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 Abstract 

 We herein reported the synthesis of dihydropyrimidines 1 and 2 on the basis of nitro and 

brominated salicylaldehyde derivatives by Biginelli reaction in microwave conditions in the 

presence of cheap low toxic copper triflate. The structures of both compounds were investigated 

by the X-ray single-crystal diffraction method. The presence of non-covalent interactions and their 

impact on crystal structure was determined. In addition, the conformation of the dihydropyrimidine 

ring was also studied. In order to understand the molecular interactions in their structure, the 

Hirshfeld surface and contacts enrichment analyses were performed. Moreover, the biological 

activity of synthesized compounds was also investigated against Candida albicans and Aspergillus 

niger fungi. Finally, computational studies of the related compounds were performed at M062X/6-

31G(d) level in the water and molecular docking calculations were done against the thymidylate 

kinase of Candida albicans. 

 

 Keywords: microwave-assisted synthesis, Biginelli reaction, conformation analysis, 

Hirshfeld surface analysis, non-covalent interactions, molecular docking. 
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1. Introduction 

 

 The one-pot multicomponent reaction between aldehyde, urea derivative and methylene 

active compound, which leads to the synthesis of two nitrogen atoms containing six-membered 

heterocycles viz. dihydropyrimidines, was discovered by Italian chemist Pietro Biginelli in 1893 

[1]. Even though from the year of discovering more than 100 years past, it still keeps its actuality 

due to the wide spectrum of biological activities of its reaction products [2]. Variation of all three 

building blocks allowing introducing various pharmacophoric groups leads to the large molecular 

diversity of dihydropyrimidines, which biological activity studies reveal such activities as antiviral 

[3, 4], antiproliferative [5, 6], antitumor [7-12], antibacterial [13-15], anti-inflammatory [16-18], 

antitubercular [19], antifungal [20], anti-leishmanial [21], anti-hypertensive [22-24], antiepileptic 

[25], antidiabetic [26, 27], anti-HIV [28], antimalarial [29], mPGES-1 inhibitors [30], 

miscellaneous [31-33] activities, as well as calcium [34] and potassium channels [35-37] and 

α1aadrenergic antagonists [38]. Long and painstaking investigations of these heterocycles allowed 

synthesizing of different drugs on the basis of them which found application against HIV 

(batzelladine A and B) [28], cancer (monastrol, enastron, mon-97 and fluorastrol) [7-12], benign 

prostatic hyperplasia (prostate enlargement) and high blood pressure (terazosin) [32]. 

 

 Considering their importance in pharmacy, their synthesis methods in the presence of 

building blocks with various functional groups are always modified by chemists in order to find a 

more benign, cheaper and “green” method. Along with synthesis methods, computational studies 

and crystal structure investigations of dihydropyrimidines are also very important, which provide 

key information about non-covalent interactions and their role in crystal packing, tautomerization 

and conformation of dihydropyrimidine ring [39-41] allowing delving into the structure - 

biological activity relationship of investigated compounds [42].  

 

 Taking into account all above mentioned, we perform a synthesis of dihydropyrimidines in 

the presence of low toxic copper triflate on the basis of salicylaldehyde derivatives – 2-hydroxy-

5-nitrobenzaldehyde and 5-bromo-2-hydroxy-benzaldehyde. The structures of synthesized 

compounds 1 and 2 were studied by X-ray single-crystal diffraction method, which allowed 

studying of the conformation of the dihydropyrimidine ring and the presence of various 

interactions in crystal packing. In order to understand the molecular interactions in their structure, 

the Hirshfeld surface and contacts enrichment analyses were also performed. Considering the 

broad spectrum of biological activity of dihydropyrimidines, synthesized compounds 1 and 2 were 

studied against Candida albicans and Aspergillus niger fungi, which results were compared with 

the known antifungal drug Fluconazole. In addition to it, computational studies at M062X/6-

31G(d) level in the water and molecular docking calculations against thymidylate kinase of 

Candida albicans were also performed. 

 

  



3 
 

Materials and methods 

 

2.1 General Information 

 All the solvents and reagents were purchased from commercial suppliers and were of 

analytical grade and used without further purification. The control of the reactions progress and 

the determination of the synthesized compounds' purity were done by thin-layer chromatography 

(TLC) on Merck silica gel plates (60 F254 aluminium sheets) which were visualized under UV 

light. Melting points were recorded in open capillary tubes on a Buchi B-540 apparatus and were 

uncorrected. Elemental analysis was performed on the Carlo Erba 1108 analyzer. 

