigenicity x (x ̸= 0) other than the currently circulating variant (x = 0) changes 
by cross immunity as

dSx
dt = −Sxβσ (x) I0, (x ̸= 0) . (11)

Integrating both sides of equation (11) from t = 0 to t = ∞, we see that the 
susceptibility profile s (x) = Sx(∞) after the primary outbreak at x = 0 is

s (x) = exp
[

−βσ (x)
∞
∫

0
I0 (t) dt

]

= (1 − ψ0)
σ(x)

= e−ρ0σ(x)ψ0 , (12)

where the last equality follows from equation (10). The susceptibility can be 
effectively reduced by cross immunity when the primary variant has a large 
impact (that is, when the fraction of hosts remaining uninfected, 1−ψ0, is small) 
and when the degree of cross immunity is strong (that is, when σ(x) is close to 1). 
With a variant antigenically very close to the primary variant (x ≈ 0), the cross 
immunity is very strong (σ (x) ≈ 1) so that the susceptibility against variant x is 
nearly maximally reduced: s(x) ≈ 1 − ψ0. With a variant antigenically distant 
from the primary variant, σ(x) becomes substantially smaller than 1, making the 
host more susceptible to the variant. For example, if the cross immunity is halved 
(σ (x) = 0.5) from its maximum value 1, then the susceptibility to that variant is 
as large as (1 − ψ0)

0.5. If a variant is antigenically very distant from the primary 
variant, then σ (x) ≈ 0, and the host is nearly fully susceptible to the variant 
(s (x) ≈ 1).

Threshold antigenic distance for escaping immunity raised by primary 
outbreak. Of particular interest is the threshold antigenicity distance xc that 
allows for antigenic escape, that is, any antigenicity variant more distant than this 
threshold from the primary variant (x > xc) can increase when introduced after the 
primary outbreak. Such a threshold is determined from

βs (xc)
γ + α

= ρ0s (xc) = 1

or

s (xc) = (1 − ψ0)
σ(xc)

= e−ρ0σ(xc)ψ0
=

1
ρ0
, (13)

where we used equation (12). With a specific choice of cross-immunity profile,

σ (x) = exp
[

−

x2
2ω2

]

, (14)

the threshold antigenicity beyond which the virus can increase in the susceptibility 
profile s(x) after the primary outbreak is obtained, by substituting equation (14) 
into equation (13)

exp
[

−ρ0ψ0 exp
[

−

x2c
2ω2

]]

=

1
ρ0

,

and taking the logarithm of both sides twice:
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xc = ω
√

2 log ρ0ψ0
log ρ0

. (15)

OMD. Integrating both sides of equation (6) over the whole space, we obtained the 
dynamics for the total density of infected hosts, ¯I (t) =

∫

∞

−∞

I (t, x) dx:

d̄I
dt =

[

β
∞

∫

−∞

S (t, x) ϕ (t, x) dx − (γ + α)

]

¯I (t) =

[

β¯S (t) − (γ + α)
]

¯I (t) ,

(16)

where

ϕ (t, x) = I (t, x) /¯I (t)

is the relative frequency of antigenicity variant x in the pathogen population 
circulating at time t, and

¯S (t) =

∞
∫

−∞

S (t, x) ϕ (t, x) dx (17)

is the mean susceptibility experienced by currently circulating pathogens. The 
dynamics for the relative frequency ϕ (t, x) of pathogen antigenicity is

∂ϕ

∂t = β
{

S (t, x) − ¯S(t)
}

ϕ (t, x) + D ∂2ϕ

∂x2 . (18)

As in Sasaki and Dieckmann27, we decomposed the frequency distribution to 
the sum of several morph distributions (oligomorphic decomposition) as

ϕ (t, x) =

∑

i
piϕi (t, x) , (19)

where pi(t) is the frequency of morph i and ϕi(t, x) is the within-morph 
distribution of antigenicity. By definition, and 

∫

∞

−∞

ϕi(t, x)dx = 1. Let

x̄i =
∞
∫

−∞

xϕi (t, x) dx (20)

be the mean antigenicity of a morph and

Vi =
∞

∫

−∞

(x − x̄i)2 ϕi (t, x) dx = O
(

ϵ2
)

(21)

where O is order be the within-morph variance of each morph, which is assumed to 
be small, of the order of ϵ2. We denoted the mean susceptibility of host population 
for viral morph  by ¯Si =

