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Land Cover Classification with Gaussian Processes
using spatio-spectro-temporal features

Valentine Bellet, Student Member, IEEE, Mathieu Fauvel, Senior Member, IEEE, and Jordi Inglada

Abstract—An approach based on Gaussian Processes (GP)
for land cover pixel-based classification with Sentinel-2 satellite
image time-series (SITS) at national scale is proposed in this
paper. Sparse methods combined with variational inference allow
the learning of large scale GP. By using a spatio-spectro-temporal
covariance function, our approach is able to use the spatial struc-
ture of the SITS in addition to the spectro-temporal structure.
Experimental results conducted on 27 tiles on the south of France
show that our method is effective and close to several state-of-the-
art approaches (Random Forest and Deep Learning methods).
Besides, the discontinuity between two spatially adjacent models
independently trained is identified and quantified.

Index Terms—Satellite Image Time-Series (SITS), Sentinel-
2, Land Cover Pixel-Based Classification, Large Scale, Sparse
Variational Gaussian Processes, Earth Observation (EO), Remote
Sensing.

I. INTRODUCTION

THE increasing number of Earth observation satellites
generates a huge amount of data with heterogeneous

modalities (e.g. optic, radar, etc.) at various resolutions (e.g.
sub-metric, decametric, etc). Among them, the Sentinel-2
constellation provides free and open data with a 5-day revisit
time at high spectral and spatial resolutions (4 spectral bands
at 10m, 6 at 20m and 3 at 60m per pixel) [1]. This mission was
designed to monitor, explain and predict the states and trends
of our environment. Indeed, these optical satellite image time-
series (SITS) are essential to understand the challenges related
to climate change [2]. Since their launch in 2015&2017, SITS
from the twin Sentinel-2 satellites have already shown a clear
benefit in biodiversity monitoring [3], [4], forest mapping [5],
[6], water quality [7], [8], agricultural monitoring [9], [10] or
disaster management [11], [12].

Every year, around one petabyte of Sentinel-2 SITS is
generated [13]. These data, covering all continental surfaces
with a short revisit cycle, bring the opportunity of large scale
mapping (at national or even continental scales). In order to
fully benefit from the information gathered by these massive
geo-spatial data, automatic methods are needed for their
analysis. Over the past 20 years, statistical methods [14] and
then machine learning based methods [15] have shown great
potential for various thematic applications. From those, the
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best known is certainly automatic land use/cover classification
(LUCC), which consists in assigning a class among a set of
predefined ones to each pixel from the area of interest. Three
main challenges are associated to large scale LUCC:

1) The spatio-spectro-temporal structure of the SITS: each
pixel has a local spatial correlation, as well as a class-
dependent spectral and temporal correlation structure that
needs to be taken into account for an accurate classifica-
tion [16].

2) The non stationarity of the class-conditional probabil-
ity distribution that implies a varying spectro-temporal
signature over the spatial domain. This phenomenon is
particularly critical for the large scale area classification
problems where phenology and topographic conditions
exacerbate this issue. Therefore, the learning algorithm
has to be able to model spatially varying class-conditional
probability distributions [17], [18].

3) The volume (defined as number of pixels × number
of dates × number of spectral features) of the data to
be processed, both at the learning and inference stages,
which require fast and effective algorithms that scale well.

Kernel-based algorithms have shown to perform well for
LUCC [19]. Support Vector Machines (SVM) was widely
applied in land cover classification with multi and hyper-
spectral images [15], [20]–[22]. However, the computational
complexity of kernel-methods is cubic w.r.t. the number of
samples used to train the model, and become quickly in-
tractable as the number of samples increases. Therefore, kernel
methods have rarely been used for large-scale mapping despite
their learning capacity.

Another machine learning algorithm widely investigated is
Random Forests (RF) [23]. It has shown to perform well for
different case studies [24] and has been favorably applied to
large scale classification problems, such as [25]. Yet, RF does
not allow to incorporate information about the structure of the
SITS beyond the use of specific temporal features. Indeed,
the temporal structure is not taken into account: switching the
order of the data in time-series conducts to the same results.
Furthermore, even if the construction of the different trees
of the forest can be performed in parallel, the learning step
requires to fully load the training samples into the computer
RAM. In [25], the non-stationarity as well as the massive
training data set were handled by doing a spatial stratification
of the problem and by learning an independent RF model per
strata (for which the number training samples was reduced
thanks to the stratification). However, no spatial constraints
are imposed during the learning or the prediction steps and
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the models could behave differently at the boundaries between
strata. Thus, the transition between two spatial strata can show
artifacts due to the discontinuity in the predictions by models
of the adjacent strata.