2.2 Experimental synthesis procedure 

 
Figure 1. Synthesis of dihydropyrimidines 1 and 2 on the basis of salicylaldehyde derivatives. 

 The synthesis of compounds was done according to the known procedure and NMR and 
mass data were compared with the literature [41]. 
  In details, 0.5 mmol of salicylaldehyde derivative, 0.75 mmol (45 mg) of urea and 0.08 
mmol (30 mg) of Cu(OTf)2 were added to a microwave vial with a magnetic stirrer and dissolved 
in 1 ml of DMSO (Figure 1). Subsequently, 0.46 mmol (50 µl) of methyl acetoacetate was added 
to a vial, which was sealed and irradiated at 100⁰C in a microwave reactor for 2 h at a maximum 
power of 200W (CEM DiscoverTM System). At the end of the reaction time, the reaction mixture 
was poured on ice; the precipitate was formed, filtered, washed with distilled water and dried. 
Further purification of compounds was done by the Biotage Isolera One Flash Chromatography 
System (cyclohexane-ethyl acetate-methanol). 
 Compound (I) methyl 4-(5-bromo-2-hydroxyphenyl)-6-methyl-2-oxo-1,2,3,4-
tetrahydropyrimidi-ne-5-carboxylate. The title compound was prepared according to the 
general procedure using 5-bromo-2-hydroxybenzaldehyde to afford the title compound a yellow-
green precipitate. Yield 71.5 %. M.p. 215-217⁰C. 1H NMR spectrum: (DMSO-d6, δ, ppm), 2.27 s 
(3H, CH3), 3.49 s (3H, OCH3), 5.39 s (1H, CH), 6.74-6.78 d (1H, CArH, J=12 Hz), 7.0 s (1H, 
CArH), 7.20-7.27 m (2H, CArH+NH), 9.20 s (1H, NH), 10.01 s (1H, NH). 13C NMR spectrum: 
(DMSO-d6, δ, ppm), 17.76 (CH3), 48.78 (CH), 50.7 (OCH3), 96.99 (C), 118.01 (CArH), 120.33 
(CArH), 121.52 (CArH), 128.98 (CAr), 129.37 (CAr), 149.28 (C), 152.13 (CAr), 155.89 (COO), 
165.74 (CO). HRMS (ESI‐MS): 341.11 [M++H+] (Figure 1S, 2S, 5S). Elemental analysis calcd. 
for C13H13N2O4Br, %: C, 45.77; H, 3.84; N, 8.21. Found, %: C, 45.73; H, 3.81; N, 8.25. 
 Compound (2) methyl 4-(2-hydroxy-5-nitrophenyl)-6-methyl-2-oxo-1,2,3,4-
tetrahydropyrimidine-5-carboxylate. The title compound was prepared according to the general 
procedure using 2-hydroxy-5-nitrobenzaldehyde to afford the title compound a yellow-green 
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precipitate. Yield 79 %. M.p. 239-240⁰C. 1H NMR spectrum: (DMSO-d6, δ, ppm), 2.30 s (3H, 
CH3), 3.49 s (3H, OCH3), 5.48 s (1H, CH), 6.97 s (1H, CArH), 7.44 s (1H, CArH), 7.87 s (1H, 
CArH), 8.06 s (1H, NH), 9.28 s (1H, NH), 11.36 br s (1H, NH). 13C NMR spectrum: (DMSO-d6, 
δ, ppm), 17.80 (CH3), 49.38 (CH), 50.78 (OCH3), 96.60 (C), 115.95 (CAr), 123.56 (C), 124.93 
(CArH), 139.25 (CArH), 149.60 (CArH), 151.94 (2CAr), 161.68 (COO), 165.63 (CO). HRMS (ESI‐
MS): 308.08 [M++H+], 330.08 [M++Na+], 306.08 [M+-H+] (Figure 3S, 4S, 6S). Elemental analysis 
calcd. for C13H13N3O6, %: C, 50.82; H, 4.26; N, 13.68. Found, %: C, 50.88; H, 4.21; N, 13.61. 
 
 2.3 NMR experiments 

 The NMR experiments were performed on a BRUKER FT NMR spectrometer AVANCE 

300 (Bruker, Karlsruhe, Germany) (300 MHz for 1H and 75 MHz for 13C) with a BVT 3200 

variable temperature unit in 5 mm sample tubes using Bruker Standard software (TopSpin 3.1). 

Chemical shifts were given in ppm (δ) and were referenced to internal tetramethylsilane (TMS). 

