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Abstract

The adoption of emerging imaging technologies in the medical community is often ham-
pered if they provide a new unfamiliar contrast that requires experience to be interpreted.
Here, in order to facilitate such integration, we developed two complementary machine learn-
ing approaches, respectively based on feature engineering and on convolutional neural networks
(CNN), to perform automatic diagnosis of breast biopsies using dynamic full field optical coher-
ence tomography (D-FF-OCT) microscopy. This new technique provides fast, high resolution
images of biopsies with a contrast similar to H&E histology, but without any tissue prepara-
tion and alteration. We conducted a pilot study on 51 breast biopsies, and more than 1,000
individual images, and performed standard histology to obtain each biopsy diagnosis. Using
our automatic diagnosis algorithms, we obtained an accuracy above 88 % at the image level,
and above 96% at the biopsy level. Finally, we proposed different strategies to narrow down
the spatial scale of the automatic segmentation in order to be able to draw the tumor margins
by drawing attention maps with the CNN approach, or by performing high resolution precise
annotation of the datasets. Altogether, these results demonstrate the high potential of D-FF-
OCT coupled to machine learning to provide a rapid, automatic, and accurate histopathology
diagnosis.

1 Introduction

In 2018, cancer was the most frequent cause of premature death in 48 countries in the world [1].
Breast cancer was the most frequently diagnosed cancer among females in 154 countries [1]. When
early diagnosis is made, conservative surgery is preferred in order to partially preserve organ
function, and maintain the patient’s body image and quality of life [2, 3]. Nonetheless, these
surgeries could be associated with higher risk of recurrence, risk of re-excision and potential delay
to the initiation of other therapies [3,4]. The difficulty partly lies in the efficient evaluation of tumor
margins directly during surgery. Techniques such as intraoperative touch-preparation cytology, or
frozen-section analysis can be performed during the surgery and have shown promising potential
in reducing the re-excision rate after primary breast conserving surgery down to 10 % instead of 35
% using permanent section histopathology [5]. Nonetheless, these techniques still require about 30
minutes, are resource intensive, are associated with various artifacts (sampling, freezing artifacts),
and offer a less precise diagnosis compared to standard histopathological assessment [6–8]. A recent
review compared frozen sections and touch-preparation cytology to regular histology on respectively
4300 and 1900 breast cancer cases and reported a sensitivity/specificity of 0.86/0.96 for frozen
sections and 0.91/0.95 for cytology [8]. This review also pointed out that these intraoperative
margin assessment techniques are not commonly routinely used in hospitals. Thus, improvement
of intraoperative management towards a real-time process combining, large-scale assessment and
cell resolution measurement to accurately evaluate cancer margins is an important step towards
reducing the re-excision rate, the risk of recurrence, as well as patient stress and use of medical
resources.

It has been the reason for the development of many optical techniques over the past few years.
Among others, quantitative phase imaging [9], optical coherence tomography (OCT) [10–12], Ra-
man spectroscopy [13, 14], fluorescence lifetime imaging [15, 16], optical elastography [17], and
multiphoton microscopies [18, 19] showed high potential to offer an accurate histopathological di-
agnosis. Nonetheless, none of these techniques have emerged as a gold standard, and they all
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provide slightly different contrasts that often do not directly compare to standard hematoxylin-
eosin (H&E) histology. As a consequence, these promising techniques are hardly adopted by the
medical community since adapting to a new contrast is challenging and time consuming, and such
efforts are not necessarily transferable from one technique to the other. For this reason, several
groups have developed machine learning tools, including deep learning, associated with either stan-
dard histopathology [20–22], or new optical technologies [12, 16, 19] in order to provide a direct
diagnosis or a set of comprehensive features the pathologists can use more directly.

Among these new optical techniques, we investigate here the combination of static and dynamic
full field optical coherence tomography (FF-OCT), and develop machine learning algorithms to
automate diagnosis. One advantage of this combination is that it captures non-destructively en
face sections of tissues with a contrast resembling standard H&E histology, hence supposedly
easily interpretable by histopathologists. FF-OCT is a variant of OCT [23] with superior lateral
resolution and is able to acquire en face views of the sample in a single camera frame [24,25]. FF-
OCT captures light backscattered by a sample at a given depth [23,26], which carries information
on the 3D tissue architecture (mostly extracellular matrix), which is significantly disorganized in
cancerous biopsies [27–29]. Recently, we developed dynamic FF-OCT (D-FF-OCT) that takes
advantage of the intracellular dynamics of cells to add a new contrast depending on cell motility,
metabolism [30], and can also reveal cell mitotic state [31]. Combined with static FF-OCT, both the
3D structure and cell distribution and shape are recovered, offering a view of the sample resembling
standard H&E histology [32]; Static FF-OCT provides specific signatures of extracellular matrix,
hence being similar to Eosin staining, while D-FF-OCT allows visualization of nuclei (similarly
to Hematoxylin staining), cytoplasm, and red blood cells. In contrast to histology, FF-OCT
does not require tissue fixation or staining, and allows measurement of a 1.3 × 1.3 mm2 region
in a few seconds. It has the potential to offer a fast, 3D, label-free, wide field, non-destructive
characterization of tumors and detection of tumor margins directly in the operating room. A recent
first study on 173 breast samples demonstrated that combining static and D-FF-OCT allowed rapid
diagnosis of breast tumors during surgery with high accuracy around 90 % [33].

In this paper, we first performed a clinical pilot study in 35 patients (and N=51 biopsies) with
breast cancer to evaluate the clinical potential of combining static and dynamic FF-OCT in com-
parison to H&E histology. For each patient, we imaged the entire breast biopsy (several cm2) with
static FF-OCT, and chose for each biopsy between 5 and 20 smaller regions of interest (ROIs)
of area 2mm2, where we recorded static and dynamic FF-OCT. Altogether, less than 10 minutes
were required to record a dataset from each biopsy, which is compatible with intraoperative di-
agnosis. We demonstrated that FF-OCT offers enough similarities with standard histology to be
straightforwardly translated to histopathology diagnosis. After a short training, two pathologists
obtained a total accuracy of 90 % (91.5 % sensitivity, 86.5 % specificity) by looking at the static
and dynamic FF-OCT small ROIs.
More importantly, we developed and compared two machine learning strategies to propose an
automatic diagnosis of the breast tumors at different scales. A first approach, based on feature
engineering (FE), aims to measure precise metrics like collagen fiber disorder or cell density, and
classify samples based on the combination of these metrics. This approach strongly depends the
choice of metrics and the level of accuracy in their computation. Nonetheless, it is more inter-
pretable and the same classifier can potentially be used for different cancer types. Our second
approach, performs an automatic feature extraction using a custom convolutional neural network
(CNN). It is potentially more efficient than the FE approach if the dataset has adequate size,
homogeneity, and annotation. We applied both approaches on all the 2 mm2 ROIs, and obtained
similar classification accuracy of respectively 88 % (89 % sensitivity, 86 % specificity) and 90 % (92
% sensitivity, 85 % specificity). By considering all ROIs from each original sample, we were able
to make a prediction at the biopsy level. We obtained an improved accuracy of respectively 100
% and 96 % (94 % sensitivity, 100 % specificity), hence demonstrating that both machine learning
approaches can perform efficient automatic classification.
Next, we investigated how to reduce the spatial scale at which the classification is performed,
with the objective of sharpening the tissue assessment and allowing precise identification of tumor
margins. First we modified the algorithms to use smaller ROIs as inputs, but obtained a reduced
accuracy below 80 %, probably because of annotation issues. As a proof-of-concept experience
allowing circumventing the annotation issue, we built a different dataset on 5 mice retinas imaged
with D-FF-OCT, which could be annotated more easily thanks to the highly organized structure
of the retina. Using the CNN approach on this dataset, we demonstrated that the algorithm was
able to predict the boundaries between the retinal layers in a folded retina, with a spatial reso-
lution of 25 µm, a problem similar to tumor margin detection. Finally, we built attention maps
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Table 1: Summary of techniques and results obtained in the study. Only the accuracy is reported
here, while the specificity and sensitivity are shown latter. N.A. means not applicable. The ground
truth mention means that all results are compared to the histological measurement, assumed to
be without error here.

Imaging
technique

Diagnosis Method Supervision
Level

Training
Time

Computation
time per
image

Accuracy
at sample
scale
(2cm2)

Accuracy
at meso.
scale
(2mm2)

Accuracy
at mi-
cro. scale
(10−2mm2)

H&E Histopathology di-
agnosis(Gold stan-
dard)

Expert Years N.A. 100 %
(Ground
truth)

N.A. N.A.

Static
and dy-
namic
FF-OCT

FF-OCT diagnosis
by medical expert
(Also shown in [33])

Expert Years +
Hours
of new
train-
ing for
FF-OCT

N.A. 85 %
(only
static)
/ 90 %
(with
dynamic)

N.A. N.A.

Static
and dy-
namic
FF-OCT

Feature engineering
by OCT expert +
SVM classifier on
medical expert an-
notation

Semi-
automatic

Minutes 1-2 min 100 % 88 % 80-71 %

Dynamic
FF-OCT

CNN on medical
expert annotation

Automatic Hours Seconds 96 % 90 % 76 %

using the GradCAM algorithm [34] in the CNN. These attention maps highlighted key regions that
influenced the network diagnosis prediction, hence showing the boundaries between healthy and
tumorous parts within each image.
Altogether, these results demonstrate that combining static and dynamic FF-OCT allows man-
ual and automatic accurate cancer diagnosis, comparable with the H&E histology gold standard
without tissue preparation and modification. We demonstrated proof of principle experiments to
increase the spatial resolution of the automatic classifications, aiming to produce crucial biomedi-
cal diagnosis from the tissue scale down to the single cell level and showing promising results for
tumor margin detection. This also paves the way for faster and easier integration of optical imaging
techniques based on the endogenous dynamic scattering of light in the biomedical community.