∫

∞

−∞

S (t, x) ϕi(t, x)dx. As shown in Sasaki and 
Dieckmann27, the dynamics for viral morph frequency is expressed as

dpi
dt = β

(

¯Si − ¯S
)

pi + O (ϵ) , (22)

while the dynamics for the within-morph distribution of antigenicity is

∂ϕi
∂t = β

{

S (t, x) − ¯Si
}

ϕi (t, x) + D ∂2ϕi
∂x2 . (23)

From this, the dynamics for the mean antigenicity of a morph,

d̄xi
dt = Viβ ∂S

∂x
∣

∣

x=x̄i
+ O

(

ϵ3
)

(24)

and the dynamics for the within-morph variance of a morph

dVi
dt =

1
2 β ∂2S

∂x2

∣

∣

∣

x=x̄i

{

E
[

ξ4i
]

− V2
i
}

+ 2D + O
(

ϵ5
)

(25)

are derived, where ξi = x − x̄i and E
[

ξ4i
]

=

∫

∞

−∞

(x − x̄i)4 ϕi (t, x) dx are the 
fourth central moments of antigenicity around the morph mean. Assuming that the 
within-morph distribution is normal (Gaussian closure), E

[

ξ4i
]

= 3V2
i , and hence 

equation (25) becomes

dVi
dt = β ∂2S

∂x2

∣

∣

∣

x=x̄i
V2
i + 2D + O

(

ϵ5
)

. (26)

Second outbreak predicted by OMD. Equations (22), (24) and (26) are general, 
but they rely on a full knowledge of the dynamics of the susceptibility profile S(t,x). 
To make further progress, we used an additional approximation by substituting 
equation (13), the susceptibility profile, over viral antigenicity space after the 
primary outbreak at x = 0 and before the onset of the second outbreak at a distant 
position. We kept track of two morphs at positions x0(t) and x1(t), where the first 
morph is that caused by the primary outbreak at x = 0, and the second morph is 
that emerged in the range x > xc beyond the threshold antigenicity xc defined in 
equation (13) (and equation (15) for a specific form of σ(x)) as the source of the 
next outbreak.

As s (x) = (1 − ψ0)
σ(x)

= exp[σ (x) log(1 − ψ0)], we have

ds
dx (x̄i) =

[ dσ

dx (x̄i) log (1 − ψ0)

]

s (x̄i) ,

and

d2s
dx2 (x̄i) =

[ d2σ

dx2 (x̄i) log (1 − ψ0) +

{ dσ

dx (x̄i) log (1 − ψ0)

}2]

s (x̄i) .

Therefore, the frequency, mean antigenicity and variance of antigenicity of an 
emerging morph (i = 1) change respectively as

dp1
dt = β [s (x̄1) − s (x̄0)] p1 (1 − p1) ,
d̄x1
dt = V1β ds

dx (x̄1) ,
dV1
dt = β d2s

dx2 (x̄1)V2
1 + 2D.

(27)

The predicted change in the mean antigenicity was plotted by integrating 
equation (27). As initial condition, we chose the time when a seed of second peak 
in the range x > xc first appeared, and then computed the mean trait as

x̄ (t) = x0 (1 − p1 (t)) + x̄1p1 (t) . (28)

In the case of Fig. 2, where β = 2, γ + α = 0.6, D = 0.001 and ω = 2, the final 
size of epidemic for the primary outbreak, defined as equation (7), was ψ = 0.959, 
and the critical antigenic distance for the increase of pathogen variant obtained 
from equation (26) was xc = 2.795. The initial conditions for the oligomorphic 
dynamics (equation 27) for the second morph were then p1 (t0) = 1.6 × 10−8, 
x̄1 (t0) = 3.239, V1 (t0) = 0.2675 at t0 = 41. In Fig. 2, the predicted trajectory for 
the mean antigenicity (equation 28) is plotted as a red curve, together with the 
mean antigenicity change observed in simulation (blue curve).

Accuracy of predicting the antigenicity with OMD and the timing of the second 
outbreak. Here we describe how we defined the initial conditions for oligomorphic 
dynamics, that is, the frequency, the mean antigenicity and the variance in 
antigenicity of the morph that caused the primary outbreak and the morph that 
may cause the second outbreak. We then show how the accuracy in prediction of 
the second outbreak depends on the timing of the prediction.