Coupling constants J are given in Hz. The experimental parameters for 1H are as follows: digital 

resolution=0.23 Hz, SWH=7530 Hz, TD=32 K, SI=16 K, 90⁰ pulse-length=10 ms, PL1=3 dB, 

ns=1, ds=1, d1=1 s and for 13C as follows: digital resolution=0.27 Hz, SWH=17985 Hz, TD=64 

K, SI=32 K, 90⁰ pulse-length=9 ms, PL1=1.5 dB, ns=500, ds=2, d1=3 s. The NMR-grade DMSO-

d6 (99.7%, containing 0.3% H2O) was used for the solutions of synthesized compounds 1 and 2, 

which are stable in the solution phase.  

 2.4 Mass experiments 

 High-resolution mass spectrometry (HRMS) was performed using electrospray ionization 

(ESI) in positive-ion or negative-ion detection mode. 

 2.5 X-Ray analysis 

 X-Ray analyses were performed on Bruker SMART APEX II Single Crystal X-ray 

Diffractometer equipped with graphite-monochromated Mo-Kα radiation (λ = 0.71073 Å) at 

296(2) K. The crystal structure was solved by direct methods and refined on F2 by full-matrix 

least-squares using Bruker's SHELXTL-97 [43]. The details of the crystallographic data for the 

synthesized compound are summarized in Table 1. Crystallographic data for the structural analysis 

have been deposited to the Cambridge Crystallographic Data Center under the number CCDC 

2040959 for compound 1 and CCDC 2041071 for compound 2. 

  

 2.6. Hirshfeld surface analysis 

 Hirshfeld fingerprint plots were obtained from the program CrystalExplorer 17.5 [44]. 

Hirshfeld surface and contact enrichment ratios [45] were obtained with MoProViewer [46]. As 

X…Y and Y…X contacts yielded similar contact surfaces and Eelec values in the context of this 

study, the reciprocal contacts were merged together.   

 2.7 Biological assay 

 The antifungal activity of synthesized dihydropyrimidine derivatives 1 and 2 was studied 

against Candida albicans and Aspergillus niger fungi by determining minimal inhibitory 
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concentrations (MIC) by the twofold micro-dilution method as described in [47-53]. The 

compounds were prepared according to CLSI guidelines and diluted in U-bottom 96 well 

microtiter plates which contained Sabouraud liquid medium. The freshly prepared fungal strains 

at about 105 CFU (colony forming unit) in the above-mentioned medium were added to each well 

of the microplate and incubated at 370C for 24-48 hours. The concentration of the tested 

compounds ranged from 1024 to 16 μg/mL. DMSO was used as a solvent. Fluconazole was used 

as a positive control, whereas DMSO was a negative control. 

 

 

 2.8 Computational Approach 

 Computational calculations of the mentioned compounds were performed by using 

GaussView 6.0.16 [K1], Gaussian 16 ES64L-G16RevA.03 package program [K2]. The calculation 

level was selected as M062X/6-31G(d) level in the water. Conductor like the polarizable 

continuum (C-PCM) model was used to take into consideration of solute-solvent interactions. In 

the optimization calculations, no imaginary frequency was observed. The active sites of both 

compounds were determined using molecular electrostatic potential (MEP) maps. 

 2.9 Molecular Docking 

 Molecular docking calculations were performed using Maestro 12.8 program. The related 

compounds were minimized using the LigPrep module. The target protein was selected as 5UIV 

from the protein data bank. This protein was prepared using Protein Preparation and Grid 

Generation modules. Then, docking calculation was performed using the LigDocking module. All 

calculations were done at the OPLS4 method at pH=7±2. 

 

 

2. Results and discussion 

 

 3.1 Chemical synthesis.  

 Synthesis of dihydropyrimidines was performed in the presence of low toxic cheaper 

triflate surrogate viz copper triflate (Figure 1) [41]. The structures of synthesized 

dihydropyrimidines were determined by 1H, 13C NMR, mass spectroscopy (Figures 1S-6S), X-ray 

single-crystal diffraction method and elemental analysis. As it can be seen from 1H NMR spectra, 

the signals from methyl and methoxy groups are observed at 2.27 and 3.49 ppm in the case of 

compound 1 and 2.3 and 3.49 ppm in the case of compound 2. The position of the 

dihydropyrimidine core CH group is at 5.39 and 5.48 ppm correspondingly. Their positions on 13C 

NMR spectra are at 17.76, 48.78, 50.7 ppm in the case of compound 1 and 17.80, 49.38 and 50.78 

ppm in the case of compound 2. The signals from amine groups of dihydropyrimidine core are 

observed at 9.2 and 10.01 ppm in the case of compound 1 and 9.28 and 11.36 ppm in the case of 

compound 2.  
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 3.2 Structure description.  