In the recent years, deep learning (DL) methods have
quickly emerged in the remote sensing community due to the
increased free distribution of Big Earth Observation Data, the
development of computing resources (e.g. GPU, HPC, etc.)
and the availability of open source deep learning frameworks
(e.g. Pytorch [26] or Tensorflow [27]). A large variety of DL
methods have been developed such as: multi-layer perceptrons
(MLP) [28], convolutional neural networks (CNN) [29], re-
current neural networks (RNN) [30], auto-encoders (AE) [31]
and generative adversarial networks (GAN) [32]. The main
advantage of these methods is their ability to extract features
(i.e. spatial, spectral and temporal patterns) without the need
of handcrafted design. By learning temporal patterns, long
short-term memory (LSTM) (i.e. network developed in order
to solve the problem of vanishing gradient in RNN) have
been a promising tool in SITS classification [33], [34]. To
include spatial information, a spatial-sequential RNN [35] and
a spectral-spatial RNN [36] have been developed. Besides,
CNN models which are commonly used with images have
also shown great results [37], [38]. By adding, coordinate
information into feature maps, performance results with CNN
have been improved [39], [40]. Therefore, methods combining
both RNN and CNN networks have been developed [41], [42].
Temporal CNN which combine features across time with
convolutions have also proved to be effective [43]. Recently,
methods based on the attention principle have shown very
interesting results [44], [45]. One major problem with all these
DL methods is their ”black-box” nature: their parameters are
hardly interpretable.

Gaussian Processes (GP) are stochastic non-parametric ap-
proaches combining Bayesian and kernel methods for re-
gression and classification problems [46]. They have been
successfully applied in remote sensing for parameter esti-
mation [47], [48] or for classification [49]–[51]. Unlike DL
models, GP can be interpretable through their parameters
(e.g. temporal correlation for the lengthscale parameter in a
Radial Basis Function (RBF) covariance function [46], [51]).
Furthermore, their Bayesian nature enables the estimation of
posterior distributions rather than point-wise values which is
useful to assess prediction uncertainties. Another interesting
property of GP is the possibility to define suitable kernel
functions, as with SVM, and to learn their parameters through
gradient descent, unlike SVM.

However, conventional GP are limited to few thousands of
training inputs since their complexity scaled cubically w.r.t.
the number of training samples. In the recent years, several
solutions have been proposed to deal with large amounts of
data [52]. For example, [53] proposed an approach based
on the approximation of the posterior distribution that uses
variational inference. Stochastic gradient descent and GPU
computing can therefore be exploited to optimize GP model.
Such recent methods drastically reduce the computing com-
plexity and have been applied to large scale data in computer
vision.

In this work, we propose to investigate the potential of
large scale GP for the classification of SITS. We compare
large scale GP to different state-of-the-art classifiers in terms
of classification accuracy and spatial continuity through an
extensive set of numerical simulations on a very large data
set (more than 2 millions of training pixels, containing one
year of Sentinel-2 acquisitions over the south of France).
The effect of the spatial stratification is considered for each
method. We also propose to model the spatial dependence
using two combinations of kernel functions for the GP and
assess its effectiveness in terms of classification accuracy and
its qualitative assessment for classification maps.

The remainder of this paper is organized as follows. A
formal review of conventional GP is presented in section II.
The proposed GP model used for the pixel-based large scale
land cover classification is explained and described in sec-
tion III and the model parametrization choices are discussed
in section IV. The experimental setup is detailed in section VI
and the comparison with the state-of-the-art methods are
provided in section VII. Section VIII proposes an analysis of
the specificitie of the GP. Finally, section IX concludes this
paper and opens discussions on future works.

II. GAUSSIAN PROCESSES

The training data, defined as a pair of input and output data,
is the initial data set used to train machine learning algorithms.
In remote sensing, input data are usually represented as a time-
series (e.g. sequence of pixels organized in time order). Each
pixel is itself a vector defined with the same number of features
(e.g. usually spectral reflectances or indices). The output data,
also called target, is the measure that we want to predict, in
classification problem it is known as the class or the label.

In the following, the training set is denoted S =
{xi,yi}Ni=1, where xi ∈ Rd+d′ is a pixel i represented by
its corresponding d spectro-temporal measurements, d′ spatial
measurements (e.g. coordinates), yi ∈ Ω, Ω ⊆ RP , P ≥ 1
is the value to be predicted, or target, associated to pixel i
and N the number of pixels. For instance, in a classification
problem yi corresponds to the membership degree of the pixel
to each class. We will also denote X =

[
x1, . . . ,xN

]>
and

Y =
[
y1, . . . ,yN

]>
.

A. Univariate Gaussian Processes

An univariate GP f is completely specified by its real-
valued mean function m and its covariance function k: f ∼
GP(m, k) [46]. In this paper, m and k are assumed to be
modeled by parametric functions with hyper-parameters θm
and θk, respectively, and k is constrained to be a positive semi-
definite function [46, Chapter 4]. Noting f(X) the random
vector defined as f(X) =

[
f(x1), . . . , f(xN )

]>
, f(X) fol-

lows a multivariate Gaussian distribution: f(X) ∼ NN (µ,K)

with µ =
[
m(x1), . . . ,m(xN )

]>
and K such as Kij =

k(xi,xj), ∀i, j ∈ {1, . . . , N}2.
Univariate GP are commonly used to regress a scalar target

value (yi ∈ R) through a link function ψ that relates the latent
variable f(xi) to the observed yi. To model realistic situations,
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an usual approach is to consider a noisy version of the function
value such as

yi = ψ
(
f(xi)