We divided the antigenicity space into two at x = xc, above which the pathogen 
can increase under the given susceptibility profile after the primary outbreak, but 
below which the pathogen cannot increase. We then took the relative frequencies 
of pathogens above xc and below xc, and the conditional mean and variance in these 
separated regions to set the initial frequencies, means and variances of the morphs 
at time t0 when we started integrating the oligomorphic dynamics to predict the 
second outbreak:

p0 (t0) =

∫
xc
0 I(t0 ,x)dx

∫
∞

0 I(t0 ,x)dx , p1 (t0) =

∫
∞

xc
I(t0 ,x)dx

∫
∞

0 I(t0 ,x)dx ,

x̄0 (t0) =

∫
xc
0 xI(t0 ,x)dx

∫
xc
0 I(t0 ,x)dx

, x̄1 (t0) =

∫
∞

xc
xI(t0 ,x)dx

∫
∞

xc
I(t0 ,x)dx ,

V0 (t0) =

∫
xc
0 (x−x̄0(t0))2I(t0 ,x)dx

∫
xc
0 I(t0 ,x)dx

, V1 (t0) =

∫
∞

xc
(x−x̄1(t0))2I(t0 ,x)dx
∫
∞

xc
I(t0 ,x)dx .

(29)

We then compared the trajectory for mean antigenicity change observed in 
simulation (blue curve in Fig. 2) and the predicted trajectory (red curve in Fig. 
2) for mean antigenicity (equation 28) by integrating oligomorphic dynamics 
(equation 27) with the initial condition (equation 29) at time t = t0. Extended Data 
Fig. 2 shows how the accuracy of prediction, measured by the Kullback–Leibler 
divergence between these two trajectories, depends on the timing t0 chosen for the 
prediction. The second outbreak occurs around t = 54.6, where mean antigenicity 
jumps from around 0 to around 5. The prediction with OMD is accurate if it is 
made for t0 > 40. Figure 2 is drawn for t0 = 41 where the second peak is about to 
emerge (see Extended Data Fig. 2). Even for the latest prediction for t0 = 51 in 
Extended Data Fig. 2, the morph frequency of the emerging second morph was 
only 0.3% off, so the prediction is still worthwhile to make.

Extended Data Fig. 2 shows that the prediction power is roughly constant 
(albeit with a wiggle) for 5 < t0 < 30 (the predicted timings are 10–15% longer 
than actual timing for 5 < t0 < 30), and steadily improved for t0 > 30. When the 
prediction was made very early (t0 < 5), the deviations were larger.

OMD for the joint evolution of antigenicity and virulence. Let s(x) be the 
susceptibility of the host population against antigenicity x. A specific susceptibility 
profile is given by equation (12), with cross-immunity function σ(x) and the final 
size ψ0 of epidemic of the primary outbreak. Note that, as above, the susceptibility 
profile is, in general, a function of time. The density I(x, α) of hosts infected by a 
pathogen of antigenicity x and virulence α changes with time, when rare, as

∂I(x,α)
∂t = βs (x) I (x, α) − (γ + α) I (x, α) + Dx ∂2I

∂x2 + Dα
∂2I
∂α2 . (30)
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The change in the frequency ϕ (x, α) = I (x, α) /
∫∫

I (x, α) dxdα of a pathogen 
with antigenicity x and virulence α follows

∂ϕ

∂t = {w (x, α) − w̄} ϕ + Dx
∂2ϕ

∂x2 + Dα
∂2ϕ

∂α2 , (31)

where

w (x, α) = β (α) s (x) − α (32)

is the fitness of a pathogen with antigenicity x and virulence α and 
w̄ =

∫∫

w (x, α) dxdα is the mean fitness.
We decomposed the joint frequency distribution ϕ(x, α) of the viral 

quasi-species as (oligomorphic decomposition):

ϕ (x, α) =

∑

i
ϕi (x, α) pi, (33)

where ϕi(x, α) is the joint frequency distribution of antigenicity x and virulence α 
in morph i (

∫∫

ϕidxdα = 1) and pi is the relative frequency of morph i (
∑

i pi = 1). 
The frequency of morph i then changes as

dpi
dt =

(

w̄i −
∑

j
w̄jpj

)

pi,

∂ϕi
∂t = (w (x, α) − w̄i) ϕi (x, α) + Dx

∂2ϕi
∂x2 + Dα

∂2ϕi
∂α2 ,

(34)

where w̄i =
∫∫

w (x, α) ϕi (x, α) dxdα is the mean fitness of morph i.
Assuming that the traits are distributed narrowly around the morph means 

x̄i =
∫∫

xϕi (x, α) dxdα and ᾱi =
∫∫

αϕi(x, α)dxdα, so that ξi = x − x̄i = O(ϵ) and 
ζi = α − ᾱi = O(ϵ) where ϵ is a small constant, we expanded the fitness w(x, α) 
around the means x̄i and ᾱi of morph i,

w (x, α) = w (x̄i, ᾱi) +
( ∂w

∂x
)

i ξi +
( ∂w
∂α

)

i ζi

+
1
2

(

∂2w
∂x2

)

i
ξ2i +

(

∂2w
∂x∂α

)

i
ξiζi +

1
2

(

∂2w
∂α2

)

i
ζ2i + O

(

ϵ3
)

.