 It was also possible to obtain single crystals of compounds 1 and 2. Crystallographic data 
and detailed refinement results of the investigated compounds are presented in Table 1.  
 

Table 1. Crystallographic data and details of refinement for compounds 1 and 2. 

 Compound 1 Compound 2 

Chemical formula C13H13BrN2O4 C13H13N3O6 

Formula weight (M) 341.16 325.28 

Crystal system Monoclinic Orthorhombic 

Space group P121/n 1 Pna21 

a (Å) 9.331(7) 16.88500 

b (Å) 15.814(12) 7.14900 

c (Å) 10.140(8) 24.42800 

α (⁰) 90.00 90.00 

β (⁰) 116.777(10) 90.00 

γ (⁰) 90.00 90.00  

V (Å3)   1335.7(18) 2949 

Z 4 8 

Temperature (K) 298  298  

Crystal size 0.257 x 0.202 x 

0.199 

0.105 x 0.089 x 0.067 

Density (g/cm3) 1.697  1.465 

µ(Mo Kα)(mm-1) 3.093 0.121 

F(000) 688 1360 

Goodness of fit on F2 1.044 0.984 

R1, wR2α [I  > 2σ(I)] 0.0331, 0.0810 0.0986, 0.2468 

R1, wR2 (all data) 0.0402, 0.0846 0.1578, 0.2823 

Residual electron density 

(max, min) e Å-3 

   0.47 

  -0.59 

 0.87 

-0.44 

α R = Σ||Fo| - |Fc||/Σ|Fo|; wR(F2) = [Σw(|Fo|2 - |Fc|2 )2/ Σw|Fo|4]1/2. 
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3.2.1 Molecular structure of methyl 4-(5-bromo-2-hydroxyphenyl)-6-methyl-2-oxo-1,2,3,4-
tetrahydropyrimidine-5-carboxylate (1) 

The compound (1) crystallizes in the monoclinic system with space group P21/n and Z = 4. 

The molecule consists of a 1,2,3,4-tetrahydropyrimidine ring linked to a carboxylate group 

(COOMe), a methyl group and a 5-bromo-2-hydroxyphenyl ring (Figure 2). Crystallographic data 

and detailed refinement results of the compound (1) appear in Table 1. The pertinent bond lengths 

and angles are listed in Table S1, while hydrogen bonds present in this structure are shown in 

Table S2. The crystal packing is shown in Figure 9. 

 

Figure 2. View of the asymmetric unit of methyl 4-(5-bromo-2-hydroxyphenyl)-6-methyl-2-

oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (1), showing the atom labelling. Displacement 

ellipsoids are drawn at the 50% probability level. 

 

 In the molecular structure of compound (1), molecules are linked via N—H···O [N1—

H1A···O2ii (−x+2, −y+1, −z+1)] hydrogen bonds forming inversion dimers with an R2
2(8) ring 

motif which involved the carbonyl group (C=O). Other inversion dimers are also linked via N—

H···O=C (N2—H2···O1/O4i ((i) x+½, −y+3/2, z+½) bifurcated hydrogen bonds and O-H...O=C 

[O1—H1···O2iii ((iii) −x+2, −y+1, −z+2)] hydrogen bonds enclosing an R4
4(12) ring motif, 

involving the hydroxyl and the carbonyl groups, forming layers parallel to the (b,c) plane (Figures 
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3 & 4). Furthermore, weak N-H…Br interactions (involving H1A & H1A…Br1 = 3.416 Å), C-

H…Br (involving H12C & H12A, the distances H12C…Br1 = 3.088 Å and H12A…Br1 = 3.804 

Å) provide further stability to the crystal packing with C=O…Br (O…Br = 3.624Å) (Figure 5). 

 

Figure 3. A view along the a-axis of the crystal packing of the compound (1). The hydrogen 

bonds are shown as dashed lines. The inversion symmetry centres between molecules are shown 

by yellow points. 

 

Figure 4. Crystal structure of title compound (1) showing the dimers formed by N— H...O and 

O—H...O hydrogen bonds enclosing an R2
2(8), R4

4(12) and S1
1(6) ring motifs. 
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Figure 5. Crystallographic packing diagram of compound (1) depicting N–H…Br, C–H…π and 

C=O…Br intermolecular interactions. The non-participating hydrogen atoms have been omitted 

for clarity. 