)
= f(xi) + εi (1)

with εi ∼ N (0, σ2) and σ the noise level. The likelihood is
simply

p
(
yi|f(xi)

)
= N1

(
yi|f(xi), σ

2
)
. (2)

Assuming i.i.d. samples, the full likelihood is given by

p
(
y|f(X)

)
=

N∏
i=1

p
(
yi|f(xi)

)
= NN (y|f(X), σ2IN ). (3)

Given a new input x∗ the prediction is done by taking the
maximum a posteriori (MAP) of the predictive distribution
obtained by marginalizing over the latent variables f(x∗):

p(y∗|y,X,x∗) =

∫
p
(
y∗|f(x∗)

)
p
(
f(x∗)|X,y)df(x∗)

∝
∫
p
(
y∗|f(x∗)

)
p
(
f(x∗)|f(X)

)
p
(
f(X)

)
×

n∏
i=1

p
(
yi|f(xi)

)
df(x∗)df(X).

(4)

Every term follows a Gaussian distribution in (4) and therefore
the posterior distribution is also Gaussian. Using standard
Gaussian equalities, it can be written analytically [54, Chapter
2.3.2 and 2.3.3]:

p(y∗|y,X,x∗) = NN (y∗|µ∗, σ2
∗), (5)

with

µ∗ = m(x∗) + k>∗ (K + σ2IN )−1(y − µ), (6)

σ2
∗ = k(x∗,x∗)− k>∗ (K + σ2IN )−1k∗ + σ2, (7)

and with k∗ = [k(x1,x∗), . . . , k(xN ,x∗)]
>. For a Gaussian

distribution, the MAP is given by the mean of the distribution,
i.e., ŷ∗ = µ∗. Furthermore the GP framework allows to
estimate the uncertainty of the prediction through the variance
of the posterior distribution σ2

∗.
The hyper-parameters θ = {θm,θk, σ2} strongly influence

the prediction since they appear in (6) and (7). They are usually
optimized by maximizing the log-marginal likelihood of the
model on the training set S [46, Chapter 2]:

log p(y|X,θ) = log
{∫

p(y|f(X))p(f(X)|θ)df(X)
}

= log
{
NN (y|µ,K + σ2IN )

}
=− 1

2
(y − µ)T(K + σ2IN )

−1
(y − µ)

− 1

2
log
(
|K + σ2IN |

)
− N

2
log(2π).

(8)

The derivatives of Equation (8) are analytically tractable and
the optimization of θ can be done using constrained gradient
descent [46, Chapter 5 and Appendix A.3].

In comparison to other non-linear prediction algorithms,
such as SVM or kernel ridge regression, GP offer the possibil-
ity to tune automatically its hyper-parameters. GP also provide

the variance of the point-wise estimation. These properties
make GP for regression widely used by the remote sensing
community in the last decade [55]–[58].

However, conventional GP scale poorly w.r.t. the number
of training samples. The main bottleneck comes from the
computational cost of the matrix inversion and the computation
of the determinant in (8). These operations scale cubically
with the number of training pixels and, moreover, the storage
complexity is O(N2). This is the main reason explaining why
GP have only been used on data sets limited to a few thousand
pixels [48].

We will discuss in section III some solutions that have been
explored in the last decade. However, the extension of univari-
ate GP to multivariate GP for the purpose of classification is
presented first in the following section.

B. Multivariate Gaussian Processes

Likewise univariate GP, a P -multivariate GP f is specified
by its vector-valued mean function m ∈ RP and its positive
matrix-valued covariance function K ∈ RP×P . We have f ∼
GP(m,K) with:

m(x) = [m1(x) ... mP (x)]
>
,

K(x,x) =

[
k11(x,x) ... k1P (x,x)

... kpp′(x,x) ...
kP1(x,x) ... kPP (x,x)

]
,

where kpp′(x,x) is the covariance between two univariate GP:
fp(x) and fp′(x) with p ∈ {1, . . . , P}. Similarly to univariate
GP, all marginals follow a Gaussian distribution: noting

f(X) = [f1(x1), . . . , fP (x1), . . . , f1(xN ), . . . , fP (xN )]>

the random vector of size NP , then f(X) ∼ NNP (µo,Ko)
with µo = [m(x1), . . . ,m(xN )]> and

Ko =

 K(x1,x1) · · · K(x1,xN )
...

. . .
...

K(xN ,x1) · · · K(xN ,xN )

 .
Multivariate GP are also known as multi-output or multi-task
GP [59]. For instance, they are used when the learning task
has several correlated outputs (e.g. several variables to regress
given a single input, multi-class classification, etc.) [60].