Substituting this and

w̄i = w (x̄i, ᾱi) +
1
2

( ∂2w
∂x2

)

i
Vxx
i +

( ∂2w
∂x∂α

)

i
Vxα
i +

1
2

( ∂2w
∂α2

)

i
Vαα
i + O

(

ϵ
3
)

into equation (34), we obtained

dpi
dt =



wi −
∑

j
wjpj



 pi + O (ϵ) , (35)

∂ϕi
∂t =

[

( ∂w
∂x
)

i ξi +
( ∂w
∂α

)

i ζi +
1
2

(

∂2w
∂x2

)

i

(

ξ2i − Vx
i
)

+

(

∂2w
∂x∂α

)

i
(ξiζi − Ci)

+
1
2

(

∂2w
∂α2

)

i

(

ζ2i − Vα
i
)

]

ϕi + Dx
∂2ϕi
∂x2 + Dα

∂2ϕi
∂α2 + O

(

ϵ3
)

,
(36)

where wi = w (x̄i, ᾱi), 
( ∂w

∂x
)

i =
∂w
∂x (x̄i, ᾱi), 

( ∂w
∂α

)

i =
∂w
∂α

(x̄i, ᾱi), 
(

∂2w
∂x2

)

i
=

∂2w
∂x2 (x̄i, ᾱi), 

(

∂2w
∂x∂α

)

i
=

∂2w
∂x∂α

(x̄i, ᾱi) and 
(

∂2w
∂α2

)

i
=

∂2w
∂α2 (x̄i, ᾱi) are fitness 

and its first and second derivatives evaluated at the mean traits of morph i, and

Vx
i = Ei

[

(x − x̄i)2
]

,

Ci = Ei [(x − x̄i) (α − ᾱi)] ,

Vα
i = Ei

[

(α − ᾱi)
2]

(37)

are within-morph variances and covariance of the traits of morph i. Here 
Ei [f (x, α)] =

∫∫

f (x, α) ϕi (x, α) dxdα denotes taking expectation of a function f 
with respect to the joint trait distribution ϕi(x, α) of morph i.

Substituting equation (36) into the change in the mean antigenicity of morph i

dx̄i
dt =

d
dt

∫∫

xϕi(x, α)dxdα =

∫∫

x ∂ϕi

∂t dxdα =

∫∫

(x̄i + ξi)
∂ϕi

∂t dξidζi ,

we obtained

d̄xi
dt =

( ∂w
∂x
)

i V
x
i +

( ∂w
∂α

)

i Ci + O
(

ϵ3
)

. (38)

Similarly, the change in the mean virulence of morph i was expressed as

dᾱi
dt =

( ∂w
∂x
)

i Ci +
( ∂w
∂α

)

i V
α
i + O

(

ϵ3
)

. (39)

Equations (38) and (39) from the mean trait change was summarized in a 
matrix form as

d
dt

( x̄i

ᾱi

)

= Gi





( ∂w
∂x
)

i
( ∂w
∂α

)

i





+ O(ϵ3), (40)

where

Gi =

(Vx
i Ci

Ci Vα
i

)

(41)

is the variance-covariance matrix of the morph i.
Substituting equation (36) into the right-hand side of the change in variance of 

antigenicity of morph i,

dVx
i

dt =

d
dt

∫∫

ξ
2
i ϕidξidζi =

∫∫

ξ
2
i
∂ϕi

∂t dξidζi

and those in the change in the other variance and covariance, we obtained

dVx
i

dt =
1
2

(

∂2w
∂x2

)

i

[

Ei
(

ξ4i
)

− (Vx
i )

2]
+

(

∂2w
∂x∂α

)

i

[

Ei
(

ξ3i ζi
)

− Vx
i Ci

]

+
1
2

(

∂2w
∂α2

)

i

[

Ei
(

ξ2i ζ2i
)

− Vx
i Vα

i
]