 The aromatic moieties provide additional stability by the formation of C-H…π 

intramolecular interaction. The distances between the hydrogen atoms H12A, H12B and H12C 

and Cg (1-x,1-y,1-z) which is the centroid of the C1-C2-C3-C4-C5-C6 aromatic ring are equal to 

3.247, 2.883 and 3.740 Å (Figure 5).  

 It is noteworthy that the phenyl rings C1-C2-C3-C4-C5-C6 in (1) exhibit a regular spatial 

configuration with normal C-C distances and C-C-C angles (Table S1). The C-C bond lengths vary 

from 1.379 (4) to 1.406 (4) Å which are between a single and double bond and agree with those 

found for other similar compounds [54] and the C-C-C angles do not show any unusual values. 

For tetrahydropyrimidine, the C-N and C-C bond lengths are in the range of 1.331(3) to 1.513(3) 

Å. These values, which clearly agree well with those reported in other similar compounds [55]. 

The aryl substituents at the saturated carbon atom C7 have a pseudoaxial orientation with the C9-

C8-C7-C3 torsion angle equal to −96.4 (3)° and the C9-C8-C11-O3 torsion angle of −168.4 (2) °. 

 It is of interest to note that the conformation of the tetrahydropyrimidine six-membered 

ring C7-C8-C9-N1-C10-N2 can be described in terms of Cremer and Pople puckering coordinates 

[56], i.e., evaluating the parameters Q (total puckering amplitude), q2, q3, θ and φ. The calculated 

values are as follows: Q = 0.3173 Å, q2 = 0.3112 Å, q3 = -0.0617 Å, θ = 101.22° and φ = 178.58° 

for compound (1) which showed that the tetrahydropyrimidine ring has a half-chair conformation 

(C2) [57]. The conformation is stabilized by an intramolecular N–H…O-H hydrogen bond 
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involving the N-H group adjacent to the aromatic ring with the hydroxyl substituent on the benzene 

ring (involving O1) forming an S1
1(6) motif. 

 Furthermore, the plane through the four coplanar atoms (N1, C10, C8 and C7) makes a 

dihedral angle of 77.54° with the phenyl ring. The carbonyl, carboxylate and methyl groups, except 

for the H atoms, are nearly coplanar with the attached heterocyclic ring [39, 54] and the bromine 

atom in this structure had equatorial orientation in the phenyl ring plane with torsion angles С3–

С2–С1–Br1 and С5–C6–С1–Br1 equal to 179.11(19) and - 178.5°(2), respectively. 

 3.2.2 Molecular structure of methyl 4-(2-hydroxy-5-nitrophenyl)-6-methyl-2-oxo-

1,2,3,4-tetrahydropyrimidine-5-carboxylate monohydrate (2) 

The substitution of the bromo atom by the nitro group and the presence of water molecules 

introduce changes in the molecular conformation and crystal packing (Figure 6). The compound 

(2) crystallizes in the orthorhombic system with space group Pna21 and Z = 8 (Table 1). Contrarily 

to compound (1), the unit cell contains two geometrically independent molecules and two water 

molecules. The crystal packing is shown in Figure 10. 

Molecular conformation of tetrahydropyrimidine changes to the twisted boat for both 

molecules in compound (2) form describes in terms of Cremer and Pople puckering coordinates 

[56], i.e., evaluating the parameters Q, q2, q3, θ and φ. The calculated values of first molecule C7-

N2-C8-N3-C9-C10 are as follows: Q = 0.3727 Å, q2 = 0.3576 Å, q3 = 0.1049Å, θ = 73.66° and φ 

= 6.51° and for second molecule C20-C21-C22-N6-C23-N5, the calculated values are Q = 

0.3736Å, q2 = 0.3625Å, q3 = 0.0905Å, θ = 75.98° and φ = -7.24°. 

 

Figure 6. A view of the asymmetric unit of methyl 4-(2-hydroxy-5-nitrophenyl)-6-methyl-2-oxo-

1,2,3,4-tetrahydropyrimidine-5-carboxylate monohydrate, compound (2), showing the atom 

labelling. Displacement ellipsoids are drawn at the 50% probability level. 
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 The bond lengths and bond angles in this molecular structure, listed in Table S3, are also 

close to standard values, similar to the previous structure of compound (1) and comparable to 

related structures of the literature [58, 59]. 