The main challenge in multivariate GP is to define and opti-
mize the cross-covariance functions kpp′ that 1) lead to a valid
covariance function K, 2) exploit the multivariate structure of
the problem to be inferred, 3) can be efficiently computed
(Ko is of size NP × NP ). The most common approach is
to consider separable kernels where one kernel acts on the
input sample and another models the interaction between the
outputs [61]. The linear model of co-regionalization (LMC)
exploits this formulation [62], [63] and defines each marginal
fp as a linear combination of L independent univariate GP gl:
f = Ag with A ∈ RP×L and gl ∼ GP(ml, kl). The processes
{gl}Ll=1 are independent for l 6= l′. Many multivariate GP
models from the literature are particular cases of the LMC,
see for instance [61], [64]. In remote sensing, LMC was used
to regress biophysical variables in [65] using MODIS time-
series and for land cover classification from Sentinel-2 time-
series in [51].
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Another common approach to remove the separable as-
sumption is using convolutional processes [66]–[68]. Convolu-
tion processes can capture more dependence between outputs
than LMC (e.g. translation between outputs), but they lack
a formulation that scales well with the number of training
samples [69]. Therefore, the LMC is used in the following
because efficient optimization procedures exist [69]–[71], as
discussed in section III-B.

C. LMC for Gaussian Process classification

In the case of classification with C classes, the target is
such as yi ∈ {0, 1}C with all its values set to zero except for
the element yic = 1 for xi of class c. A softmax function σ is
used as link function to relate the multivariate latent variable
f(xi) = [f1(xi), . . . , fC(xi)]

> and the observation yi:

yi =σ(f(xi))

=
1∑C

c′=1 exp(fc′(xi))
×

exp(f1(xi))
...

exp(fC(xi))

 . (9)

The associated likelihood for the sample i is written:

p(yi|f(xi)) =

C∏
c=1

[
exp(fc(xi))∑C

c′=1 exp(fc′(xi))

]yic
=

exp(y>i f(xi))∑C
c′=1 exp(fc′(xi))

,

(10)

or using the LMC

p(yi|g(xi),A) =
exp(y>i Ag(xi))∑C
c′=1 exp(e>c′Ag(xi))

, (11)

with ec′ a L-dimensional vector made of zeros except at
position c′ for which the value is one. Conventional GP for
classification use a trivial LMC [46, Chapter 3]: the number
of latent processes is equal to the number of classes, and all
latent univariate GP share the same covariance operator1.

Contrary to the univariate regression case, the likeli-
hood (10) is not conjugate to the Gaussian distribution and
thus analytic expressions of the marginal and predictive dis-
tributions are not available.

Sampling methods, such as MCMC [72], provide exact
computation but at prohibitive computational costs that discard
such approaches for large scale scenarios. Alternatively, two
popular approximation methods overcoming the non-Gaussian
likelihood were discussed for the pixel-wise land-cover clas-
sification of several satellite images [73]. These methods,
namely the Laplace approximation [74] and the Expectation
Propagation [75] were positively compared to SVM in terms
of classification accuracy. However, as the authors of [73]
concluded, the computational complexity is O(N3C) and thus
not applicable to large data sets.

To summarize this brief overview, GP for classification have
interesting properties for remote sensing: they allow model
selection with the optimization of the marginal likelihood and
provide a full posterior predictive distribution rather than point

1A = IC and kl = k, ∀l ∈ {1, . . . , C}.

estimates. However, conventional GP for multi-class classifi-
cation exhibit two bottlenecks: first, the prior leads to high
computational load that scales cubically w.r.t. to the number
of training samples; second, the likelihood does not lead to an
analytical solution and other approximations are needed. In
the following, advances that alleviate the computational cost
of GP will be presented.

III. LARGE SCALE MULTIVARIATE GAUSSIAN PROCESS
CLASSIFICATION

Approximations for large scale univariate GP can be mainly
categorized into two approaches: model approximation and
posterior approximation [69]. The former which includes
the sparse GP was successfully used in remote sensing, as
discussed in section III-A, while the latter has barely been
investigated in this context. Yet, it has shown superior results
to model approximation in large scale classification in com-
puter vision [53], [71]. We present one effective technique,
namely Variational Inference, in section III-B and its extension
to multi-class in section III-C.

A. Model approximation

Approximation of Gaussian process model consists in re-
ducing the computational complexity when computing the
prior p

(
f(X)

)
or the joint prior p

(
f(x∗)|f(X)

)
[76]. Data

structure can be taken into account to speed-up the inversion of
K, such as in [77, Chapter 5] and [78] where K is decomposed
into a Kronecker product of smaller matrices. Using properties
of Kronecker product, all operations involving matrices can be
done in O(N) time and space. However, this method does not
scale with the number of features.

A more general and effective approach is to seek for a low
rank approximation of K using a set of M inducing points
Z = {zi}Mi=1 with M � N [79] and to assume that f(X)
and f(x∗) are conditionally independent given f(Z). Such
approximation reduces the complexity to O(NM2) because
only KMM needs to be inverted, with KMM being the covari-
ance matrix of Z. Different techniques to find these inducing
points were proposed: random projection [80], Nyström ap-
proximation [81] or Deterministic Training Conditional (DTC)
approximation [82] to cite a few.

In remote sensing, Bazi and Melgani [73] have used DTC
for classification, which required less training time and pro-
vided similar accuracy. Still for classification, Morales-Alvarez
et al. [83] used random projection to construct the covariance
matrix as well as variational posterior approximation.

