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Abstract
A wave finite element (WFE) strategy to predict and localize defects in networks of straight pipes with
curved joints is proposed. This involves estimating the times of flight taken by some narrow wave packets
to get transmitted through or reflected by a coupling element that could represent either a joint or a defect.
The ansatz proposed here is to define these times of flight from the frequency derivatives of the arguments
of the scattering matrix of the coupling element. Also, the times of flight taken by wave packets to travel
along a certain pipe can be classically obtained from the analysis of the group velocities. By comparing the
theoretical expressions of the times of flight with those recorded in a network of pipes at some measurement
point, it becomes possible to localize a defect with accurate precision and, also, to have a physical insight
about the kind of waves which are transmitted through a joint and reflected by a defect (pathways). Numerical
experiments are carried out which highlight the relevance and applicability of the proposed approach.

1 Introduction

Non-destructive testing usually involves generating guided waves and measuring reflected signals at some
measurement points. For waveguides like pipes, straight beams or periodic structures, waves can travel a
long distance and are usually sensitive to the presence of local defects and inhomogeneities [1]. However,
the presence of curved joints can strongly penalize the detection of a defect by a certain kind of waves. This
is due to wave mode conversion effects, i.e. a certain incident wave packet usually gives rise to several
scattered wave packets of different natures.

The wave propagation in straight pipes has been extensively explored in the literature, see for instance [2,
3, 4]. Demma et al. [5] have investigated, numerically and experimentally, the transmitted/reflected wave
signals in two pipes connected with a curved joint. Hayashi et al. [6] have applied the semi-analytical finite
element method to analyze the propagation of axisymmetric modes in the presence of multiple curved joints,
and the related transmitted/reflected energy flows. Sanderson et al. [7] have investigated the localization
of a defect in a pipeline with a curved joint. They have shown that the defect localization can be prone to
inaccurate results due to the presence of the curved joint. Finally, Ni et al. [8] have studied, numerically and
experimentally, the signal issued from a defect beyond joints of different configurations.

In this work, the wave finite element (WFE) method is used as an efficient and straightforward alternative to
predict and localize defects in pipes with curved joints. The method has been developed originally to compute
the wave propagation in 1D periodic structures [9, 10, 11]. Later on, it has been applied to analyze periodic
structures connected with a defect (coupling element) and determine the related wave reflection/transmission
coefficients [12, 13, 14]. The strategy involves computing a scattering matrix from the finite element (FE)
model of a coupling element and the incident/reflected waves in the connecting periodic structures (WFE)
[11]. Results about defect localization in pipes can be found in [15, 16]. More recently in [17], a generalized
scattering matrix model combining defect and joint FE models, and waveguide WFE models, has been
proposed to optimize the joint properties and improve the detection of a defect.



In order to localize a defect, a time response analysis based on the study of the times of flight, for reflected or
transmitted wave packets, can be used [18]. For straight pipes, assessing the times of flight follows directly
from the analysis of the group velocities. However, assessing the group velocities for waves transmitted or
reflected through arbitrary coupling elements, like defects or curved joints, is more dubious. To address this
issue, it is proposed to define these times of flight from the frequency derivatives of the arguments of the
scattering matrix of a coupling element. The scattering matrix results from FE/WFE modeling and enables
the identification of the wave conversion effects through the coupling element. In other words, the proposed
approach intends to predict the pathways, and the related times of flight, followed by a certain wave packet
when it is transmitted or reflected by a coupling element. For a given incident wave packet, different types
of reflected wave packets can be predicted since different pathways can be considered (coupling element).
Fortunately, a fitting procedure with the experimental wave signals can help identify those different pathways
and, further, the position of the defect.

The paper is organized as follows. In Section 2, the WFE method is briefly presented and the concept of
time of flight through an arbitrary coupling element is developed. Also, the strategy to localize a defect in a
network of pipes is presented. In Section 3, numerical experiments are brought concerning three pipes with
a curved joint and a small defect in order to validate and highlight the accuracy of the proposed approach.

2 WFE method

2.1 Substructure modeling

The propagation of waves along straight pipes is investigated. Within the WFE framework, periodic struc-
tures composed of identical substructures with similar FE meshes are considered. For instance, a straight
pipes composed of substructures of length d is shown in Fig. 1.