 In the structural arrangement, hydrogen bonds play an important role in stabilizing the 

structure. Thus, the presence of water molecules in the crystal packing interferes with the 

interaction of the carboxylate and nitro groups giving rise to a rich network of hydrogen bonds 

(Table S4). The molecules are interconnected via N–H…O and O-H…O hydrogen bonds 

generated by the H2O13 and H2O14 crystallization water molecules to form layers spreading along 

[010] direction (Figure 7). 

 The crystallization water molecules are connected to nitro groups (O13—H13E···O8 and 

O14—H14A···O2) and to the carboxylate group of each tetrahydropyrimidine. The molecules are 

connected through hydroxyl groups to water molecules involving O9 and O3 (O9—H9···O14i ((i) 

x, y−1, z) & O3—H3···O13ii ((ii) x+½, −y+½, z) (Table S4). The aromatic moieties provide 

additional stability by the formation of C-H…π intramolecular interaction. The distances between 

the hydrogen atoms and centroids are 3.321 and 3.955 Å (Figure 8). Intermolecular stacking 

interactions between aromatic rings are absent in both compounds (1) & (2). 
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Figure 7. A view along the b-axis of the crystal packing of compound (2). The hydrogen bonds 

are shown as dashed lines. 

 

Figure 8. C-H…π intermolecular interactions in the structure of compound (2). 
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 3.3 Hirshfeld surface analysis. 

 The fingerprint plots of the intermolecular interactions for both compounds (1) and (2) 

show two spikes at shorts distances due to the H..O and O...H reciprocal hydrogen bonds (Figures 

7S and 8S). This is the case for the two independent molecules (2a) and (2b) present in the 

asymmetric unit of compound (2) crystal.  

 For compound (1), the main interactions are H...H contacts and weak hydrogen bonds 

Br...H as well as H...π (H...C and H...N). The three strong H-bond donors (2 H-N and 1 H-O) form 

three strong H-bonds with the three strong oxygen acceptors (a hydroxyl and two carbonyl groups). 

The aromatic rings are essentially interacting with the methyl and >CH aromatic hydrogen atoms. 

atom Ho/n C N O Br Hc 
Atom…ALL % 11.0 22.8 2.0 14.2 13.9 36.1 
ALL…Atom % 11.1 21.0 1.7 14.1 14.8 37.3 
Ho/n 1.0    % contacts   
C 1.8 2.9   Cxy   
N 0.2 0.1 0.0     
O 9.8 3.2 0.6 0.2    
Br 3.1 11.8 1.0 3.6 0.0   
Hc 5.3 21.1 1.9 10.8 9.1 12.7 
Ho/n 0.8       enrichment    
C 0.37 0.61   Exy   
N 0.38 0.11 -     
O 3.12 0.51 1.13 0.09    
Br 0.99 1.88 1.89 0.89 0   
Hc 0.65 1.31 1.37 1.04 0.87 0.94 

 

Table 2. Surface content and nature of contacts on the Hirshfeld surface of compound (1). 
Reciprocal contacts X-Y and Y-X were merged. The major contacts CXY and the major enriched 
ones (EXY larger than unity) are in bold characters. Hydrogen atoms bound to nitrogen or oxygen 
are distinguished from the more hydrophobic Hc atoms bound to carbon.  

atom Ho/n C N O Hc 
Atom…ALL  % 10.1 24.5 3.4 27.2 34.9 
ALL…Atom  % 18.7 20.5 2.6 27.9 30.3 
Ho/n 1.3         
C 1.5 6.4     
N 0.9 0.3 0.0    
O 16.7 10.7 1.5 3.6   
Hc 7.1 19.8 3.3 19.0 7.9 
Ho/n 0.69         
C 0.22 1.26     
N 0.97 0.26 0    
O 2.12 0.86 0.88 0.48   
Hc 0.74 1.36 1.72 1.06 0.75 

Table 3. Contact proportions Cxy and their enrichments Exy for compound (2). Hirshfeld's surface 
was generated around an ensemble of two independent molecules, not in contact with each other 
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in the crystal packing. The major contacts CXY and the major enriched ones (EXY larger than unity) 
are in bold characters. 

The contact enrichment (Tables 2 and 3), derived from the Hirshfeld surface, is computed 

from the ratio of the actual contacts Cxy in the crystal with those computed as if all types of contacts 

had the same probability to form [46]. An enrichment ratio larger than unity for a given pair of 

chemical species X … Y indicates that these contacts are favoured (over-represented) in the 

crystal. In compound (1), the O…Ho/n contact is the most enriched and corresponds to the two N-

H…O and the O-H…O strong hydrogen bonds. The Hc…C contacts are the most abundant in 

Table 2 and are a little enriched at E=1.31. The bromine atom is essentially in contact with aromatic 

rings resulting in significantly enriched C…Br contacts and, at a long distance, with some Hc 

atoms (Figure 9).  