An effective approach is to consider the optimization of the
inducing points during the learning step, in complement to the
mean and covariance function parameters, as proposed in [53],
[84]. Such approach consider variational approximation of
the posterior (instead of model approximation) which gives
superior results in large scale scenario. In this work, it was
chosen to learn the inducing points by optimizing the posterior
using variational inference, as discussed in the following part.
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B. Posterior approximation by Variational Inference
Variational Inference (VI) aims to approximate the posterior

distribution using some amenable distribution q [36]. The core
of VI idea is to optimize parameters of q using a lower
bound of the posterior (the evidence lower bound - ELBO).
In the following, the inducing points are considered as latent
variables that are optimized jointly with the prior parameters
θ. Noting E the ELBO, the following results holds [36]:

log p(y|X,θ,Z) ≥ E(q),

where the model parameters have been made explicit. Hence
optimizing E amounts to optimize the log-marginal likelihood
of the model.

In GP, the first formulation was proposed by Titsias [85]
for the regression case and then was extended to classification
problems by Hensman [53]. In remote sensing, VI was used
to model heteroscedastic noise in GP regression [70] and for
binary classification with model approximation [83].

Considering both the training and (non-observed) inducing
points, the ELBO E is

E(q) =

∫
q
(
f(X), f(Z)

)
× ln

{p(y, f(X), f(Z)|θ
)

q
(
f(X), f(Z)

) }
df(X)df(Z)

(12)

The variational distribution is defined as

q
(
f(X), f(Z)

)
= p
(
f(X)|f(Z),θ

)
q
(
f(Z)

)
(13)

with q
(
f(Z)

)
∼ NM (m,S). We denote θv = {m,S}

the parameters of the variational distribution. Injecting (13)
into (12) and simplifying leads to the bound proposed by [53]:

E(q) =

n∑
i=1

Eq(f(xi)|θv,θ)

[
log p

(
yi|f(xi)

)]
− KL

[
q
(
f(Z)|θv,θ

)
‖ p
(
f(Z)|θ

)]
,

(14)

with

q
(
f(xi)|θv,θ

)
∼ N1

(
f(xi)| k>MiK

−1
MMm,

k(xi,xi)− k>MiK
−1
MM

(
KMM − S

)
K−1MMkMi

)
(15)

and KL is the Kullback-Leibler divergence between two dis-
tributions. Since the prior and the variational distribution are
Gaussian, the Kullback-Leibler divergence can be computed
and derived analytically [46, Chapter A.3.1]. The expectation
term in (14) can be computed analytically for a regression
problem [85]. However, it cannot for likelihood such as (10),
but it can be estimated using Gauss-Hermite quadrature (for
binary problems) or by Monte Carlo (MC) sampling (for multi-
class problems) [53]. The latter is discussed in the next section.

As explained in [86], the expectation term is factored
over data points, it is thus possible to optimize (14) using
stochastic optimization [87] without the O(N3) computational
and O(N2) storage complexities. The resulting complexity
is linear with the batch size and cubic with the number of
inducing points. Using such strategy, Hensman et al. [53]
optimized the whole model, i.e. {θ,θv,Z}, on 700 000 points
for a regression problem on a mono-CPU computer.

C. Variational Inference for multi-class GP classification

In this part, we will describe how VI is applied to GP
classification with LMC. First, as in [71], a more general
LMC than in section II-C is used: we assume that each
univariate latent GP gl has its own mean and covariance
functions, with parameter θl. We also associate to each latent
process a set of inducing points Zl of size M 2 and we
denote g(Z) the ML-dimensional random vector such as
g(Z) =

[
g1(Z1), . . . , gL(ZL)

]>
. From the LMC definition

in section II-B, it follows that

p
(
g(Z)|Θ

)
=

L∏
l=1

p
(
gl(Zl)|θl

)
with p

(
gl(Zl)|θl

)
Gaussian. Similarly, the variational distri-

bution for q
(
g(Z)

)
is assumed to be such as

q
(
g(Z)

)
=

L∏
l=1

q
(
gl(Zl)

)
with q(gl(Zl)) ∼ NM (ml,Sl). With these assumptions, the
ELBO can be written as

E(q) =

n∑
i=1

Eq(g(xi)|Θv,Θ)

[
log p

(
yi|g(xi),A

)]
−

L∑
l=1

KL
[
q
(
gl(Zl)|θv

l ,θl
)
‖ p
(
gl(Zl)|θl

)]
.

(16)

with Θ = {θ1, . . . ,θL}, Θv = {θv
1, . . . ,θ

v
L} and

q (g(xi)|Θv,Θ) being a L-dimensional Gaussian distribution
with diagonal covariance matrix

q (g(xi)|Θv,Θ) ∼ NL
(
g(xi)|mv,Kv). (17)

Each marginal is given by (15), a consequence of the LMC:
the latent processes become dependent only during the com-
putation of the likelihood. Specifically, the lth element of the
mean vector and of the diagonal of the covariance matrix are
totally specified by the lth latent process:

mv
l = kl

>

MiK
l−1

MMml, (18)

Kv
ll = kl(xi,xi)− kl

>

MiK
l−1

MM

(
Kl
MM − Sl

)
Kl−1

MMklMi.
(19)

As in the previous section, the KL terms can be computed
and derived in closed-form. The expectation term needs to be
approximated. MC sampling is used, similar to [53], [71]. It
is combined with the so-called reparametrization trick from
variational auto-encoder (VAE) to compute the derivative of
the expectation during the stochastic gradient descent [88,
section 2.4]. In practice, one realization is enough for the MC
sampling during the training, as found in VAE [89], [53].