Figure 1: Schematic of a pipe described from identical substructures (periodic mesh).

Let us consider the FE model of a substructure, and let us denote by L/R the degrees of freedom (DOFs) of
the left/right boundary of this substructure, and by I the internal (i.e., the other) DOFs. Also, let us denote
by n the number of DOFs on the left/right boundary, and by M, C and K the mass, damping, and stiffness
matrices of the substructure (respectively). In the frequency domain, the dynamic equilibrium equation of
this substructure is given by:

Dq = F, (1)

where q and F are the displacement and force vectors, respectively, and D is the dynamic stiffness matrix
(DSM):

D = −ω2M+ iωC+K, (2)

where ω is the angular frequency, and i is the imaginary unit. Although not mandatory, a Rayleigh-type
damping matrix C can be considered, i.e.,

C = aM+ bK, (3)



where a and b are two real positive constants. Following the WFE procedure, the following transfer matrix
equation can be obtained from Eq. (1) [9, 11]:

uR = SuL, (4)

where

uR =

[
qR
FR

]
, uL =

[
qL
−FL

]
. (5)

In Eq. (4), S is the transfer matrix of the substructure (size 2n× 2n) given by:

S =

[
−D∗−1

LR D∗
LL −D∗−1

LR

D∗
RL −D∗

RRD
∗−1
LR D∗

LL −D∗
RRD

∗−1
LR

]
, (6)

where D∗ is the condensed DSM of the substructure [19]. Two consecutive substructures can be coupled by
imposing the equilibrium of the internal forces and the continuity of the displacements at the interfaces. This
yields: [

q
(k+1)
L

−F(k+1)
L

]
= S

[
q
(k)
L

−F(k)
L

]
or

[
q
(k+1)
R

F
(k+1)
R

]
= S

[
q
(k)
R

F
(k)
R

]
, (7)

where (k) and (k + 1) denotes two consecutive substructure interfaces, see Fig. 1.

The transfer matrix relation between two consecutive substructures is given by Eq. (7). It is well known
that the eigensolutions of the matrix S represent waves. Its eigenvalues represent the wave parameters and
are given by µj = exp(−iβjd) where βj denotes wavenumbers. Also, its eigenvectors represent the “cross-
section” wave shapes and are given by ϕj = [ϕTqj ϕTFj ]

T where ϕqj and ϕFj are vectors of displacement
and force components, respectively. Note that the transfer matrix S is symplectic, which means paired
eigenvalues (µj , µ

⋆
j = 1/µj), with |µj | < 1, and therefore paired eigenvectors ϕj and ϕ⋆

j representing right-
going and left-going waves, respectively. Also note that the computation of the eigenvalues and eigenvectors
of S can be done via different strategies. The reader is referred to [9, 20, 19].

Within the WFE framework, the displacement and force vectors are expressed in terms of wave shape vectors.
Thus the displacement and force vectors at a substructure interface (k), along a pipe, are expressed as [21]:

q
(k)
L = q

(k)
R = ΦqQ

(k) +Φ⋆
qQ

⋆(k), (8)

−F(k)
L = F

(k)
R = ΦFQ

(k) +Φ⋆
FQ

⋆(k), (9)

where Φq = [ϕq1 · · ·ϕqn], Φ⋆
q = [ϕ⋆

q1 · · ·ϕ⋆
qn], ΦF = [ϕF1 · · ·ϕFn] and Φ⋆

F = [ϕ⋆
F1 · · ·ϕ⋆

Fn] [21]; also, Q(k)

and Q⋆(k) are wave amplitude vectors. For a pipe with N substructures, it can be shown that Q(k) = µk−1Q
and Q⋆(k) = µN+1−kQ⋆ where Q = Q(1) and Q⋆ = Q⋆ (N+1) represent wave amplitude vectors at the left
and right ends of the pipe (respectively); also, µ = diag{µj}nj=1 is the diagonal matrix of eigenvalues µj

for the right-going waves. As a result, Eqs. (8) and (9) yield [19]:

q
(k)
L = q

(k)
R = Φqµ

k−1Q+Φ⋆
qµ

N+1−kQ⋆ k = 1, . . . , N + 1, (10)

−F(k)
L = F

(k)
R = ΦFµ

k−1Q+Φ⋆
Fµ

N+1−kQ⋆ k = 1, . . . , N + 1. (11)

The wave-based modeling of pipes connected with coupling elements (joints, defects) follows from Eqs. (10)
and (11) (see [21, 19] for further details).