+ 2Dx + O(ϵ5),

dCi
dt =

1
2

(

∂2w
∂x2

)

i

[

Ei
(

ξ3i ζi
)

− Vx
i Ci

]

+

(

∂2w
∂x∂α

)

i

[

Ei
(

ξ2i ζ2i
)

− C2
i
]

+
1
2

(

∂2w
∂α2

)

i

[

Ei
(

ξiζ
3
i
)

− CiVα
i
]

+ O(ϵ5),

dVα

i
dt =

1
2

(

∂2w
∂x2

)

i

[

Ei
(

ξ2i ζ2i
)

− Vx
i Vα

i
]

+

(

∂2w
∂x∂α

)

i

[

Ei
(

ξiζ
3
i
)

− CiVα
i
]

+
1
2

(

∂2w
∂α2

)

i

[

Ei
(

ζ4i
)

− (Vα
i )

2]
+ 2Dα + O(ϵ5).

(42)

If we assume that antigenicity and virulence within a morph follow a 2D 
Gaussian distribution for given means, variances and covariance, we should have 
Ei(ξ4i ) = 3 (Vx

i )
2 , Ei(ξ3i ζi) = 3Vx

i Ci, Ei(ξ2i ζ2i ) = Vx
i Vα

i + 2C2
i , Ei(ξiζ

3
i ) = 3Vα

i Ci 
and Ei(ζ4i ) = 3 (Vα

i )
2, and hence

dVx
i

dt =

( ∂2w
∂x2

)

i

(

Vx
i
)2

+ 2
( ∂2w
∂x∂α

)

i
Vx
i Ci +

( ∂2w
∂α2

)

i
C2
i + 2Dx + O(ϵ

5
),

(43)

dCi

dt =

( ∂2w
∂x2

)

i
Vx
i Ci +

( ∂2w
∂x∂α

)

i

{

Vx
i V

α
i − C2

i

}

+

( ∂2w
∂α2

)

i
CiVα

i + O(ϵ
5
),

(44)

dVα
i

dt =

( ∂2w
∂x2

)

i
C2
i + 2

( ∂2w
∂x∂α

)

i
Vα
i Ci +

( ∂2w
∂α2

)

i

(

Vα
i
)2

+ 2Dα + O(ϵ
5
).

(45)

Equations (43) and (44) were rewritten in a matrix form as

dGi
dt = GiHiGi +

( 2DxVx
i 0

0 2DαVα
i

)

+ O(ϵ5), (46)

where

Hi =







(

∂2w
∂x2

)

i

(

∂2w
∂x∂α

)

i
(

∂2w
∂x∂α

)

i

(

∂2w
∂α2

)

i






, (47)

is the Hessian of the fitness function of morph i.
In our equation (30) of the joint evolution of antigenicity and virulence 

of a pathogen after its primary outbreak, the fitness function is given by 
w(x, α) = β(α)s(x) − α, and hence wi = β (ᾱi) s (x̄i) − ᾱi, 

( ∂w
∂x
)

i = β (ᾱi) s′ (x̄i), 
( ∂w
∂α

)

i = β′ (ᾱi) s (x̄i) − 1, 
(

∂2w
∂x2

)

i
= β (ᾱi) s′′ (x̄i), 

(

∂2w
∂x∂α

)

i
= β′ (ᾱi) s′ (x̄i), 

(

∂2w
∂x∂α

)

i
= β′ (ᾱi) s′ (x̄i) and 

(

∂2w
∂α2

)

i
= β′′ (ᾱi) s (x̄i), where a prime on β(α) and 

s(x) denotes differentiation by α and x, respectively. Substituting these into the 
dynamics for morph frequencies (equation 35), for morph means (equations 38 
and 39), and for within-morph variance and covariance (equations 43–45), we 
obtained
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dpi
dt =



β (ᾱi) s (x̄i) − ᾱi −
∑

j

(

β
(

ᾱj
)

s
(

x̄j
)

− ᾱj
)

pj



 pi, (48)

dx̄i
dt = β (ᾱi) s′ (x̄i)Vx

i + {β′ (ᾱi) s (x̄i) − 1}Ci, (49)

dᾱi

dt = β (ᾱi) s′ (x̄i)Ci + {β′ (ᾱi) s (x̄i) − 1}Vα
i , (50)

dVx
i

dt = β (ᾱi) s′′ (x̄i)
(

Vx
i
)2

+ 2β′ (ᾱi) s′ (x̄i)Vx
i Ci + β′′ (ᾱi) s (x̄i)C2

i + 2Dx,
(51)

dCi

dt = β (ᾱi) s′′ (x̄i)Vx
i Ci + β′ (ᾱi) s′ (x̄i)