The prediction for a test sample uses the same variational
approximation for the joint prior than in the marginal likeli-
hood, and reduces to:

p(y∗|Y,X,x∗) = Eq(g(x∗)|Θv,Θ)

[
p
(
y∗|g(x∗),A

)]
(20)

2For simplicity it is assumed that each latent process has the same number
of inducing points.
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with q (g(x∗)|Θv,Θ) given by (17). Again, the expectation is
not analytically tractable: the approximation is obtained with
MC sampling. The class is found by taking ĉ = arg maxc y∗.

IV. MODEL DESCRIPTION

In the previous section, a general large scale GP classifica-
tion model based on variational approximation have been pre-
sented. In this section, we present the practical choices made
for the classification of large scale SITS using this model:
parametrization of the mean/covariance function, number of
inducing points and initialization of the parameters. The model
and its trainable parameters are described in Figure 1.

x

gL...g1

+ A∈ RC×L

f

SAMPLING + SOFTMAX

ŷ1 ŷc...

ĉ = argmaxcŷ

gl ∼ GP(ml,kl)

q(gl(Zl)) ∼ NM (ml,Sl)

Fig. 1: Model’s architecture used in this work. The trainable
parameters are written in blue color.

A. Mean function

For each latent function gl, the mean function ml was
selected as a constant:

ml(x) = µl, (21)

the trainable parameter is therefore µl. It is initialized with the
following value: µl = 0.

B. Covariance function

In GP, the choice of the covariance function allows to
introduce prior knowledge and to infer properties of GP
posteriors [90], [46]. In remote sensing, the joint use of spatial,
spectral and temporal information has shown to improve
classification results [91]–[94]. A typical example is the use
of composite kernels made of disjoint spatial and spectral
parts for SVM hyper-spectral image classification [95]. As in
SVM, the main idea is that GP can exploit the spatio-spectro-
temporal structure of the data through the covariance function.

In this work, we define kl(x,x
′) as a composition of a

spatial covariance function klφ(xφ,x
′
φ) and a spectro-temporal

covariance function klλt(xλt,x′λt), with xφ and xλt being the
spatial features and the spectro-temporal features, respectively.
This configuration prevents two spatially distant pixels to be
correlated even if they share similar spectro-temporal profile:
it is known that vegetation phenology can be similar for
distant pixels from different classes because of latitudinal and
topographical effects on biological life cycle. Such modeling
takes into account both the phenology and the spatial location
in the studied area.

The Radial Basis Function (RBF) kernel

k(x,x′) = α exp

(
−‖x− x′‖22

2`2

)
was choosen for both kφ and kλt. It has two parameters:
α > 0 and ` > 0. This kernel uses isotropic distance
between pixels in the spatial and spectro-temporal domain
and the proximity between two pixels is controlled by the
lengthscale parameter `: small value tends to make all pixels
uncorrelated (k(x,x′) ≈ 0) and high value tends to make
pixels all correlated (k(x,x′) ≈ 1).

Two different combinations of kernels have been investi-
gated. The first combination is the sum of kernel:

kSl (x,x′) = α2
lφ × klφ(xφ,x

′
φ) + α2

lλt × klλt(xλt,x′λt)

= α2
lφ exp

(
−
‖xφ − x′φ‖22

2`2lφ

)

+ α2
lλt exp

(
−‖xλt − x′λt‖22

2`2lλt

) (22)

For each covariance function kSl , the trainable parameters
are: (αlφ, αlλt, `lφ, `lλt). The scaling parameters αlφ and αlλt
allow to give different weights to either spatial or spectro-
temporal features. The second combination is the product of
kernel:

kPl (x,x′) = klφ(xφ,x
′
φ)× klλt(xλt,x′λt)

= exp

(
−
‖xφ − x′φ‖22

2`2lφ

)

× exp

(
−‖xλt − x′λt‖22

2`2lλt

) (23)

For each covariance function kPl , the trainable parameters are:
(`lφ, `lλt).

The trainable parameters are initialized with the following
values:
• `lλt =

√
d, `lφ =

√
d′ with d and d′ be respectively

the square root of the features dimension, as it is usually
done in kernel methods.

• αlφ = αlλt = ln 2.
All parameters are reparameterized in log-scale to enforce

positivity constraints during the learning step.

C. Inducing points (IP)

In this work, the number M of inducing points (IP) is
common to each latent GP gl. Different methods for the
initialization of IP from the training set were investigated,
such as random selection, clustering method (k-means) and
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defining a set of common or different IP per gl. None of
the investigated methods clearly outperforms the simplest one:
random selection with a set of common M points for each gl3.