2 Results

D-FF-OCT allows cancer diagnosis by medical experts with 90 % accu-
racy

In this study, we imaged 51 samples from 35 fresh lumpectomy or mastectomy surgical specimens,
excised by the pathologist during intra-operative examination (Figure 1 A1, A2). For all specimens,
one biopsy was taken in the tumorous area and, when possible, a second biopsy was taken far
from the tumorous area to obtain healthy tissue. Immediately following the excision, the biopsy
was directly inserted in the FF-OCT sample holder (Figure 1 B1), and imaged with the LLTech
microscope (Figure 1 B2). The static FF-OCT image of the entire biopsy (typically 2 × 1cm2) is
acquired (Figure 1 B3) in less than 5 minutes. Then, between 5 and 20 ROIs corresponding to a
single field of view of 1.3×1.3mm2 were manually selected to be representative of the different areas
of the biopsy. One static and one dynamic FF-OCT image were acquired at each ROI. Insertion
and imaging of the sample typically took 10 minutes. Once the imaging had been performed,
the samples were placed in histology cassettes (Figure 1 C1), were fixed in formalin, included in
paraffin, sliced and H&E stained (Figure 1 C2 - See Methods). A diagnosis was performed by the
pathologist on the entire biopsy.
After 3 months of data collection, the two pathologists who performed the sample selection went
through a blind analysis of the images, deciding on the presence of cancer or not in the sample
based on the FF-OCT and D-FF-OCT images only. Pathologist P1 was already familiar with
FF-OCT images since she participated in a study to evaluate FF-OCT performance on head and
neck cancer diagnosis, but used the D-FF-OCT for the first time. The second pathologist P2 had
no prior experience in any optical biopsy technique. During the data collection phase, training
was organized on 4 samples, where the two pathologists could share their interpretation of the FF-
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Table 2: Sensitivity, specificity and accuracy of P1 and P2 in the differential diagnosis between
non tumorous and tumorous FF-OCT images

Whole static FF-OCT Partial Static and Dynamic FF-OCT
P1 P2 P1 P2

Sensitivity 78 % 89 % 86 % 92 %
Specificity 100 % 79 % 93 % 86 %
Accuracy 84 % 86 % 88 % 90 %

OCT and D-FF-OCT images and compare them with the H&E stained image.Correlating manually
the large field static FF-OCT image with the histology slide allowed side by side comparison of
the static and dynamic FF-OCT ROIs (Figure 1 D1, D2, E1, E2 in healthy and tumoral regions
respectively) to their corresponding histology image region (Figure 1 D3, E3). It became clear
that the static FF-OCT image reveals the extracellular matrix (Figure 1 D1, E1), hence being
similar to Eosin labeling, in pink, and Dynamic FF-OCT allows visualization of cells cytoplasm
and nuclei (Figure 1 D1, E1), hence giving a similar contrast to Hematoxylin. As one month
separated the training from the start of the blind analysis, providing the pathologists enough time
to forget, the 4 samples used in the training phase were included in the blind analysis. First, a
high resolution static FF-OCT image of the entire specimen (Fig. 1 B3) was used to propose the
diagnosis. Immediately afterwards, the high resolution static and dynamic images of all the ROIs
taken from the sample were presented together with a low resolution version of the static FF-OCT
entire image to locate the ROIs within the full sample.
The histology-based diagnosis was used as the gold standard to measure the accuracy of the
pathologist’s diagnosis performance using the FF-OCT images which is reported in table 2. The
addition of D-FF-OCT improved the performance of the two pathologists both on the measured
sensitivity and specificity, showing that D-FF-OCT highlights tissue features that are closer to the
histology criteria the pathologists rely on to base their diagnosis. However, D-FF-OCT also caused
misinterpretation from both P1 and P2 on two cases that were previously diagnosed correctly using
FFOCT only, which demonstrates the interest of using both modalities, and the drawback of partial
imaging. In total, five wrong diagnosis were counted for each pathologist among which only three
were common to P1 and P2. Therefore, improvement of the pathologists’ performance is expected
with more training or with the help of automatic annotation tools. Nonetheless, isolated invasive
cancer cells are more difficult to visualize with D-FF-OCT compared to histology, which was likely
the cause of some errors of diagnosis, and one particular target of automated algorithms.
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A2

A2 B2

C2

A1

B1

C1

B3

C3

D1

E1 E2 E3

D3D2

Figure 1: Experimental protocol and correlation between FF-OCT, D-FF-OCT, and

histology images. During surgery (Panel A1), breast biopsies (Panel A2) are collected, inserted
into the FF-OCT sample holder (Panel B1), and imaged under the FF-OCT microscope (B2). A
large field static FF-OCT image of the entire biopsy is acquired (Panel B3). 5 to 20 ROIs (dashed
white box) are manually selected and imaged with both static and dynamic FF-OCT.Then, the
biopsy is removed from the sample holder and is inserted into a regular histology cassette (Panel
C1), where it is fixed, sliced, and stained (Panel C2), according to H&E histology standards (Panel
C3). Examples of 2 ROIs (Panels D and E) imaged from sample diagnosed with invasive ductal
carcinoma (IDC) in a healthy and tumoral regions respectively. Static FF-OCT (Panel D1), D-FF-
OCT (Panel D2), and H&E (Panel D3) images of a normal lobule were acquired. Similar images
(Panels E1, E2, and E3) in an IDC area are displayed. Scale bars are 1 mm (B3, C3) and 0.1 mm
(D1-E3) respectively.

Dynamic FF-OCT and machine learning allow an automatic cancer diag-
nosis at mesoscopic scale (2 mm

2) and macroscopic scale (2 cm
2) with up

to 100 % accuracy.

Although the previous results are promising, they required training and time from expert histopathol-
ogists and could be improved by computer-based assistance. Adoption of combined static and
dynamic FFOCT in the clinical workflow thus requires efficient automatic diagnosis to refine, fa-
cilitate and accelerate intraoperative interpretation. Hence, we developed and tested two machine
learning algorithms to perform automatic diagnosis of the individual ROIs (mesoscopic scale -
2mm2), and then aggregated the results from all ROIs of each biopsy to propose a global diag-
nosis of the biopsy (macroscopic scale - 2cm2). Although both algorithms display similar results
described below, they use complementary approaches, and different characteristics that will be
further compared in the discussion.
The first approach was to define features of interest that will be measured automatically in the
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dataset via image analysis. These features are then used in a multidimensional machine learning
model, linear support vector machine (SVM), to separate healthy from tumoral ROIs. We first
selected (see Methods) only the images that have a corresponding static FF- OCT and D-FF-OCT
image from the same ROI (Figure 2A1 and B1), with at least 5 ROIs for each sample. From each
image, we aimed to measure features describing cells and the extracellular matrix organization.
We trained two random forest classifiers (one for static, and one for dynamic FF-OCT) to segment
individual cells and fibers (Figure 2A2 and B2) using the ILastik software [35]. These classifiers
were evaluated by manual inspection and are rather imprecise, but, because many cells and fibers
can be found in each image, we believe the errors are averaged out. The segmented images were
then analyzed using a second filtering step (see Methods) to exclude some misclassified pixels. We
also calculated mesoscale features, by segmenting regions of high-fiber, or high-cell, densities (Fig-
ure 2A3, B3). In total, combining static and dynamic FF-OCT images, we measured 44 features
(listed in the Methods with associated references), including cell parameters (size, intensity), fiber
parameters (density, organization), mesoscale organization, and fat content (Figure 2C) that were
previously characterized as potential cancer biomarkers (see Methods). The histological diagnosis
of the sample was attributed to all the ROIs acquired in this sample. Establishing this ground
truth is rather imprecise because healthy regions can be found in cancerous samples but it spares
the tedious frame by frame annotation work. Also, if healthy regions can be found in cancerous
samples, the opposite should not be found, so that our ground truth has inhomogeneous accuracy
as well. We trained a SVM to classify each ROI (Figure 2C). We used a 5-fold cross validation
and penalized by a factor 3 the possibility of having false positives (healthy samples found as can-
cerous) to balance the dataset inhomogeneity. With a linear SVM, we achieved a mean accuracy
of 88± 3% (sensitivity 89± 4% and specificity 86± 3%) and an area under the ROC curve (AUC)
of 0.90± 0.03 at the individual image level over the 5 models. To classify at the sample scale, the
ratio of ROIs classified as normal versus all ROIs was calculated for each sample (Figure 2D). Seg-
menting samples with a ratio above 0.5 of healthy ROIs resulted in a 100 % accuracy segmentation
between healthy and cancerous samples at the macroscopic scale.
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496 FF-OCT
images

496 D-FF-OCT
images

Fibers

Fat

Cell Areas

Cells

Fiber features

Fat features

Cell features

Mesoscale 

features 

Image classification:
496 predictions.
Accuracy 89%

Sample classification:
39 samples.