{

Vx
i V

α
i − C2

i

}

+ β′′ (ᾱi) s (x̄i)CiVα
i ,

(52)

dVα
i

dt = β (ᾱi) s′′ (x̄i)C2
i + 2β′ (ᾱi) s′ (x̄i)Vα

i Ci + β′′ (ᾱi) s (x̄i)
(

Vα
i
)2

+ 2Dα .
(53)

Equations (48)–(53) describe the oligomorphic dynamics of the joint evolution 
of antigenicity and virulence of a pathogen for a given host susceptibility profile 
s(x) over pathogen antigenicity.

Of particular interest is whether antigenicity or virulence evolve faster when 
they jointly evolve than when they evolve alone. After the primary outbreak 
at a given antigenicity, for example x = 0, the susceptibility s(x) of the host 
population increases due to cross immunity as the distance x > 0 from the 
antigenicity at the primary outbreak increases. Hence, s′ (x̄i) > 0. Combining this 
with the positive trade-off between transmission rate and virulence, we see that 
(

∂2w/∂x∂α
)

i = β′(ᾱi)s′(x̄i) > 0, and then from equation (52), we see that the 
within-morph covariance between antigenicity and virulence becomes positive 
starting from a zero initial value:

dCi
dt

∣

∣

∣

Ci=0
=

(

∂2w
∂x∂α

)

i
Vx
i Vα

i > 0. (54)

If all second moments are initially sufficiently small for an emerging 
morph, a quick look at the linearization of equations (51)–(53) around 
(Vx

i , Ci, Vα
i ) = (0, 0, 0) indicates that both Vx

i  and Vα
i  become positive due to 

the random generation of variance by mutation, Dx > 0 and Dα > 0, while the 
covariance stays close to zero. Then, equation (54) guarantees that the first move 
of the covariance is from zero to positive, which then guarantees that Ci > 0 for all 
t. Therefore, the second term in equation (38) is positive until the mean virulence 
reaches its optimum ( β′(α)s(x) = 1). This means that joint evolution with 
virulence accelerates the evolution of antigenicity. The same is true for virulence 
evolution: the first term in equation (39) (which denotes the associated change in 
virulence due to the selection in antigenicity through genetic covariance between 
them) is positive, indicating that joint evolution with antigenicity accelerates 
virulence evolution.

Numerical example. Figure 5 shows the oligomorphic dynamics prediction 
of the emergence of the next variant in antigenicity–virulence coevolution. To 
make progress numerically, we assumed s(x) to be constant in the following 
analysis because we are interested in the process between the end of the primary 
outbreak and the emergence of the next antigenicity–virulence morph. The partial 
differential equations for the density of host S(t,x) susceptible to the antigenicity 
variant x at time t, and the density of hosts infected by the pathogen variant with 
antigenicity x and virulence α are

∂S(t,x)
∂t = −S (t, x)

αmax
∫

αmin

xmax
∫

0
β (α) σ (x − y) I (t, y, α) dydα,

∂I(t,x,α)
∂t = [β (α) S (t, x) − (γ + α)] I (t, x, α) +

(

Dx ∂2
∂x2 + Dα

∂2
∂α2

)

I (t, x, α) ,
(55)

with the boundary conditions 
(∂S/∂x) (t, 0) = (∂S/∂x) (t, xmax) = 0, (∂I/∂x) (t, 0, α) = (∂I/∂x) (t, xmax, 0) = 0, 
(∂I/∂x) (t, x, αmin) = (∂I/∂x) (t, x, αmax) = 0, and the initial conditions 
S (0, x) = 1 and I (0, x, α) = ϵδ (x) δ (α), where δ(·) is the delta function and 
ϵ = 0.01. The trait space is restricted in a rectangular region: 0 < x < xmax = 300 
and αmin = 0.025 < α < 10 = αmax. Oligomorphic dynamics prediction for the 
joint evolution of antigenicity and virulence was applied for the next outbreak 
after the outbreak with the mean antigenicity around x = 108 at time t = 102. The 

susceptibility of the host to antigenicity variant x at t0 = 104.8 after the previous 
outbreak peaked around time t = 102 came to an end is

s (x) = S (t0, x) .