2.2 Scattering matrix

The scattering matrix of a coupling element, that could be either a joint (j) or a defect (d), provides the
reflection and transmission coefficients for the incoming waves. Its expression, for a joint and a defect



connecting three waveguides/pipes 1, 2 and 3 (see Fig. 2), is given as [11, 14]:

Cj = −
(
Dj∗

[
L1Φ⋆

q 0
0 L2Φq

]
+

[
L1Φ⋆

F 0
0 −L2ΦF

])−1

(12)

×
(
Dj∗

[
L1Φq 0
0 L2Φ⋆

q

]
+

[
L1ΦF 0
0 −L2Φ⋆

F

])
,

and

Cd = −
(
Dd∗

[
L2Φ⋆

q 0
0 L3Φq

]
+

[
L2Φ⋆

F 0
0 −L3ΦF

])−1

(13)

×
(
Dd∗

[
L2Φq 0
0 L3Φ⋆

q

]
+

[
L2ΦF 0
0 −L3Φ⋆

F

])
,

where Dj∗ and Dd∗ are the condensed DSMs of the joint and the defect which can be computed via the
Craig-Bampton method [19, 22]; also, L1, L2 and L3 are direction cosine matrices which are introduced to
project the local coordinate systems of the pipes onto a global reference one.

Figure 2: Three waveguides/pipes 1, 2 and 3 connected with a joint and a defect.

Let us denote by N1, N2 and N3 the numbers of substructures of waveguides 1, 2 and 3 connecting the
joint and the defect in Fig. 2. Thus, the wave amplitude vectors for the incoming and outgoing waves, at the
boundaries of the joint/defect, can be related as follows:[

Q⋆
1

Q2

]
= Cj

[
µN1Q1

µN2Q⋆
2

]
=

[
Cj
11 Cj

12

Cj
21 Cj

22

] [
µN1Q1

µN2Q⋆
2

]
(14)

and [
Q⋆

2
Q3

]
= Cd

[
µN2Q2

µN3Q⋆
3

]
=

[
Cd
22 Cd

23

Cd
32 Cd

33

] [
µN2Q2

µN3Q⋆
3

]
, (15)

where Q⋆
1 and Q2 (resp. Q⋆

2 and Q3) are the wave amplitude vectors for the outgoing waves at the boundaries
of the joint (resp. defect), see Fig. 2; also, µN1Q1 and µN2Q⋆

2 (resp. µN2Q2 and µN3Q⋆
3) are the wave

amplitude vectors for the incoming waves at the same boundaries.



2.3 Times of flight

The group velocity cgj for a wave j traveling in a certain pipe can be classically assessed from the dispersion
curve ω 7→ ℜ{βj} [23]:

cgj =
∂ω

∂ℜ{βj}
. (16)

Alternatively, Eq. (16) can be written as:

cgj = −d
∂ω

∂ arg(µj)
, (17)

where µj is the wave parameter for the wave j, which is obtained via the WFE method (see Sec. 2.1). By
considering the conventions defined earlier, it can be shown that the outgoing and incoming wave amplitude
vectors at the left and right boundaries (k) and (k + 1) of a pipe substructure are related as follows:[

µN+1−kQ⋆

µkQ

]
= Cs

[
µk−1Q
µN−kQ⋆

]
=

[
0 µ
µ 0

] [
µk−1Q
µN−kQ⋆

]
. (18)

Here, Cs represents the scattering matrix of the substructure, with off-block diagonal terms representing
diagonal matrices µ. This simply means that, for pure waveguides, waves are only subjected to transmission
(coefficient µj) without wave conversion. Thus the time of flight taken for a wave j to get transmitted through
a substructure can be obtained as:

d

cgj
= −∂ arg(µj)

∂ω
. (19)