Accuracy 100%

LightCT acquisition Image

Segmentation
iLastik

Image

analysis
Matlab: 44 features

Matlab-ClassificationLearner Average 

per sample

Matlab

Linear SVM training

A1 A2 A3

B3B2B1

C D

Figure 2: Feature engineering and SVM classification of breast cancer D-FF-OCT im-

ages. Static (A1) and dynamic (B1) FF-OCT images of a cancerous breast sample are analyzed
using two random forest classifiers (A2,B2). FF-OCT image is segmented (A2) into fibers (red),
cells (green), and fat/holes (blue). D-FF-OCT image is segmented (B2) into cells. Mesoscale fiber
regions (A3) describe the region of high fiber density in the FF-OCT image. Mesoscale cell regions
(B3) describe regions of high cell density in the D-FF-OCT image. The segmented images (A2,
B2) and the mesoscale images (A3,B3) are used to calculate engineered features, such as cell and
collagen fiber characteristics and size and shape of regions of high cell density. (C) Chart summa-
rizing the processing of FF-OCT and D-FF-OCT images in order to classify each image and each
sample using SVM. (D) Proportion of normal areas found for each healthy (blue) and cancerous
sample (red) showing 100 % separability between the two classes. Scale bars: 200 µm.

Our second approach was to explore a purely data-driven approach facilitated by the Deep
Learning paradigm. We chose to fine-tune a pre-existing Convolutional Neural Network (CNN),
namely the VGG16 [36] architecture with weights pre-trained on the ImageNet dataset [37], in
order to directly classify each ROI from the D-FF-OCT images. We modified the VGG16 in order
to adapt its architecture to our problem (see Methods and figure 4C). The network was trained
on full resolution 1440 × 1440 × 3 RGB D-FF-OCT ROIs. In this section, we used in total 373
individual ROIs from 47 samples from which frame by frame annotation was performed by the
histopathologist P2 (34 samples with a tumor, 13 without- See Methods for extended dataset
description). We used the ROIs from 80 % of the samples (37 samples; 286 ROIs, 185 positive
and 101 negative) for training the network, and used data augmentation (see Methods) to obtain
a 6-fold increase of the training set size. The 20 % remaining (10 samples) were used to test the
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A B1 C

B2

Figure 3: CNN classification of breast cancer (A) ROC curves and AUCs of the 5-fold cross
validated models. (B) Tumor probability prediction by the CNN for each ROI in each sample,
either healthy (B1) or tumoral (B2). Each point represents a ROI which ground truth diagnosis
is either healthy (blue) or tumoral (red). The white rectangle represents the aggregated tumor
probability per sample, computed as the 90th percentile of the probabilities of the ROIs in a sample
: (B1) normal samples prediction (B2) tumoral samples prediction.

CNN (see Methods for details) with a 5-fold cross-validation in order to test the entire dataset
ultimately. The CNN outputs a probability for the ROI to be in the tumoral part, and we defined a
threshold at 50% above which the ROI is considered as positive. Using the 5-fold cross-validation,
we obtained a mean accuracy of 89±4% (sensitivity 88±4% and specificity 86±6%) and the area
under the ROC curve (AUC) of 0.92± 0.02 at the individual image level (Figure 3 A-B) over the 5
models. To classify at the sample scale, we concatenated the tumor prediction probability from all
models for all ROIs. For each sample, we computed the 90th percentile of the probabilities of the
presence of a tumor. If the probability is above 50% the sample is considered as cancerous. This
results in a sample-wise accuracy of 94%, sensitivity of 97% and specificity of 85%, translating to 2
false positives and one false negative (Figure 3 C) . Interestingly, the misclassified cases were also
wrongly diagnosed by the pathologists at the blind D-FF-OCT assessment.

Dynamic FF-OCT with CNN, activation maps, and adequate data anno-
tation allow reducing the spatial scale of the segmentation

So far, the spatial resolution of the predictions were limited by the size of the chosen ROIs of
1.3 × 1.3mm2. This spatial sampling might be a limiting factor in applications where the tumor
margins need to be drawn to make sure the entire tumor was removed. In this section, we propose
and compare two different strategies to increase the spatial resolution of the predictions.
First, with both feature engineering and CNN classification, we separated each ROI into several
smaller thumbnail images with a possible overlap. We evaluated different trimmings starting from
dividing each ROI into 4 subregions to dividing into 256 subregions. The difficulty of this approach
was that the ground truth was not defined at this scale, and we had to apply the histopathologist
expert diagnosis (at the sample level in the case of feature engineering, and at the ROI level in the
case of the CNN classification) to all the subregions. It likely increases the ratio of images with false
labeling as the size of the thumbnail image decreases. We indeed observed the prediction accuracy
decrease at both the thumbnail image level and the macroscopic level when all the predictions were
aggregated (see supplementary document). The decrease is more important as the subregion size
becomes smaller, ultimately leading to a random classification. The CNN approach also showed a
reduced accuracy of 76 % when the subregion size was reduced by a factor 5 (see supplementary
file).

To test the hypothesis that the limiting factor to increase the spatial resolution and draw
boundaries between regions of different physiological states is the correct image labeling at smaller
scale, we performed a proof-of-principle experiment in retinal explants imaged with a custom high
resolution FF-OCT microscope (see Methods). Here, we aim to draw the boundaries between
retinal layers using a modified CNN. Retinal samples were used because D-FF-OCT can efficiently
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detect all retinal cells [38], and they are easy to annotate since all layers have significantly different
organizations and cell content. 5 different mouse retinas were imaged with D-FF-OCT among
which, one was used to create a training set (Figure 4A) by annotating 395 random thumbnail
images (27x27 µm2) using their corresponding retinal layer. The annotations defined 5 classes:
ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer nuclear
layer (ONL) and photoreceptor inner and outer segments (IS/OS). The test set was created by
annotating manually 292 random thumbnail images on a second retina in order to avoid over-fitting
problems. In order to validate the trained CNN the 3 last retinas were used, especially on folded
areas were several layers appear on each image (figure 4B). To do so, the input images were cropped
in 27 × 27µm2 thumbnail images with an overlap of 20 µm between images in order to obtain a
7 × 7µm2 resolution for the final classification map. Each thumbnail image was then classified
using the trained CNN resulting in a coarse classification of the input images ( Figure 4B1, B2,
B3 in respectively the GCL, and two depths at the frontier between the INL and the ONL). The
accuracy reached 92 % on the 3 held out retinas (that were not used during training and testing),
and the CNN only failed to make a good prediction in low signal areas (corresponding to deep
regions and weakly reflective cells). This suggests that the high resolution determination of tissue
boundaries, including tumor margins could be performed efficiently as long as an accurate and
time-consuming labeling at the microscopic scale is performed.

Finally, because an accurate labeling at the microscopic scale is not always possible and mean-
ingful, as well as to increase CNN interpretability, we developed another strategy based on the
computation of activation maps of the CNN. Typically, in CNNs, convolutional layers naturally
retain spatial information, whereas fully-connected layers usually present at the end of the neu-
ral network performing the classification task does not, causing the loss of spatial information.
However, this spatial information can be restored by locating the image area that triggered the
CNN to decide which prediction to make (Figure 4C). In practice, we used the Grad-CAM tech-
nique [34] (see Methods). This results in a coarse localization of the class presence (here tumoral
areas) in the initial ROI (figure 4D1), without the need for annotation at smaller scale. Positive
and negative attention maps can be computed, showing either cancerous cells (figure 4D2) that
invaded the stroma, or healthy lobules (figure 4D3). Besides, building attention maps can also
serve other purposes, including verifying that the model is not biased, and drawing attention to
specific parts of the image to assist the surgeon to classify the sample. The activation map has
a spatial resolution of the same size as the last convolutional feature map of the network (here
45× 45µm2).
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Figure 4: Proposed strategies to reduce the spatial scale of the predictions. A first
strategy simply proposes to reduce the size of the starting images, but requires precise labeling
at the microscopic scale. We could only achieved this labeling in mice retinas (Panel A), where
retinal layers are well organized and show distinct and clearly separable morphological features.
Using a modified CNN, we could draw the boundaries between retinal layers in folded retinas where
several layers overlap at the same depth (Panels B1, B2, B3 at different depths from retinal surface
- 20, 70, and 80 µm respectively). A second strategy using CNN is to propagate the gradients
from the last convolutional layer using the GradCAM algorithm (Panel C) in order to retrieve
the spatial information from the CNN. From a ROI showing healthy breast lobule surrounded by
isolated infiltrating cancerous cells, correctly predicted as cancerous with 97 % confidence by the
CNN (Panel D1), the tumor positive attention map (panel D2) focuses on the regions with the
infiltrating cells, while the the tumor negative attention map (panel D3) shows healthy regions,
including the healthy breast lobule. Scale bars are 25 µm in A, 50 µm in B and 200 µm in D.
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3 Discussion

To summarize, we demonstrate the potential of combining static and dynamic FF-OCT to per-
form an accurate label-free and nondestructive histopathological diagnosis in breast samples, either
by manual or automatic image interpretation. Interestingly, static FF-OCT offers a view of the
extracellular matrix and tissue organization of the sample, while D-FF-OCT reveals cells within
this matrix. The combination of both techniques hence produces images similar to H&E staining.
Together with another recent clinical study in breast samples [33] as well, the pilot study presented
here really demonstrates the strength and potential of using FF-OCT for histopathology and in-
traoperative diagnosis. Therefore, we additionally developed two methods of image processing and
statistical learning and successfully brought more specificity and interpretability to these images.
We believe this work is interesting because this is the first time, to our knowledge, that machine
learning algorithms are developed for D-FF-OCT. In the histopathology field, many machine learn-
ing algorithms have been developed on traditional stainings, but applying them to FFOCT aims
to facilitate the introduction of a high-potential imaging technique with a similar, but label-free
and richer contrast mechanism in the field. In the end, although these results are preliminary and
should be confirmed on bigger cohorts and different cancer types, we demonstrated that automatic
diagnosis with FF-OCT compares well with manual diagnosis given by histopathological experts,
and should increase its performances as more and more precise datasets will be generated.