 For compound (2), the major contacts are C…Hc and O…Hc (more than 19% of the 

surface) followed by O…Hn/o and O…C (Table 3). The less hydrophilic oxygen atoms of the nitro 

group interact mostly with Hc and C atoms (Figure 10). The major enriched contacts are the strong 

H-bonds O…Hn/o and the weak H-bonds C…Hc.  

  

 

Figure 9. Crystallographic autostereogram of crystal packing for compound (1) along b axis. 
Horizontal translations correspond to a+c. 
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Figure 10. Crystallographic autostereogram of crystal packing for compound (2), b is horizontal 
and c is vertical. 

 When the Hirshfeld surface of the two independent molecules are compared (data not 
shown), they show similar contact types, with the two proportions Cxy sets 98.6% correlated and 
the two Exy sets 88.7% correlated. 

It is important to specify how atoms located inside the Hirshfeld Surface (HS) interact with the 
atoms of molecules located in the neighbouring as it provides information about the packing 
contacts of molecules [60-64]. For compound I, the reciprocal Atom…ALL and ALL…Atom 
surfaces are similar, as the Hirshfeld surface was computed on the molecule constituting the 
asymmetric unit (Table 1). Here, ALL stands for all the atoms of molecules located in the 
surrounding of the HS. It is found that the H atoms located inside the HS interact the most with 
the atoms of molecules located outside HS as compared to other atoms present inside the HS. The 
contribution of H-ALL interactions is found to be close to one half in proportion, but the 
percentage of hydrophilic Ho/n atom is only 11% on the surface. The other interactions are C-ALL 
(22.8%), O-ALL (14.2%), Br-ALL (13.9.4%) and N-ALL (2.0%).  

For compound II, the reciprocal Atom…ALL and ALL…Atom surfaces are more dissimilar, 
as the Hirshfeld surface was computed around the two independent organic molecules present in 
the asymmetric unit, while the HS around the two water molecules was not computed (Table 2). 
The H…ALL contacts represent also the major interaction, reaching 45% in percentage, with again 
only 10% of the HS related to the hydrophilic Hn/o atoms. The proportions of the other contacts 
are O-ALL (27.2%), C-ALL (14.2%) and N-ALL (3.4%). The proportion of Ho/n…ALL contacts 
at 18.7% are much larger than the reciprocal contact surface ALL...Ho/n as the water molecules 
providing the H-O hydrogen atoms are not contributing to the inner side of the Hirshfeld surface.  

The response of a crystal to applied stress or force depends on the voids in the crystal packing. 
When voids are small, the atoms are strongly packed with each other and the crystal can bear the 
stress of a significant amount. The voids were computed by using CrystalExplorer software (Figure 
11). For compound I, the void volume and surface area were found to be 123.9 Å3 and 472.3 Å2, 
respectively. The voids occupy only 9.2% in the percentage of the space in the crystal packing 
which is an indication that the molecules are strongly held with each other through non-covalent 
interactions [65-69]. 

For compound II, the void volume and surface area are respectively 351.6 Å3 and 1082 Å2, 
which results in a slightly higher 11.9 % proportion of void in the unit cell, compared to compound 
I, but corresponds to a still tightly packed crystal.    
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(a)  

(b)   

Figure 11. Void surface in the crystal packing at 0.002 a.u. electron density  

(a) of  compound I (b horizontal), 

(b) of compound II (c horizontal, a vertical) 

  

 3.4 Biological assays 

  The antifungal activity of synthesized dihydropyrimidine derivatives 1 and 2 was studied 

against Candida albicans and Aspergillus niger fungi. The twofold micro-dilution method was 

used to determine the minimum inhibitory concentration (MIC) of the synthesized compounds 1 

and 2 as well as a pristine antibiotic (fluconazole). As shown in Table 4, the synthesized 

dihydropyrimidine 1 demonstrated similar to fluconazole activity in the case of Candida albicans 
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and Aspergillus niger (32 µg/µL) fungi. MIC of compound (2) was lower than fluconazole result 

(64 µg/µL) in the case of Candida albicans, whereas in the case of Aspergillus niger it was 2 times 

higher (16 µg/µL).  

Table 4. Minimum inhibitory concentration (MIC, µg/µL) of the studied compounds. 