Let us consider now a coupling element, between two pipes (e.g., pipes 1 and 2), inside which wave reflec-
tions and wave conversions are likely to occur. Following the same idea as Eq. (17), the time of flight in
transmission for an incoming wave j in pipe 1 to be converted into an outgoing wave i in pipe 2 can be
obtained as:

τij = −
∂ arg (C21ij)

∂ω
, (20)

where C21 is the transmission matrix between pipes 1 and 2. Also, the time of flight in reflection for an
incoming wave j in pipe 1 to be converted into an outgoing wave i in pipe 1 can be obtained as:

τij = −
∂ arg (C11ij)

∂ω
, (21)

where C11 is the reflection matrix for the waves in pipe 1. Finally note that these times of flight τij depend
on the frequency of the waves which are considered.

2.4 Defect localization

A fitting procedure between the measured times of flight and the theoretical ones given in Sec. 2.3 allows the
localization of a defect in a network of pipes. For the sake of clarity, let us consider an input wave packet l
in pipe 1 which is (i) transmitted through a joint in pipe 2 (wave packet k), (ii) reflected by a defect in pipe 2
(wave packet j) and (iii) transmitted through the joint back to the measurement point in pipe 1 (wave packet
i), see Fig. 2. Also, let us denote by τijkl the measured time delay between the excitation time (wave packet
l) and the measurement time (wave packet i). Then, by considering the theoretical expressions of the times
of flight in Sec. 2.3, τijkl can be decomposed as follows:

τijkl =
l1
cgl

+ τ
j
kl +

l2
cgk

+ τdjk +
l2
cgj

+ τ
j
ij +

l1
cgi

, (22)

where τ
j
kl and τ

j
ij are the times of flight in transmission taken by wave packets l and j (respectively) to get

across the joint, see Eq. (20). Also, τdjk is the time of flight in reflection for the defect, see Eq. (21). In the
present case, l1 is the distance between the measurement point and the joint, which is supposed to be known,



and l2 is the distance between the joint and the defect, which is unknown. Also, in Eq. (22), l1/cgi and l1/cgl
are the times of flight for wave packets i and l (respectively) to travel the distance l1 in pipe 1, and l2/cgj and
l2/cgk are the times of flight for wave packets j and k (respectively) to travel the distance l2 in pipe 2. One
should keep in mind that the group velocities cgi, cgj , cgk and cgl for waves in pipes can be easily obtained
via the WFE method and the analysis of the related dispersion curves, see Sec. 2.3.

In this case, the sought distance l2 can be estimated, from Eq. (22), as follows:

l2 =

(
τijkl −

l1
cgl
− τ

j
kl − τdjk − τ

j
ij −

l1
cgi

)(
1

cgk
+

1

cgj

)−1

. (23)

It should be pointed that the expression of l2 relies upon determining pathways i ← j, j ← k and k ← l
taken by and incident wave packet l. There are, in fact, several possible pathways whose determination can
be achieved in a pre-processing step by analyzing the components of the scattering matrices of the joint and
the defect. Some of these are physically consistent and will all yield, in theory, the same solution l2. Other
pathways will give different solutions and must be discarded from the analysis (see next section).

3 Numerical results

Numerical simulations are carried out which concern the study of three pipes 1, 2 and 3 with a curved joint
and a defect as shown in Fig. 2. Here, the curvature angle of the joint is 90o, and the whole structure is
supposed to lay on an elastic foundation. Schematics and FE meshes of the pipe substructures, defect and
joint are shown in Fig. 3. The three pipes, the joint and the defect share the following properties: inner radius
R = 0.05 m, thickness h = 2.5 mm, Young’s modulus E = 210 GPa, density ρ = 7800 kg/m3, Poisson’s
ratio ν = 0.3, and damping coefficients a = 10−3 s−1 and b = 10−8 s, see Eq. (3). Here, the substructure
length (pipes) is d = 2.5 mm. Also, the radius of curvature of the joint is Rj = 0.1 m; as for the defect, it
represents an assembly of 8 substructures (global length dd = 0.02 m) containing a small rectangular hole
of length ld = d = 2.5 mm and an angle of aperture of 22.5o as shown in Fig. 3(b,e).