In this study, we developed and tested two machine learning algorithms which strategies and
outputs are complementary. If both techniques are hard to compare quantitatively because of
deviations on the dataset content and corresponding labeling, they are likely to target different
applications and datasets. The feature engineering (FE) approach is based on the computation of
known meaningful metrics such as collagen fiber characteristics, or cell morphological parameters,
that could be used directly on top of the classification. Hence, it is likely to be more appropriate for
exploratory diagnosis, where the quantification of these metrics can discriminate between different
diagnostics (e.g. different tumor types). Because the FE approach relies on averaging cell and
fiber parameters, this approach would converge more easily if the tumor is homogeneous with such
parameters centered around well defined values. In this study, we realized that the computation of
these metrics is still rather imprecise (e.g. it is extremely complicated to make sure that 100 % of
the cells are segmented and that their diameter is correctly sampled at the optical resolution). Be-
sides, some parameters (e.g. extracellular matrix disorganization) are not necessarily well defined
at the microscopic scale. So that the FE approach did not perform well when the spatial scale is
reduced. This is expected given that the FE approach is quite similar to the reading method of
the histopathologist, who most often requires reviewing large portions of the sample to provide an
accurate diagnosis. In general, improving the metric computation, defining new useful metrics, and
increasing the spatial resolution might help to increase the sensitivity of this approach. Among
others, the FE approach could be greatly improved if the aspect of cell nuclei and the number of
mitotic cells, key metrics in standard histopathology [39, 40], could be automatically quantified.
In previous work, we demonstrated that D-FF-OCT performed at high resolution is able to mea-
sure the aspect and dynamics of nuclei [32,38] and measure the mitotic state [31], suggesting that
this measurement could be automated. Nonetheless, increasing the resolution decreases the field
of view and thus increases the imaging time if a full sample is acquired. The best compromise
between resolution (and more precise computation of cell metrics) and imaging time should be
defined depending on the application.
Our second strategy was based on supervised learning and convolutional neural networks (CNN)
and we demonstrated this approach could be used to increase the spatial resolution of the predic-
tions if adequate labeling is obtained. The CNN approach works without a priori knowledge of the
tumor biology, and the same network structure can be applied to any other D-FF-OCT dataset
as long as sufficient annotation is available. The CNN would reach better accuracy with a greater
dataset size and homogeneity. It would therefore be more recommended for large and homoge-
neous datasets, or when drawing the tumor margins with high resolution is required. Nonetheless,
the CNN approach is less interpretable, and because it does not rely on any general feature of
tumors, it is likely that a new network should be retrained from scratch for any new tumor type,
while the FE approach could potentially identify general biomarkers. We also believe that the
Grad-cam algorithm that defines attention maps, i.e. subregions that were the most meaningful
for the network to choose a diagnosis, could be an important help to rapidly draw the attention of
surgeons or histopathologists on the regions of interest. Because the CNN approach is unbiased as
compared to human interpretation, the use of attention maps could also improve our knowledge of
tumorous processes by pointing out small details as potential tumor markers.
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Currently, one of the key limitation is that the D-FF-OCT image of large samples would require
about half an hour of acquisition, while we aim to keep acquisition time below 10 minutes. Within
this time constraint, we had to image only a few ROIs per sample. This partial imaging procedure
suffers from sampling bias if the ROIs are selected randomly. However, as static FFOCT imaging
is faster, it could be used as a first row of interpretation and drive the selection of the ROIs where
to apply D-FF-OCT for further investigation. For future studies, we aim to develop a first CNN
trained on static FF-OCT image of the whole sample [41] to automatically define a few ROIs where
the D-FF-OCT will be acquired to increase the accuracy of the diagnosis. We can also expect that
progress in camera technologies and in real time processing of the D-FF-OCT image via GPU
computing will help reducing the imaging time and will soon enable to record the D-FF-OCT of
the entire sample in a few minutes.

Overall, we demonstrated that the computer-aided combination of static and D-FF-OCT reaches
the standards of breast histopathology, while being nondestructive, label-free, and free from freez-
ing and slicing artefacts. We forecast two main contributions in histopathology. First, because the
two automated methods produce a probabilistic prediction (which we here mostly thresholded at
50 % to perform a prediction), it is easy to obtain a confidence measurement on the prediction.
Therefore, computer-aided FF-OCT could reduce the workload of pathologists by automatically
sorting out cases with high confidence predictions and concentrate their attention to samples, or
ROI, with less confidence for manual inspection. Second, it could improve intraoperative diagnosis
during organ preserving surgeries and replace expensive, time consuming, and less precise frozen
sections as it provides a fast and accurate enough diagnosis, while preserving the samples for later
analysis. More importantly, we believe the nondestructive aspect of FF-OCT is fundamental to
go even beyond standard histology, because it allows combination with other techniques, including
molecularly-specific optical techniques (such as fluorescence or Raman spectroscopy), or destruc-
tive tumor genotyping. Multimodal imaging could thus identify both the spatial organization of
a tumor and its molecular or genetic characteristics. As the cells are still alive during FF-OCT
imaging, and as D-FF-OCT can monitor cell metabolism, an interesting individualized follow-up
approach would be to perform chemotherapy treatment on the extracted biopsy and evaluate the
response from the metabolic changes of the cells within. Depending on the response of the biopsy,
it could orient the use of one molecule instead of another before starting to treat the patient. As
histopathology is being moved by digital transformation, computer-aided FF-OCT must quickly
develop and confirm its potential on larger datasets and various tumor types to be part of the
transformation.
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Methods

3.1 Description of the breast datasets and ground truth definition.

In total, 35 patients admitted at Gustave Roussy breast surgery department between June and
August 2017 for a mastectomy or lumpectomy were enrolled in this study, from which 51 samples
were collected. Once the surgical specimen arrived at the pathology department, when confirmed
that tissue extraction would not impact standard processing of the specimen, none, one or several
biopsies were taken in the tumorous area and none, one or several biopsies were taken far from the
tumorous area to sample healthy tissue. The heterogeneous tissue sampling resulted in 37 tumoral
samples, and 14 healthy biopsies according to the histology diagnosis. The most represented cancer
type was Invasive Ductal Carcinoma, but three other types were reported (See Table 3).

Table 3: Study set composition according to histology-based diagnosis.

Main Diagnosis Number of samples
Healthy 14
Invasive Ductal Carcinoma 28
Invasive Lobular Carcinoma 5
Ductal Carcinoma In Situ 3
Lobular Carcinoma In Situ 1

For all samples, the static FF-OCT image of the entire biopsy (typically 2× 1cm2) is acquired
first. Then, on average 11 regions of interest (ROIs) corresponding to a single field of view of
1.3 × 1.3mm2 were manually selected by the person in charge of imaging to be representative of
the different areas of the biopsy. Unless an error or oversight was made by the imaging person, one
static FFOCT image and one dynamic FF-OCT (D-FF-OCT) image were acquired at each ROI
and the raw data of the D-FF-OCT images was saved to allow custom processing, as required in the
feature engineering method. In total, 540 pairs of static and dynamic FF-OCT were acquired from
the 51 samples, among which 500 were used for the blind analysis at the sample scale and later
annotated by pathologist P2 at the ROI scale. The performance of the pathologists’ interpretation
based on the FF-OCT images was measured as referred to the standard H&E histology-based
diagnosis of the same sample. As explained hereafter, only subsets of the original dataset could be
used for each automated analysis.

For the feature engineering analysis, we selected the images under 3 criteria. A sample was
excluded if less than 5 ROIs had been acquired with complete data. Furthermore, for each ROI, one
static and its corresponding dynamic FF-OCT image should be available (without translation), as
well as the raw D-FF-OCT data. It resulted in 496 static and 496 dynamic FF-OCT images from
40 samples (31 tumoral, and 9 healthy). In the feature engineering analysis, the sample histological
diagnosis is passed on to all the ROIs to define the ground truth for each ROI, resulting in a ground
truth with some errors.

In contrast, the CNN approach only relies on the dynamic FF-OCT images. Nonetheless, in
order to obtain convincing results with this approach, histopathologist expert P2 was asked to
label all the individual dynamic FF-OCT images based on his interpretation and correlation with
the H&E histological slide. We converted the expert P2 annotation into a binary label indicating
the presence of a tumoral part in each ROI. However, not all images could be labeled with high
confidence, so that the dataset was reduced to 373 dynamic FF-OCT images from 47 samples (34
with a tumor, 13 without).