D. Model complexity

As described previously, for each latent function gl, the
same mean and kernel function were chosen as well as the
same number of inducing points. Three different GP classifi-
cation models were studied: λt-GP, φλt-GPSC and φλt-GPPC.
λt-GP is a GP model using only the spectro-temporal covari-
ance function kλt(xλt,x

′
λt). φλt-GPSC and φλt-GPPC are

models with kSl (x,x′) and kPl (x,x′) the covariance functions
defined as (22) and as (23), respectively. Parameters for each
model and their corresponding sizes are summarized in the
Table I.

TABLE I: Parameters for each model and their corresponding
sizes. The last line corresponds to the total number of param-
eters for each model.

λt-GP φλt-GPSC φλt-GPSC
kl 1 4 2
ml 1 1 1
Zl M × d M(d+ d′) M(d+ d′)
ml M M M

Sl
M(M+1)

2
M(M+1)

2
M(M+1)

2
A L× C L× C L× C

Total L× (1 + 1+ L× (4 + 1+ L× (2 + 1+
d×M+ (d+ d′)×M+ (d+ d′)×M+

M +
M(M+1)

2
) M +

M(M+1)
2

) M +
M(M+1)

2
)

+L× C +L× C +L× C

V. DATA SET

This section presents the different data sets used in the ex-
periments and their corresponding pre-processing. The South-
france study area is located in the south of metropolitan
France and it covers an area of approximately 200 000 km2.
It is composed of 27 Sentinel-2 tiles, as displayed in Fig. 2.
The area provides a large variety of landscapes, ranging from
coastal, through rural and urban, to mountainous areas for
about 2 billion pixels.

A. SITS Sentinel-2

All available acquisitions of level 2A between January 2018
and December 2018 for the Sentinel-2 tiles were downloaded
from the Theia Data Center4.

3Some results are provided in the supplementary material.
4https://www.theia-land.fr/en/products/

Fig. 2: Location of the 27 tiles, a blue square corresponds
to one tile as provided by the Theia Data Center4. Each tile
is displayed with its name in the Sentinel-2 reference. Eco-
climatic regions (region 1 to region 8) are displayed for the
study area. (background map © OpenStreetMap contributors)

Surface reflectance time-series were produced using MAJA
processing chain, which corrects atmospheric, adjacency and
slope effects [96]. All spectral bands at a spatial resolution of
10 and 20m/pixel were used. Bands at 20m/pixel were spa-
tially up-sampled to 10m/pixel using a bicubic interpolation,
as implemented in the Orfeo ToolBox and its SuperImpose
application [97]. In addition to the spectral channels, 3 spec-
tral indices were also used: normalized difference vegetation
index (NDVI), normalized difference water index (NDWI)
and Brightness [98]. Furthermore, the geographic coordinates
(latitude, longitude) were also extracted for each pixel. These
spatial features are in meters in the Lambert 93 projection.
Thus for each pixel, 13 spectral features were extracted for
each date in addition to 2 spatial features. In order to cope with
the clouds/shadows and different temporal sampling among the
tiles, the data have been linearly resampled onto a common
set of virtual dates with an interval of 10 days, for a total of
37 dates [25].

Finally, a set of 483 features describes each pixel: 37
interpolated dates multiplied by 13 spectro-temporal features
(d = 481) added to 2 spatial features (d′ = 2).

B. Reference data

The reference data used in this work are composed of 23
land cover classes ranging from artificial areas to vegetation
and water bodies. It is the result of the fusion of four data
sources:

1) The CORINE Land Cover (CLC 2012): an inventory of
land cover in 44 classes with a spatial resolution of 250
meters [99].

2) The French National Geographic Institute ’BD-Topo’: a
national topographical map [100].

3) The Agricultural Land Parcel Information System “Reg-
istre Parcellaire Graphique” (RPG): a spatial register
of agricultural parcels with the associated crop type as
provided by farmer declarations [101].

4) The Randolph Glacier Inventory: a global inventory of
glacier outlines [102].

https://www.theia-land.fr/en/products/
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TABLE II: Land cover classes used for the experiments with
their corresponding color code and their respective area.

Color Code Name Area (km2)
CUF Continuous urban fabric 104
DUF Discontinuous urban fabric 654
ICU Industrial and commercial units 564
RSF Road surfaces 62
RAP Rapeseed 297
STC Straw cereals 564
PRO Protein crops 150
SOY Soy 470
SUN Sunflower 1 441
COR Corn 1 030
RIC Rice 77
TUB Tubers / roots 49
GRA Grasslands 1 167
ORC Orchards and fruit growing 93
VIN Vineyards 523
BLF Broad-leaved forest 1 593
COF Coniferous forest 4 934
NGL Natural grasslands 3 386
WOM Woody moorlands 1 713
NMS Natural mineral surfaces 1 680
BDS Beaches, dunes and sand plains 126
GPS Glaciers and perpetual snows 164
WAT Water bodies 14 567

Following the methodology described in [25], all the infor-
mation from these different sources has been aggregated, both
spatially and semantically, to create the reference data set. It
is provided as a set of non-overlapping spatial polygons. The
nomenclature of the 23 land cover classes can be found in
Table II.