This susceptibility profile remained unchanged until the next outbreak started, 
and hence the fitness of a pathogen variant with antigenicity x and virulence α is 
given by

w (x, α) = β (α) s (x) − (γ + α).

We bundled the pathogen variants into two morphs at time t0 at the threshold 
antigenicity xc, above which the net growth rate of the pathogen variant under the 
given susceptibility profile s(x) and the mean antigenicity become positive:

w (xc, ᾱ (t0)) = β (ᾱ(t0)) s (xc) − (γ + ᾱ (t0)) = 0.

The initial frequency and the moments of the two morphs, the 
variant 0 with x < xc and the variant 1 with x > xc were then calculated 
respectively from the joint distribution I(t0, x, α) in the restricted region 
{(x, α) ;0 < x < xc, αmin < α < αmax} and that in the restricted region 
{(x, α) ;xc < x < xmax, αmin < α < αmax}. The frequency p1 of morph 1 (the 
frequency of morph 0 is given by p0 = 1 − p1), the mean antigenicity x̄i and mean 
virulence ᾱi of morph i, and the variances and covariance, Vx

i , and Vα
i  Ci of morph 

i (i = 0,1) follow equations (48)–(53), where the dynamics for the morph frequency 
(equation 48) is simplified in this two-morph situation as

dp1
dt = [β (ᾱ1) s (x̄1) − β (ᾱ0) s (x̄0) − (ᾱ1 − ᾱ0)] p1 (1 − p1) ,

with p0 (t) = 1 − p1(t). This is iterated from t = t0 = 104.8 to 
te = 107. The frequency p1 of the new morph, the population mean 
antigenicity x̄ = p0x̄0 + p1x̄1, virulence ᾱ = p0ᾱ0 + p1ᾱ1, variance in 
antigenicity Vx = p0Vx

0 + p1Vx
1, covariance between antigenicity and virulence 

C = p0C0 + p1C1, and variance in virulence Vα = p0Vα
0 + p1Vα

1  are overlayed 
by red thick curves on the trajectories of moments observed in the full dynamics 
(equation 55).

In Fig. 5a, the dashed vertical line represents the threshold antigenicity xc, 
above which R0 = βs(x)/(γ + ᾱ) > 1 at t = ts = 104.8, where oligomorphic 
dynamics prediction was attempted. Two morphs were then defined according to 
whether or not the antigenicity exceeded a threshold x = xc: the resident morph 
(morph 1) is represented as the dense cloud to the left of x = xc and the second 
morph (morph 2) consisting of all the genotypes to the right of x = xc with their 
R0 greater than one. The within-morph means and variances were then calculated 
in each region. The relative total densities of infected hosts in the left and right 
regions defined the initial frequency of two morphs in OMD. A 2D Gaussian 
distribution was assumed for within-morph trait distributions to have the closed 
moment equations as previously explained. Using these as the initial means, 
variances, covariances of the two morphs at t = ts, the oligomorphic dynamics for 
11 variables (relative frequency of morph 1, mean antigenicity, mean virulence, 
variances in antigenicity and virulence and their covariance in morphs 0 and 1) 
was integrated up to t = te. The results are shown as red curves in Fig. 5c–h, which 
are compared with the simulation results (blue curves).

Fig. 5c–e respectively show the change in total infected density, mean 
antigenicity and mean virulence. Red curves show the predictions by oligomorphic 
dynamics from the initial moments of each morph at t = ts to the susceptibility 
distribution s(x) = S(ts, x), which are compared with the simulation results (blue 
curves). The OMD-predicted mean antigenicity, for example, is defined as

x̄ (t) = (1 − p1 (t)) x̄0 (t) + p1 (t) x̄1 (t) ,

where p1(t) is the frequency of morph 1, x̄0 and x̄1 are the mean antigenicities of 
morphs 0 and 1.

The red curves in Fig. 5f–h show the OMD-predicted changes in the variance 
in antigenicity, variance in virulence and covariance between antigenicity and 
virulence, which are compared with the simulation results (blue curves). The 
OMD-predicted covariance, for example, is defined as

C (t) = (1 − p1(t))C0 (t) + p1 (t)C1 (t) + p1 (t) (1 − p1 (t))

(x̄0 (t) − x̄1 (t)) (ᾱ0 (t) − ᾱ1 (t)) ,

where C0(t) and C1(t) are the antigenicity–virulence covariances in morphs 0 and 
1, and ᾱ0(t) and ᾱ1(t) are the mean virulence of morphs 0 and 1.