FF-OCT setups

In this study we used two different FF-OCT systems. The first one, used for breast biopsy imaging,
is a commercial Light-CT scanner, manufactured by LLTech SAS (Paris, France). It is a Linnik
interferometer equipped with microsope ojectives (Olympus, UMPLFLN 10XW) used immersed
in silicone oil and a broadband LED source (104 nm full width at half maximum, 565 nm central
wavelength), thus providing micrometer 3D resolution. X, Y and Z motorization allows axial and
transverse scanning. FF-OCT acquisition is performed using 4-phase modulation induced by a
piezoelectric actuator controlling small translations of the reference mirror. As a consequence, a
FF-OCT single field of view requires the acquisition of at least 4 images and typically 20 images
with 5-times accumulation. Including scanning time, the FF-OCT imaging speed of the Light-CT
scanner is 1min.cm−2. For D-FF-OCT acquisition, the mirror position is not modulated, and the
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system records the fluctuations arising from the motion of scatterers inside the coherence volume
over a few seconds. Typically, 1000 images are acquired. Then, the time series of each pixel is
processed by FFT and results in a RGB value assignment per pixel, where the R-value is the FFT
summed contribution over the high frequency range (5.4 - 25 Hz), the G-value is the FFT summed
contribution over the medium frequency range (0.6 – 5.4 Hz), the B-value is the (0 – 0.6 Hz).
Including scanning time, the D-FF-OCT imaging speed of the Light-CT scanner is 14 min.cm−2.
Saving raw data further lengthen the D-FF-OCT imaging duration. During the study, as several
biopsies could be resected at the same time, it was important limiting the imaging duration to
reduce the elapsed time between resection and imaging so that the tissue freshness was preserved
and good quality D-FF-OCT signal was guaranteed. This is why we performed ROI sampling
instead of acquiring the whole D-FF-OCT image.
The second system, used for retinal sample imaging, is a laboratory setup, which consists of a
Linnik interferometer where both arms contain identical microscope objectives (Olympus UP-
lanSApo 30x), see Fig. 5(a). Both sample and reference arms are mounted on translation stages
(X-NA08A25, Zaber Technologies) for optical path length matching and axial scanning, respec-
tively. In addition, the reference mirror is mounted on a piezoelectric translation stage (STr-25,
Piezomechanik) for phase-shifting. Indeed, in order to construct an FFOCT image, at least two
frames are acquired with different phase modulations and appropriate phase-shifting algorithms
are used to build the final image [25, 42]. This setup is purposely built in an inverted configu-
ration where the sample is directly placed on top of a coverslip and imaged from beneath with
high-numerical-aperture oil-immersed objectives [42]. In this configuration the sample is held mo-
tionless by gravity and is naturally flattened against the coverslip. The characteristics of both
setups are summarized in Table 4.

Figure 5: PZT: piezoelectric translation - BS: Beam splitter. Experimental D-FFOCT setup in an
inverted configuration optimized for tissue imaging. 512 images are acquired by the CMOS camera
(a). The resulting (1440, 1440, 512) 3D tensor (b) is then processed independently for each pixel
(c).

Table 4: Setups characteristics.

Setup Lab. setup Fig. 5(a) LightCT (LLTech SAS)
Datasets Retina Breast

Transverse resolution [µm] 0.4 1.2
Axial resolution [µm] 1.4 1

Field of view [µm× µm] 390× 390 1260× 1260
Camera Framerate [Hz] 150 150

Acquisition protocol and signal processing to construct D-FF-OCT im-
ages for feature engineering and retinal imaging.

In order to construct a D-FF-OCT image, a stack of 512 direct images (1440 × 1440 pixels)
is acquired (Fig. 5(b)) using custom software [43] where each pixel is processed independently
(Fig. 5(c)). In the first report on D-FF-OCT, grayscale dynamic images were computed using
a running standard deviation averaged over the whole acquisition [44]. Computing the intensity
standard deviation in time removes the signals from highly scattering stationary structures such
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as collagen and myelin fibers and enhance signals arising from cells.
Since recently, we calculate color images [31] in the HSV (hue-saturation-value) color space in
which, contrary to the red-green-blue (RGB) colour space, it is possible to assign a physical property
to each of the three channels for quantitative visual interpretation. The idea is then to attribute
a colour for each pixel depending on the characteristic time period or frequency of the dynamic
signal. Each individual pixel can be thought of as a sum of subcellular random walks with a typical
covariance function depending on the motion type (e.g., diffusive, hyperdiffusive).
We started by computing the power spectrum density (PSD) using Welch’s method for each pixel
and then used an L1 normalization on each PSD. Then, the hue channel, was computed as the
mean frequency (which is simply the dot product between the normalized PSD and the frequency
array). The values were then inverted and rescaled between 0 and 0.66 to go from blue (low
frequencies) to red (high frequencies).
Saturation was computed as the inverse of the normalized PSD bandwidth. As a consequence,
the saturation channel carries the frequency bandwidth information. The saturation map is then
inverted and rescaled between 0 and 0.8. The broader the spectrum, the lower the saturation.
White noise has a broader bandwidth and will therefore appear greyish instead of coloured.
Finally, the value is calculated using the cumulative sum on small time windows to improve the
signal to noise ratio [45]:

Īdyn(r) =
1

N

∑

i

max
(

|CumSum
(

I(r, t[i,i+τ ])− Ī(r, t[i,i+τ ])
)

|
)

(1)

where CumSum is the cumulative sum operator, N is the total number of sub-windows, τ is the
sub-windows length so that t[i,i+τ ] is the time corresponding to one sub-window and Ī(r, t[i,i+τ ])
is the signal mean on the sub-window. Images were computed with τ = 16.
The resulting HSV image is finally converted into a RGB image for display purposes.

H&E histology preparation and imaging

. All imaged samples were fixed in 10 % buffered formalin, embedded in paraffin, sectioned at 3
µm, and stained with hematoxylin, eosin, and saffron (HES).
Histological sections were scanned at 20× magnification with a NanoZoomer C9600 scanner (Hama-
matsu Photonics, Massy, France) for interpretation and archiving. For the correlation, histopathol-
ogist P2 together with a FFOCT technology expert from LLTech, decided on the angle to apply to
the histology image to obtain the same orientation as the FFOCT large-field image. Then, well-
oriented histology image was displayed on one screen while the ROIs were consecutively displayed
on a second screen. Both histology and FFOCT images were zoomed in and out to establish the
correlation.

Segmentation of cells and fibers using iLastik

The first step of the engineered features analysis on breast samples was to perform cell and fiber
segmentation in the images, using iLastik, a free segmentation software [35]. iLastik is a relatively
intuitive machine-learning tool based on random forest classifiers. The labels are manually drawn
on the training images in a user interface. Each pixel neighborhood is characterized by a set of
generic nonlinear spatial transformations calculated by the software and applied to each channel
(R, G, or B) of the D-FF-OCT image. The same transformations were applied to the greyscale
FF-OCT images. The following image transformations empirically gave the best contrast in our
case:

1. Gaussian smoothing with a increasing standard deviation of 0.3, 0.7, 1.0, 1.6, 3.5, 5.0.

2. Laplacian calculation after Gaussian smoothing with a standard deviation of either
0.7, 1.0, 1.6, 3.5, or 5.0. This computes the edge of the objects.

3. Difference of Gaussians with a standard deviation of either 0.7, 1.0, 1.6, 3.5, or 5.0. It
also computes the edge of the objects, by subtracting two images after Gaussian smoothing
with almost similar standard deviations and is supposed to approximate a derivative.

4. Hessian of Gaussian Eigenvalues with a standard deviation of either 0.7, 1.0, 1.6, 3.5,
5.0. It computes the local texture of the image by calculating the determinant of the Hessian
matrix.
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In total, for all the D-FF-OCT images in the dataset, 21 transformed images are calculated
per color, hence 63 grayscale images, plus 21 images for FF-OCT images. For both FF-OCT and
D-FF-OCT datasets, the training step was performed on 8 images (5 from cancerous samples and
3 from healthy samples). For D-FF-OCT, we defined three classes: Cells, Between Cells, Not
Cells (Fibers, Noise, Fat, etc...), out of which only the Cell class was used. A few pixels corre-
sponding to each class are drawn manually, as shown in figure 6A. The best practice is to draw a
small number of pixels to minimize constraints, and to draw pixels at the interface between classes
(meaningful pixels). The classifier (figure 6B) should be created as soon as a few pixels of each
class are annotated (typically a few cells, and a few spaces between cells in the first image), and
then finely tuned by manually changing the class of misclassified pixels in all 8 images. The whole
training procedure can last for around 30 minutes, and is not highly accurate since a few cells and
cell contours are missed. High accuracy is not necessary though given than the expected outcome
is not a real metric of cell sizes or shapes, but how these parameters compare from one sample to
another.
Segmentation of FF-OCT was performed similarly, although we used 4 classes: Fibers, Around
Fibers, Cells (and Noise), Fat (and holes/ slicing artifacts). The Around Fibers calss is used to be
able to segment individual fibers, and not only the regions of high fiber density. The Cells class
contains most of what is not fibers, including extracellular matrix and cells. We later split this
data into bright pixels (50% brightest pixels), most likely forming the extracellular matrix, darker
pixels (between 25% and 50% brightest pixels)being part of cells, and we excluded the darkest
pixels (¡25%). The Fat class segments dark pixels in circular regions, as observed in fat regions of
the breast (Figure 2A1 and A2 in blue). Unfortunately, it also finds a few holes in the sample,
caused by slicing, folding artifacts, or bubbles.
In total after these learning steps, each FF-OCT and D-FF-OCT image can be segmented in about
10 seconds.