Bacteria Minimum inhibitory concentration (MIC, µg/µL) 

Compound (1) Compound (2) Fluconazole 

Candida 

albicans 

32 64 32 

Aspergillus 

niger 

32 16 32 

  

   Due to the fact that the solvent (DMSO) is an example of a substance that can display 

biological activity, the results were also recorded using pure DMSO that did not contain the 

investigated molecules. It was discovered that DMSO has no effect on the fungi indicated above. 

 3.5 Computational Analyses 

 Studied compounds are optimized M062X/6-31G(d) level. No imaginary frequency is 

observed at the end of the calculations. Optimized structures of the mentioned compounds are 

represented in Fig. 11. 

 

Figure 11. The optimized structures of studied compounds. 

 According to Fig. 11, the structures are not planar and the direction of functional groups is 

similar to each other in both compounds. The IR spectrum of them is calculated and represented 

in Fig. 12. 
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Compound 1

Compound 2

 

Figure 12. The calculated IR spectrum of compounds 1 and 2. 

 According to Fig. 12, there are no big differences. The obtained frequencies are 3643, 3504, 

1833, 1748, 1530, 1405, 1296, 1167 and 590 cm-1 for compound 1; 3644, 3418, 1836, 1718, 1446, 

1291, 1166 and 597 cm-1 for compound 2. According to Fig. 12, the structures are at the ground 

state due to the no imaginary frequency. Additionally, MEP maps of both compounds are 

calculated to determine the active region on the molecular surface. They are represented in Fig. 

13. 

Compound 1 Compound 2  

Figure 13. MEP map of compounds 1 and 2. 

 According to the MEP map (Fig. 13), compound 2 is seen as more active than the other 

one. The environment of heteroatoms especially oxygen atoms is mainly red and yellow. It means 

that these regions can interact easily. On the other hand, the environment of hydrogen atoms is 

mainly dark blue. 
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 3.6 Molecular Docking 

 It is very significant to obtain pre-information about the biological activity of chemicals. 

For this purpose, there are several analyses are used among which quantum chemical descriptors, 

quantitative structure-activity relationship, Fukui functions etc can be mentioned. But the best one 

is molecular docking [70, 71]. However, the target protein and its receptor-binding domain (RBD) 

should be known. The thymidylate kinase of Candida albicans was selected as a target protein in 

this study. The target protein (PDB ID: 5UIV) and its RBD are represented in Fig. 14, whereas the 

docking score (DS), van der Waals energy (EvdW), coulomb energy (ECoul) and total interaction 

energy (ETotal) are given in Table 5. 

 
Figure 14. Structure of 5UIV and its RBD.  

Table 5. The molecular docking result 

Compound DSa EvdW
a ECoul

a ETotal
a 

1 -5.08 -27.34 -3.67 -31.01 

2 -4.79 -22.07 -5.86 -27.92 
ain kcal/mol 

 

According to Table 5, the key-lock compatibility in compound 1 is better than in compound 

2 due to the docking score. Additionally, total interaction energy and chemical interactions are 

better in compound 1, too. As a result, it can be said that the antifungal activity of compound 1 

against Candida albicans is better than that of compound 2. This result is in agreement with 

experimental results (Table 4).  
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Compound 1 Compound 2

 

Figure 15. Docking and interaction structures of studied compounds. 

 According to the represented docking and interaction structures (Fig. 15), dominant 

interaction types are as follows: H-bond, pi-pi stacking, pi-cation, negative and positive charged, 

polar and metal interactions. The studied compounds interact with the magnesium at the RBD of 

5UIV. 

3. Conclusion. 

 The salicylaldehyde based dihydropyrimidine derivatives 1 and 2 were synthesized by 

Biginelli reaction in microwave conditions in presence of low toxic cheaper copper triflate 

surrogate. The structure of synthesized dihydropyrimidines was investigated by X-ray single-

crystal diffraction and the presence of non-covalent interactions and their impact on crystal 

packing and conformation of dihydropyrimidine ring were revealed. Along with it, Hirshfeld 

surface analysis was carried out to gain insight into crystal packing and molecular interactions. 

Considering that the proposed substances 1 and 2 can have the ability to act as an antifungal drug, 

it was tested for the biological activity against Candida albicans and Aspergillus niger, as well as, 

was made a comparison with the activity of pristine antibiotic fluconazole. According to the 

antifungal activity results, compounds 1 and 2 demonstrate pronounced antifungal activity, which 

is also in agreement with the performed computational calculations. As a result of the obtained 

data, it is possible to conclude that in future, applying innovative technologies can lead to the 

creation and development of new effective antifungal drugs on the basis of these compounds. 
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