Selection for maximum growth rate. We next show that a pathogen that has 
the strategy of maximizing growth rate in a fully susceptible population is 
evolutionarily stable in the presence of antigenic escape.

At stationarity, the travelling wave profiles of ˆI(z) and ˆS(z) along the moving 
coordinate, z = x − vt, that drifts constantly to the right with the speed v are 
defined as
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0 = D d2̂I(z)
dz2 + v d̂I(z)

dz + βˆS (z)ˆI (z) − (γ + α)ˆI (z) ,

0 = v d̂S(z)
dz − βˆS (z)

∞

∫

−∞

σ (z − ξ)ˆI (ξ) dξ,
(56)

with ˆI (−∞) =
ˆI (∞) = 0, ˆS (∞) = 1.

Let j(t,x) be the density of a mutant pathogen variant, with virulence α′ and 
transmission rate β′, that is introduced in the host population where the resident 
variant is already established (equation 50). For the initial transient phase in which 
the density of mutants is sufficiently small, we have an equation for the change in 
J (t, z) = j(t, x):

∂
∂t J (t, z) =

{

D ∂2
∂z2 + v ∂

∂z + β′ˆS (z) − (γ + α′)

}

J (t, z) , (57)

with the initial condition J (0, z) = ϵδ(z), where ϵ is a small constant and δ(·) is 
Dirac’s function.

Consider a system

∂w
∂t =

{

D ∂2
∂z2 + v ∂

∂z + β′ − (γ + α′)

}

w, (58)

with w (0, z) = J (0, z) = ϵδ(z). Noting that ˆS (z) < 1, we have J (t, z) ≤ w(t, z) 
for any t > 0 and z ∈ R from the comparison theorem. The solution to equation 
(52) is

w (t, z) =
ϵ

√

4πDt exp
[

r′t − (z+vt)2
4Dt

]

, (59)

where r′ = β′ − (γ + α′). This follows by noting that w (t, x) e−r′t follows a 
simple diffusion equation ∂w/∂t = D∂2w/∂x2. By rearranging the exponents of 
equation (53),

w (t, z) = exp [at − kz] ϵ
√

4πDt e
−z2/4Dt

< ϵ
√

4πDt exp [at − kz] ,
(60)

where

a =

v′2 − v2

4D , (61)

k =

v
2D . (62)

Here v′ = 2
√

r′D is the asymptotic wave speed if the mutant variant 
monopolizes the host population. Therefore, if v′ < v, then a < 0, and hence 
w(t, z) for a fixed z converges to zero as t goes to infinity; this, in turn, implies that 
J(t, z) converges to zero because J (t, z) ≤ w (t, z) for all t and z. Therefore, we 
conclude that any mutant that has a slower wave speed than the resident can never 
invade the population, implying that a variant that has the maximum wave speed 
v = 2

√

rD is locally evolutionarily stable.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.
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Extended Data Fig. 1 | continuous antigenic drift (a) and periodical antigenic shifts (b) of the model. The surface in upper panel denotes the infected 
density I(t, x) varying in time t and antigenicty x, and the surface in lower panel denotes the density of hosts S(t, x) that are susceptible to antigenicity 
variant x of pathogen at time t. The width of cross immunity is ω = 0.2 in (a) and ω = 0.6 in (b), where we assume a Gaussian form for cross immunity 
function: σ (d) = exp(−d2/2ω2). A continuous antigenic drift solution (travelling wave of a fixed shaped profile with a constant wave speed) loses 
stability around ω = 0.4 and the departure from the travelling wave increases as ω increases (c). The wave speeds stay nearly constant and agree with (3) 
(v =

√

2 (β − α − γ)D = 0.0748) when ω is varied (d). Other parameters are β = 2, α = 0.1, γ = 0.5 and D = 0.001.
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Extended Data Fig. 2 | the accuracy of prediction of the second outbreak as a function of the prediction timing. Using the Kullback-Leibler divergence 
(left panel) (a) The KL divergence plotted here is IKL (P, Q) = 1

t1−t0

∫ t1
t0
Q (t) logQ(t)/P(t), where Q(t) is the trajectory for mean antigenicity observed in 

simulation, and P(t) is the corresponding trajectory obtained with OMD with using the data at t = t0 being used to set the initial condition. The right end 
of the comparison in time horizon is set to t1 = 80 when the second outbreak is over. (b) The logarithmic density of antigenicity variants, I(t, x), at t = 41. A 
tiny seed for the second morph around x = 6 is visible.
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