20



B

A

Figure 6: Machine learning based segmentation with iLastik on D-FF-OCT images. Panel A shows
the user interface of iLastik, and illustrates the learning procedure. Pixels corresponding to each
class of interest are manually drawn (opaque pixels). To start with initial prediction, a small
number of pixels in the first image were drawn, and then the prediction is refined step by step by
correcting misclassified pixels. Panel B shows the segmentation result after the learning process.
For DCI images, only the cell segmentation is used (class 1 - in yellow here), but the others two
classes were used to segment the cells with higher precision.

Further image analysis and feature calculation

The two sets of segmented images were then opened and analyzed using image processing (Matlab,
MathWorks). From the D-FF-OCT images, we target individual cells, and some of their morpho-
logical parameters that we expect to be modified in a tumor, such as cell density [46], cell size [47]
or shape [48]. We also measured their light scattering properties [49], and their motility [48].
From iLastik segmented images, we detected and characterized all 8-connected objects using the
regionprops function (Matlab, Image Processing Toolbox), which we estimate to correspond to
single cells (See figure 7. We additionally filtered all regions with an area below 20 pixels (20
µm2, corresponding to a cell radius below 2.5 µm) to filter out some classification errors. We then
extracted each object diameter, eccentricity, mean intensity on each channel, the spatial hetero-
geneity of intensity, as well as the total cell density. For each image, we could obtain hundreds of
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measurements for each of these parameters, but in order to have a reasonable number of features
for the SVM analysis, we only used the average and standard deviation of the obtained histograms.

A) Cell segmentation on DCI image 

B) Fiber and cell segmentation on FF-OCT image 

A1 A2 A3

B1 B2 B3

Figure 7: Cell and fiber segmentation output. Panel A shows the cell segmentation using iLastik
and Matlab. From original DCI image (A1), after iLastik segmentation, the first class (cells) is
selected, and separated in independent regions with Matlab (A2). Here, the increasing color from
blue to red gives the number of the identified region (from 1 to 3951 here).Each region of interest
(ROI) can be analyzed independently, and only the regions of area above 20 pixels are kept and
considered as cells. The obtained mask image is multiplied by the D-FF-OCT image to obtain
panel A3. Panel B shows the fiber and cell segmentation results on FF-OCT image. The original
image (B1) is processed by iLastik and classified between fibers, pixels between fibers, and cells.
The first and third classes are extracted and filtered using Matlab to obtain fibers (B2) and cells
(B3)

Additionally, we measured what we called mesoscale cell features to have a measurement of
the spatial organization of cells at an intermediate level. For example, in healthy breast samples,
relatively high cell density can be found in acinii, but cells are highly organized in a rather circular
region with a central lumen. In Ductal carcinoma In Situ (DCIS), the acinii show a modified
shape with a progressive invasion of the central lumen [50]. It is therefore important to quantify
whether the high cell density regions contain small, well organized cells (as in healthy samples) or
extended cells with an abnormal shape. To do this, we used the D-FF-OCT segmented image, and
convolved it with a 60 pixel wide square, which thus gives an image of local cell density (Figure 2).
From this map, we segmented all pixels with a local density above 0.05 (arbitrary), and detected
all 8-connected objects. We then extracted the number of high density areas, their surface, and
eccentricity. We finally counted the number of all cells whose position are outside these regions of
high cell density, aiming to track for tumor cells migrating outside the ducts.

From the FF-OCT images, we mostly target the stromal collagen fibers since their organization
[51] and light scattering properties [52] are expected to change in cancerous samples. We also
measured some properties linked with cell regions and fat regions to add information to segment the
images. We first used the segmented images corresponding to fibers. We detected and characterized
all 8-connected objects, corresponding to single fibers, and filtered out all regions of area below
100 pixels. We measured each fiber area, eccentricity, orientation, and intensity, as well as the
fiber density, and extracted the mean and standard deviation of each parameter in an image. We
then calculate mesoscale fiber features by convolving the segmented fiber image with a 60 pixel
wide square, and by segmenting all pixels with local fiber density above 0.1. We kept the area,
eccentricity, intensity, and number of these regions of high fiber density. We then used the image
segmented by cell region to calculate the intensity histogram in these regions. We finally used the
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segmented image of fat to calculate the proportion of fat in the image.

All these features are summarized in the table 5:

SVM training

From the previous section, we obtained a matrix with 44 features for all 496 images in our dataset.
The idea behind the SVM classification is to find a (N-1) dimensional hyperplane that best sepa-
rates the dataset between healthy and cancerous images. If none of these features alone can clearly
separate the dataset, the SVM will find a linear combination of all these parameters that best
separates the dataset.
When a feature was missing (e.g. if no region of high cell density was found in a ROI), the value
0 was attributed.
For training the SVM, we attributed the histological diagnosis to all images of each sample. We
could easily test several models to perform the image classification (Matlab Classification Learner
toolbox, MathWorks), but decided to keep a simple linear SVM. As mentioned in the main text,
the dataset labeling is highly asymmetric; first, we have about three times more cancerous images
than healthy images. Second, images from healthy samples should all be healthy, but images from
cancerous samples can be either healthy or cancerous. In order to reduce overfitting (e.g. always
predicting cancer should give 75% accuracy), we made the SVM learning asymmetric by penalizing
the false positives by a factor 3.

Tumor detection using fine-tuned CNN

Description of the CNN architecture.

The CNN architecture is similar to the VGG16 [36] architecture with weights pre-trained on the
ImageNet dataset [37], but with small modifications. We removed the classifier part and added
a global average pooling (GAP) layer followed by a fully-connected layer of 1024 neurons and an
output neuron with sigmoid activation. The GAP layer allows network inputs of different sizes
since it reduces each activation map to a single value, it results in a 512-dimensional vector bottle-
neck between the feature extracting convolutional layers and the dense classifier layers. Another
advantage of GAP is the reduction of network parameters which improves generalization and is
particularly useful in the case of small scale data sets. Following the same reasoning we chose only
one fully-connected layer. With the presented configuration we obtain a network with approxi-
mately 15 million parameters of which 500 thousand correspond to the classifier and the rest to
the pre-trained weights.

Training

The network was fine-tuned by minimizing the binary cross-entropy loss using the stochastic gra-
dient descent (SGD) optimizer with a learning rate of 1e−4 and momentum of 0.8 on mini-batches
of size 3 (due to memory constraints).

Since we opted for fine-tuning, training time is significantly reduced compared to a training
from scratch approach: consequently the phenomenon of overfitting occurs much faster. To avoid
training beyond the optimal model, we have set two stopping conditions: (i) validation loss has
not improved in the last 100 epochs or (ii) training accuracy has already reached 100%. With this,
training lasts around 200 epochs and the optimal model is found somewhere between epoch 80 and
150 (depending on the data split and initialization, so depending on the random state). Training
time is around 6.5 minutes per epoch, and 20 hours per experiment. Thus conducting a 5-fold cross-
validation experiment took around two and a half days (64 hours); note that in these delays we also
included the lag introduced by logging performance metrics, as well as the overhead introduced
by reading the image batches from the disk, and not only training (i.e. forward and backward
propagation). Experiment tracking was made possible with the software Neptune (Neptune.ai),
which helped organize and compare the performance of over 200 experiments conducted for this
project, therefore allowing us to choose the optimal hyperparameters in an exploratory fashion.

Data

The network was trained on full resolution 1440× 1440× 3 RGB fields of view with binary labels
indicating the presence or absence of tumorous tissue, obtained from the pathologist’s refined an-
notation per ROI. An important detail is that in tumorous ROIs, there might be portions of the
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Table 5: Calculated features from image analysis of static and dynamic FF-OCT images. For some
features (e.g. cell diameter), a distribution is first calculated, but the extracted features are the
mean and standard deviation (STD) of the distribution.

Number Type of feature Description of the feature Additional comment

1 & 2 Cell features from
D-FF-OCT

Diameter of segmented cells (Mean
and STD)

Measure Cell size

3 & 4 Cell features from
D-FF-OCT

Eccentricity of segmented cells (Mean
and STD)

Measure Cell shape

5 Cell feature from
D-FF-OCT

Total cell density Density =
Nseg.cells

Npixels

6 & 7 Cell features from
D-FF-OCT

Average intensity within each seg-
mented cell (Mean and STD)

Scattering is expected to increase in
cancerous cells

8 Cell feature from
D-FF-OCT

Mean intensity of the red channel of
all pixels classified of the cell class

Fast dynamics : Cancerous cells are
expected to have increased metabolic
activity, hence faster and stronger
fluctuations.

9 Cell feature from
D-FF-OCT

Mean intensity of the green channel
of all pixels classified of the cell class

Intermediate dynamics

10 Cell feature from
D-FF-OCT

Mean intensity of the blue channel of
all pixels classified of the cell class

Slow dynamics

11 & 12 Mesoscale features
from D-FF-OCT

Local cell density in regions of high
cell density (Mean and STD)

High cell density : At least 5% of the
surrounding pixels belong to the cell

class.

13& 14 Mesoscale features
from D-FF-OCT

Area of regions of high cell density
(Mean and STD)

In healthy samples, the lobules are
high cell density regions but they are
well organized and small.

15& 16 Mesoscale features
from D-FF-OCT

Eccentricity of regions of high cell
density (Mean and STD)

17 Cell feature from
D-FF-OCT

Number of cells measured outside re-
gions of high cell density

Migrating cells should not be found
in healthy samples.

18-21 Cell features from
D-FF-OCT

Spatial STD of intensity and STD
normalized by intensity) within each
segmented cell (2 means and 2 STDs)

Measure a the intensity heterogeneity
(STD(I) and STD(I)/I) inside each
cell.