Figure 3: Schematic and FE meshes of (a) a pipe substructure, (b,e) the defect, (c,f) the joint, (d) a pipe on
an elastic foundation.



The pipe substructures, the joint and the defect are modeled using “S4R” 4-node rectangular elements
(ABAQUS) with 6 DOFs per node. The pipe substructures are meshed with 32 elements around the cir-
cumference, and 1 element along the length. Also, the joint is meshed using 32 elements around the cir-
cumference, and 20 elements around the curvature. Finally, the defect is meshed using 254 elements with
32 elements around the circumference and a lack of two elements for modeling the hole. Finally, the elastic
foundation is modeled via periodic supports of stiffness Ks = 108N (vertical direction) at the bottom nodes
of the whole structure.

The dispersion curves of the traveling waves in the pipes can be obtained via the WFE method (see Sec.
2.1) as shown in Fig. 4. Here, those associated with “low-order” right-going waves are displayed over
the frequency band [ 0, 40] kHz. Fig. 4(a) shows the real and imaginary parts of βjd (βj and d being the
wavenumbers and the substructure length, respectively), and Fig. 4(b) shows the related group velocities.
These dispersion curves appear quite different to the usual ones in pipes, which is explained by the fact that
an elastic foundation is added. Here, the fundamental torsional wave mode T(0, 1), which is non-dispersive,
is highlighted together with low-order dispersive non-axisymmetric flexural wave modes F(1, 2), F(1, 3) and
F(2, 2), and low-order longitudinal wave modes (see blue, yellow and purple curves). As explained earlier,
wave mode conversion among these waves is likely to occur inside the joint and the defect (transmission,
reflection).

Figure 4: (a) Wavenumbers βjd (real and imaginary parts) and (b) group velocities: (green line) torsional
mode T(0, 1), (orange line) flexural mode F(1, 2); (black line) flexural mode F(1, 3); (red line) flexural mode
F(2, 2); (blue, yellow and purple lines) longitudinal modes.

The time response of the pipe assembly is investigated, with an input excitation/measurement point in pipe 1
at a distance l1 = 10 m from the joint, see Fig. 2. The distance between the joint and the defect is l2 = 10 m,
which also represents the length of pipe 2. Here, both pipes 1 and 3 are supposed to be semi-infinite. An
input Gaussian pulse centered at 30 kHz representing a right-going wave packet “T(0, 1)” is considered as
shown in Fig. 5. The problem is solved in the frequency domain with the WFE method (see [19] for the
methodology), and the time response is obtained via an inverse Fourier transform of the frequency response
[24].

Fig. 6 shows the normalized reflected wave packets (vertical displacement) at the measurement point. Here,
five wave packets of T(0, 1)-type are observed. These result from reflection at the joint (wave packet (1)) and
reflection at the defect via transmission through the joint (wave packets (2), (3), (4) and (5)). Wave packets
(2)-(5) are associated to different pathways and different wave conversions inside the joint and the defect,
as reported earlier. This illustrates the difficulty to localize a defect after a joint, i.e., given the occurrence
of different wave pathways for a given type of input/output wave. It should be recalled, again, that these
pathways, for an input wave packet, are to be understood as the different possible wave packets which are



transmitted through the joint in pipe 2, reflected via the defect in the same pipe, and transmitted via the joint
back to the measurement point.

Figure 5: (a) Pulse excitation in the time domain and (b) absolute value of the related Fourier transform.

Figure 6: Reflected wave packets at the measurement point: (1) wave packet reflected by the joint; (2)-(5)
wavepackets issued from the defect. Dark crosses highlight the tips of the wave packets.

An analysis of the components of the scattering matrices of the joint and the defect can help identify these
different pathways. For instance, the transmission coefficients for the incident wave T(0, 1) through the joint
are shown in Fig. 7(a). Here, the waves which are likely to be generated in pipe 2 — i.e., those with the
highest transmission coefficient at 30 kHz — are highlighted by colored curves. For instance, the red curve
represents the transmission coefficient from wave T(0, 1) to wave F(2, 2), and the green curve represents the
transmission coefficient from wave T(0, 1) to wave T(0, 1). Also, by analyzing the reflection coefficients at
the defect, several possible pathways can be postulated. Some of these are physical, others are not.