22 & 23 Fiber features from
FF-OCT

Diameter of segmented fibers (Mean
and STD)

Measure collagen fiber size

24 & 25 Fiber features from
FF-OCT

Eccentricity of segmented fibers
(Mean and STD)

Measure collagen fiber shape

26 & 27 Fiber features from
FF-OCT

Angular distribution of segmented
fibers (Mean and STD)

Measure collagen fiber organization,
possibly altered in cancerous samples.

28 Fiber features from
FF-OCT

Density of segmented fibers Possibly increasing in cancerous sam-
ples

29 & 30 Fiber features from
FF-OCT

Mean intensity of each segmented
fiber (Mean and STD)

Scattering of the extracellular ma-
trix is possibly increasing in cancer-
ous samples.

31 & 32 Cell features from
FF-OCT

Mean and STD of intensity of all pix-
els that belongs to the cell class.

Scattering of cancerous cells are pos-
sibly increasing.

33 Cell features from
FF-OCT

Mean intensity of the 25% brightest
pixels that belongs to the cell class.

34 Mesoscale features
from FF-OCT

Number of pixels belonging to the re-
gions of high fiber density

35 & 36 Mesoscale features
from FF-OCT

Mean intensity within each region of
high fiber density (Mean and STD)

37 & 38 Mesoscale features
from FF-OCT

Area of each region of high fiber den-
sity (Mean and STD)

39 & 40 Mesoscale features
from FF-OCT

Eccentricity of each region of high
fiber density (Mean and STD)

41 Mesoscale features
from FF-OCT

Number of regions of high fiber den-
sity

42 Fat features from
FF-OCT

Average intensity of all pixels belong-
ing to the Fat class

43 Fat features from
FF-OCT

Number of pixels belonging to the Fat
class

44 Cell features from
FF-OCT

Mean intensity of the 25%-50% least
bright pixels that belongs to the cell

class.
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image resembling healthy tissue.

The dataset partitioning into training and test sets was performed in a stratified manner
with respect to the global per-sample diagnosis ; in terms of size, 80% of the samples (ntrain =
37, ntrain−tumor = 27, ntrain−normal = 10) used for training and the remaining 20% (ntest =
10, ntest−tumor = 7, ntest−normal = 3) for evaluating the performance. However, this stratification
strategy does not ensure the exact same distribution of classes at ROI level, as each sample has
a different number of acquired ROIs; this results in 286 fields of view for training (185 positive
and 101 negative) and 87 for testing (60 positive and 27 negative). To compensate for the class
imbalance, an importance penalization of the loss function was applied for each ROI, which is also
known in the literature as class weight. In our case the healthy ROIs are less numerous so they
will have a higher weight (i.e. 1.5 for healthy ROIs and 0.75 for cancerous ROIs).

In terms of data augmentation i.e. artificially increasing the number of data points by applying
relevant transformations to the existing data, we applied contrast stretching, with 3 look up tables
per FOV, together with vertical and horizontal flips, which expanded the training set by up to 6
times.

Quantitative Performance

With a probability threshold set at 50% for ROI diagnosis, we obtained a per-FOV accuracy of 90%
which corresponds to 92% sensitivity and 85% specificity. Another metric that is worth mentioning,
due to its lack of dependence on the probability threshold, is the area under the ROC curve (AUC),
which is equal to 0.94. For per-sample metrics, out of 10 samples in the test set 7 of which were
cancerous and 3 healthy, there was only one misclassification, which is a normal sample predicted
as tumorous; which translates to 90% accuracy, 100% sensitivity and 67% specificity

To aggregate the per-ROI predictions to a global per-sample diagnosis, assigning the maximum
tumor probability prediction to the sample would be the most straightforward approach. This
would translate to ”if a sample contains at least one ROI with a tumor, then the sample is
cancerous”. This approach is however overly sensitive to outliers. On the other hand, the average
or median are not suitable either because a bimodal distribution is expected (i.e. a sample most
likely contains both healthy and tumorous FOVs), in other words small tumorous areas would be
missed, or cancel out good prediction. Therefore, we chose the 90th percentile as a good trade-off
between the mean and the maximum aggregations. This would translate into the probability value
that 90% of the ROIs fall into.

In order to validate the method and ensure model correctness, we ran a 5-fold cross-validation
experiment with the same hyper-parameters and trained 5 models on partitions of 4/5 of the
samples and tested their performance on 1/5 of the samples, respectively, hence keeping the same
80/20 train/test ratio at each run.

GradCAM algorithm and attention maps.

The receptive field represents the zone (or patch) of the input image that a CNN feature is computed
upon. In classical convolutional arhictectures, like VGG16 used in the present work, that are
composed of convolutional and pooling layers, the size of the receptive field is directly proportional
to its corresponding layer depth, allowing to learn progressively more complex features. Receptive
fields of pooling layers: 6× 6, 16× 16, 44× 44, 100× 100 and 212× 212. The GradCAM algorithm
uses the gradient information flowing into the last convolutional layer of the CNN (Figure 4C)
to assign importance values to each neuron for a particular class. The averaged gradients flowing
back from a chosen class output neuron to a previous layer (usually last convolutional layer) act
as weighting factors for each activation map, the final result being a linear combination between
the weights and filter activation maps.

Attention maps : sum of last convolutional layers of the last 2 convolutional blocks in vgg i.e.
the third layer of the fifth (last) and fourth blocks. We chose to add the attention map of the
second-to-last block to offer a finer detail of the segmentation due to its increased resolution i.e.
180× 180 as compared to 90× 90 respectively.

Thumbnail image classification on mouse retina

In order to perform both feature extraction and classification the VGG16 network was used and
adapted to this problem. The input size was changed so that it accepts 100x100x3 thumbnail
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images. The convolutional part, depicted in orange in Fig. 8(b) was not retrained so that weights
correspond to the VGG16network trained on the ImageNet data-set [37]. To perform the clas-
sification, 2 fully-connected layers of size 1024 were added with a Rectified Linear Unit (ReLU)
activation followed by a fully connected layer of size 5 with a SoftMax activation. These last layers
were trained using dropout with a rate of 0.5. The final model consists of 20.5 million parameters
of which 5.8 million are trainable. Data augmentation was used to generate more training data
by using translation, rotations, mirror flips and a small amount of shear (maximal shear angle
was 10◦), hence improving the generalization. The network was trained with 30 epochs with a
batch size of 32 images and a total of 500 images per epoch using a categorical cross-entropy loss
and a RMSProp optimizer [53] which adapts the learning rate using a running average of the past
gradient magnitudes.

5 different mouse retinas were imaged with D-FF-OCT and a training set was created on a
single mouse retina Fig. 8(a) by manually annotating 395 random thumbnail images in 5 classes:
GCL, IPL, INL, ONL and IS/OS. The test set was created by manually annotating 292 random
thumbnail images on a second retina in order to avoid over-fitting problems.

Figure 8: (a) 3D stack of mouse retina on 80 µm depth. 697 thumbnail images of 100 × 100
pixel (corresponding to 27 × 27 µm) were randomly selected and manually classified on a single
retina in 5 different classes: GCL, IPL, INL, ONL and IS/OS. (b) Neural network architecture
based on VGG16 used for classifying thumbnail images in 5 different classes. Only the lasts fully
connected layers (depicted in purple) were trained. Scale bar: (a) 25 µm.

3.2 Mice retina preparation

Wild-type C57BL/6JRj female mice, from eight to ten weeks old, were purchased from Janvier SA.
Mice were maintained at the Institut de la Vision animal facility under pathogen-free conditions.
All animals were housed under a 12-h light-dark cycle, with food and water available ad libitum.
Mice were sacrificed by cervical dislocation. The cornea was cut through and the lens removed by
using a thin scalpel blade, introduced at the level of the ora serrata. Curved forceps were then used
to delicately extract the entire retina. Retinas were then rinsed in sterile PBS (phosphate-buffered
saline 1X, Gibco), cut radially four times (in a “flower” shape) to be whole mounted. Time between
time of death of the mouse and retinal imaging never exceeded five minutes. All manipulations were
performed in accordance with the association for research in vision and ophthalmology (ARVO)
Statement for the Use of Animals in Ophthalmic and Vision Research. No experimental procedure
was realized on the mice before sacrifice.
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Supplementary Material

Additional details regarding the SVM.

Put figures from methods here (MatlabSeg.pdf + Ilastik.pdf) because I don’t think they can go in
Methods. (Similar for the big table with all the features
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Figure 9: AUC Curves linear SVM

Reducing the spatial scale with the feature engineering approach.

In order to reduce the spatial scale of the predictions in the case of the feature engineering approach,
we reduced the size of the input images. In practice, each 1.3× 1.3mm2 ROI was subdivided into
respectively 1x1 (full ROI), 2x2, 4x4, 8x8, or 16x16 smaller images. The features were calculated
on the original full ROI but were then attributed to the corresponding sub-image associated with
the center of the segmented object (e.g. cell, fiber, region of high cell density, etc...). We obtained
5 matrices of 44 features by (496xN2) images, with N the number of ROI subdivision ranging from
1 to 16, that were used to perform 5 independent SVM trainings. The phenotype of each ROI was
attributed to all subimages derived from the ROI. A 5-fold cross validation was performed for all
5 SVMs, and the accuracy, specificity, sensitivity, and AUC were measured and compared (Figure
10A). For all 4 metrics, the prediction scores decrease with the ROI subdivision ratio N, reaching
a low accuracy of 71.3%± 0.4%(Sensitivity : 77.0%± 0.6%, Specificity : 49.2%± 0.8%) and low
AUC of 0.704± 0.04 for N=16, which corresponds to a sub-image size of 82x82µm2 (Figure 10 B1
and B2 for N=4 and N=16 respectively). When aggregated for each sample, these lower prediction
scores at the sub-image level also translates into lower prediction score at the tissue scale with a
measured accuracy of 92.5% for N=4, and 80% for N=16 (Figure 10 C1 and C2 for N=4 and N=16
respectively).
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Figure 10: Classification results with feature engineering approach with ROI subdi-

visions. A. Predictions scores (Accuracy, Sensitivity, Specificity, and AUC) obtained for SVMs
trained with subimages with increasing subdivision ratios N.B. ROC curves obtained for N=4
(Panel B1) and N=16 (Panel B2). C. Ratio of healthy subimages for each tissue measured for N=
4 (Panel C1) and N=16 (Panel C2).

Reducing the spatial scale with the CNN approach.

Following the same scheme, the classification between cancerous and healthy samples from breast
biopsies was performed on D-FFOCT sub-images taken on a LightCT FFOCT commercial device.
Each ROI (1440x1440 pixels) was partitioned into 12x12 = 144 thumbnail images of 224x224 pixels
with a 50% overlap between the small images. Because of the small spatial scale, several thumbnail
images were mostly showing noise, so that we had to create a third class corresponding to noisy
thumbnail images. This is done to help the network focusing on interesting thumbnails rather than
trying to classify noise when it is clearly not possible because no actual dynamic signals are present
in the thumbnail. Therefore, we had to perform a first training step, during which we manually
checked all the thumbnail images. If no signal was detectable on the thumbnail image, we labeled
it as a noisy thumbnail. For other thumbnail images, we gave the class of the corresponding full
ROI. Note that it may happen that healthy subregions could be found in cancerous ROIs, meaning
that the dataset labeling is certainly biased in that regard.
In this experiment, we used the full D-FF-OCT dataset available composed of 650 ROIs taken
on 51 samples from 35 patients. 517 ROIs were from cancerous samples and 133 ROIs were from
healthy samples. During the training, adaptive sampling was used so that the neural network saw
the same number of examples for each category. 10% of the thumbnail images were held out for
final accuracy testing (these thumbnail images were selected among the same ROI, so that one
ROI is not split across training, validation and testing sets). The network performed reasonably
well with an overall accuracy of 76,41% (see Table 6) but had lower performances than the network
trained on full ROI. In particular, the classifier tends to over predict cancer even-though adaptive
sampling was used. Plotting the ratio between thumbnails classified as healthy and thumbnails
classified as cancerous allows to separate most of the ROI, except for 3 false negatives and 1 false
positive.
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Table 6: Accuracy results on breast cancer classification.

Accuracy on held out set
Healthy 45.41%
Cancerous 83.63%
Noise 66.98%
Total 76.41%

A B

C

Figure 11: CNN classification of breast cancer on small ROIs. Each 1.3x1.3mm2 ROI was
subdivided into thumbnails images, i.e. small square ROIs of width=224 pixels, with an overlap
of 50% (step = 112 pixels), obtaining 12x12 = 144 thumbnail images per ROI (Panel A). A CNN
was trained from the thumbnail images and by adding a third possible class corresponding to noisy
thumbnail images (e.g. bottom right corner in Panel A). The confusion matrix of the CNN results
is shown in panel B. When aggregated per sample by computing the ratio of predicted healthy
thumnbail images over cancerous thumbnail images, the CNN results allow segmenting healthy
from cancerous samples with reasonable accuracy (Panel C).
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Figures

Figure 1

Experimental protocol and correlation between FF-OCT, D-FF-OCT, and histology images. During surgery
(Panel A1), breast biopsies (Panel A2) are collected, inserted into the FF-OCT sample holder (Panel B1),
and imaged under the FF-OCT microscope (B2). A large field static FF-OCT image of the entire biopsy is
acquired (Panel B3). 5 to 20 ROIs (dashed white box) are manually selected and imaged with both static



and dynamic FF-OCT. Then, the biopsy is removed from the sample holder and is inserted into a regular
histology cassette (Panel C1), where it is fixed, sliced, and stained (Panel C2), according to H&E histology
standards (Panel C3). Examples of 2 ROIs (Panels D and E) imaged from sample diagnosed with invasive
ductal carcinoma (IDC) in a healthy and tumoral regions respectively. Static FF-OCT (Panel D1), D-FF-OCT
(Panel D2), and H&E (Panel D3) images of a normal lobule were acquired. Similar images (Panels E1, E2,
and E3) in an IDC area are displayed. Scale bars are 1 mm (B3, C3) and 0.1 mm (D1-E3) respectively.

Figure 2



Feature engineering and SVM classification of breast cancer D-FF-OCT images. Static (A1) and dynamic
(B1) FF-OCT images of a cancerous breast sample are analyzed using two random forest classifiers
(A2,B2). FF-OCT image is segmented (A2) into fibers (red), cells (green), and fat/holes (blue). D-FF-OCT
image is segmented (B2) into cells. Mesoscale fiber regions (A3) describe the region of high fiber density
in the FF-OCT image. Mesoscale cell regions (B3) describe regions of high cell density in the D-FF-OCT
image. The segmented images (A2, B2) and the mesoscale images (A3,B3) are used to calculate
engineered features, such as cell and collagen fiber characteristics and size and shape of regions of high
cell density. (C) Chart summarizing the processing of FF-OCT and D-FF-OCT images in order to classify
each image and each sample using SVM. (D) Proportion of normal areas found for each healthy (blue)
and cancerous sample (red) showing 100 % separability between the two classes. Scale bars: 200 µm.

Figure 3

CNN classification of breast cancer (A) ROC curves and AUCs of the 5-fold cross validated models. (B)
Tumor probability prediction by the CNN for each ROI in each sample, either healthy (B1) or tumoral (B2).
Each point represents a ROI which ground truth diagnosis is either healthy (blue) or tumoral (red). The
white rectangle represents the aggregated tumor probability per sample, computed as the 90th percentile
of the probabilities of the ROIs in a sample : (B1) normal samples prediction (B2) tumoral samples
prediction.



Figure 4

Proposed strategies to reduce the spatial scale of the predictions. A first strategy simply proposes to
reduce the size of the starting images, but requires precise labeling at the microscopic scale. We could
only achieved this labeling in mice retinas (Panel A), where retinal layers are well organized and show
distinct and clearly separable morphological features. Using a modified CNN, we could draw the
boundaries between retinal layers in folded retinas where several layers overlap at the same depth



(Panels B1, B2, B3 at different depths from retinal surface - 20, 70, and 80 µm respectively). A second
strategy using CNN is to propagate the gradients from the last convolutional layer using the GradCAM
algorithm (Panel C) in order to retrieve the spatial information from the CNN. From a ROI showing healthy
breast lobule surrounded by isolated infiltrating cancerous cells, correctly predicted as cancerous with 97
% confidence by the CNN (Panel D1), the tumor positive attention map (panel D2) focuses on the regions
with the infiltrating cells, while the the tumor negative attention map (panel D3) shows healthy regions,
including the healthy breast lobule. Scale bars are 25 µm in A, 50 µm in B and 200 µm in D.

Figure 5

PZT: piezoelectric translation - BS: Beam splitter. Experimental D-FFOCT setup in an inverted
configuration optimized for tissue imaging. 512 images are acquired by the CMOS camera (a). The
resulting (1440, 1440, 512) 3D tensor (b) is then processed independently for each pixel (c).



Figure 6

Machine learning based segmentation with iLastik on D-FF-OCT images. Panel A shows the user
interface of iLastik, and illustrates the learning procedure. Pixels corresponding to each class of interest
are manually drawn (opaque pixels). To start with initial prediction, a small number of pixels in the first
image were drawn, and then the prediction is refined step by step by correcting misclassified pixels. Panel
B shows the segmentation result after the learning process. For DCI images, only the cell segmentation is



used (class 1 - in yellow here), but the others two classes were used to segment the cells with higher
precision.

Figure 7

Cell and fiber segmentation output. Panel A shows the cell segmentation using iLastik and Matlab. From
original DCI image (A1), after iLastik segmentation, the first class (cells) is selected, and separated in
independent regions with Matlab (A2). Here, the increasing color from blue to red gives the number of the
identified region (from 1 to 3951 here).Each region of interest (ROI) can be analyzed independently, and
only the regions of area above 20 pixels are kept and considered as cells. The obtained mask image is
multiplied by the D-FF-OCT image to obtain panel A3. Panel B shows the fiber and cell segmentation
results on FF-OCT image. The original image (B1) is processed by iLastik and classified between fibers,
pixels between fibers, and cells. The first and third classes are extracted and filtered using Matlab to
obtain fibers (B2) and cells (B3)



Figure 8

(a) 3D stack of mouse retina on 80 µm depth. 697 thumbnail images of 100 × 100 pixel (corresponding to
27 × 27 µm) were randomly selected and manually classified on a single retina in 5 different classes:
GCL, IPL, INL, ONL and IS/OS. (b) Neural network architecture based on VGG16 used for classifying
thumbnail images in 5 different classes. Only the lasts fully connected layers (depicted in purple) were
trained. Scale bar: (a) 25 µm.
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