To identify the physical pathways as well as the sought position of the defect l2 = 10 m, the following
strategy can be proposed. The idea is that, for a certain measured time of flight τijkl, different physical
pathways should give the same estimate of l2. Fig. 7(b) shows the variation of τijkl against the length
l2, as proposed by Eq. (22), for different pathways. Also, the measured times of flight, for the reflected



wave packets, are shown via horizontal dashed lines in Fig. 7(b). By intersecting the resulting oblique and
horizontal lines, a clear match with l2 = 10 m can be obtained for three pathways. Other pathways may give
wrong result — i.e., the purple curve in Fig. 7(b) — which means that they do not physically happened.

Figure 7: (a) Transmission coefficients for the incident wave T(0, 1) through the joint; highest coefficients at
30 kHz are highlighted by colored curves. (b) Times of flight τijkl as functions of the length l2, for different
pathways; measured times of flight are highlighted by horizontal dashed lines.

Figure 8: Frequency-time map of the reflected waves issued from the defect. Measured times of flight are
highlighted by yellow spots. Estimated times of flight represent the crossing points between the black curves
and the white dashed line.

Accurate estimates of the position of the defect l2 can be obtained from Eq. (23), i.e., from the measured
times of flight τijkl and several identified pathways (2), (3) and (5). Results are shown in Tab. 1, where “H.O.”
means high-order wave modes. In this case, the position of the defect can be identified with an error smaller
than 1%. This also highlights the robustness of the proposed approach in the sense that the localization of
the defect can be accurately determined regardless of the pathway analyzed.



Table 1: Estimated position of the defect from Eq. (23), and relative error (reference is l2 = 10 m).

ijkl τijkl (ms) l2 (m) Relative error (%)
(2) T(0, 1)← T(0, 1)← T(0, 1)← T(0, 1) 15.34 10.09 0.9
(3) T(0, 1)← H.O.← H.O.← T(0, 1) 16.05 9.99 0.1
(5) T(0, 1)← F(2, 2)← F(2, 2)← T(0, 1) 18.20 10.08 0.8

To further investigate the proposed approach, a frequency-time map of the measured reflected signals can be
considered as shown in Fig. 8. Here, the yellow spots highlight the measured reflected signals. Also, the
black curves represent the theoretical times of flight for different pathways (2), (3) and (5), see Eq. (22).
Otherwise, in Fig. 8, the white horizontal curve at 30 kHz represent the excitation frequency. This procedure
allows a verification of the pathways identified via Fig. 7(b). For these pathways indeed, one can check that
the intersection points between the black curves and the white one perfectly match with the center of the
yellow spots, i.e., with the tips of the reflected signals shown in Fig. 6.

Fig. 8 provides additional information about the reflected times of flight. For instance, the black curves
contain sharp horizontal peaks at some particular frequencies. This phenomenon would penalize the detec-
tion of reflected wave packets — e.g., the one corresponding to a certain pathway — which is explained
by the difficulty to determine the crossing points between these curves and a white one positioned at these
frequencies. Such a behavior occurs at the resonances frequencies of the coupling elements (joint, defect)
or at the cut-on frequencies of the waves where the group velocities exhibit a singular behavior. Input wave
packets at these frequencies are likely to induce reflected signals which are spread in time, which as such
make these excitation frequencies not suitable to localize the defect. It should be emphasized that this issue
is not linked to numerical modeling, but results from physical phenomena. It is therefore advised to consider
different values of excitation frequencies. The proposed WFE approach could be advantageously considered
to quickly select these excitation frequencies in a pre-processing step.

4 Conclusion

In this paper, a WFE strategy has been proposed to localize defects in networks of pipes. The strategy
involves estimating the times of flight for waves transmitted through, or reflected by, a curved joint and
a defect. In the proposed approach, the times of flight are defined from the frequency derivatives of the
arguments of the scattering matrix of a coupling element. By considering these times of flight together with
those associated with the propagation of waves in pipes, it becomes possible from measured time signals
to identify a defect. This also provides a physical insight into the natures of the waves which are truly
transmitted through a joint and reflected by a defect (pathways). Numerical experiments have been proposed
concerning the analysis of three pipes with a curved joint and a defect of small size.
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