C. Eco-climatic regions

As discussed in section I, the complexity of the classification
problem can be reduced by stratifying the spatial area into sub-
regions. In this work, French metropolitan eco-climatic regions
originaly proposed in [103] were used as strata. In each re-
gion, meteorological and topographical conditions are similar,
thus the spectro-temporal variability of the pixel reflectance
is reduced. All the eco-climatic regions are represented in
the study area, but with varying proportions as shown in
Figure 3. Figure 2 presents the eco-climatic regions over our
Southfrance study area.
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Fig. 3: Surface (in km2) of each eco-climatic region in the
Southfrance study area.

VI. EXPERIMENTAL SETUP

In this section, we explain how the data sets introduced in
the previous section are used for the experiments. Moreover,
we introduced three different competitive classification meth-
ods used in land cover classification for comparison.

A. Data generation

Two different data sets were produced using the
iota2 [104] software. A first data set called classification data
set was used to train the models and to assess their accuracy. A
second data set called boundary data set was used to evaluate
the spatial continuity of the predictions in the boundary zones
between two eco-climatic regions.

1) Classification data set: The classification data set was
produced for each eco-climatic region. It is composed of three
spatially disjoint data subsets: training, validation and test.
The training subset was used to train the model while the
validation subset was used to monitor the stochastic gradient
descent and to detect over-fitting [87]. The test subset was used
to estimate the performance of the model in terms of classi-
fication accuracy [105]. The term spatially disjoint indicates
that pixels from one polygon fully belong to an unique data
subset (either training, validation and test). 80 000, 20 000
and 100 000 polygons were extracted to build the training,
validation and test polygons, respectively.

Next, pixels were randomly sampled from these polygons.
Two sizes for the training-validation have been investigated
for the learning step: (4 000, 1 000) and (16 000, 4 000)
pixels per class, respectively called data set DS-A and data
set DS-B. 10 000 pixels were extracted for the test set (except
for the classes with fewer pixels, for which all were selected).

Two learning scenarios were considered: with and without
stratification. For the former scenario (stratification configura-
tion), a dedicated learning model was fit on each eco-climatic
region, and global predictions were obtained by concatenating
per-region model predictions over the full area. For the second
scenario (global configuration), only one model was learned
using pixels gathered from the 8 classification data sets.

The performance of each model in terms of classification
accuracy for the two scenarios was computed using classi-
cal classification metrics (overall accuracy (OA), fscore and
kappa). To correctly estimate the classification metrics, 11 runs
with different random pixel sampling were done. Table III
provides the average number of pixels for each class and
region for the 11 training-validation-test pixels subsets.

2) Boundary data set: The spatial continuity of the
model predictions at the border of two eco-climatic re-
gions is assessed thanks to the boundary data set. It is
composed of labeled and unlabeled pixels in a buffered
area around the boundary of two regions5, see Figure 4.
Several buffer sizes B have been investigated: B ∈
{100, 200, 500, 1000, 1500, 2000} meters, the total width of
the buffer being equal to 2 × B. All available labeled pix-
els were selected except those included in the training and
validation data sets. From the available unlabeled pixels,
approximately 1% were selected. Table IV summarizes the
number of labelled and unlabelled pixels for each buffer size.

5An example with real data is given in supplementary material.
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TABLE III: Average number of pixels per class and regions. For a given class, the two first rows (data set DS-A and B)
indicate the number of training-validation pixels per region and the third rows indicates the number of test pixels per region.
The class code is provided in Table II.

Regions Global
Class 1 2 3 4 5 6 7 8

4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 32 000 - 8 000
6 569 - 1 727 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 12 011 - 2 676 10 802 - 2 657 16 000 - 4 000 16 000 - 4 000 109 382 - 27 061CUF

7 286 10 000 10 000 10 000 10 000 10 000 10 000 10 000 77 286

4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 32 000 - 8 000
16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 128 000 - 32 000DUF

10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 80 000

4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 32 000 - 8 000
16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 128 000 - 32 000ICU

10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 80 000

3 939 - 966 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 2 562 - 658 4 000 - 1 000 4 000 - 1 000 30 501 - 7 624
5 191 - 2 104 16 000 - 4 000 7 642 - 4 000 16 000 - 4 000 9 148 - 2 769 2 562 - 658 16 000 - 4 000 16 000 - 4 000 88 543 - 23 457RSF

6 622 10 000 10 000 10 000 10 000 5 360 10 000 10 000 71 982

4 000 - 987 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 941 32 000 - 7 928
5 942 - 1 424 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 7 261 - 2 125 109 204 - 27 549RAP

4551 10 000 10 000 10 000 10 000 10 000 10 000 10 000 74 551

4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 32 000 - 8 000
16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 128 000 - 32 000STC

10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 80 000

1 073 - 340 4 000 - 1 000 1 188 - 363 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 26 261 - 6 704
1 073 - 340 9 748 - 2 596 1 188 - 363 16 000 - 4 000 16 000 - 4 000 11 945 - 2 709 16 000 - 4 000 13 154 - 3 243 85 110 - 21 253PRO

1 222 10 000 3 120 10 000 10 000 10 000 10 000 10 000 64 342

3 998 - 902 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 31 998 - 7 902
4 362 - 1 122 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 3 959 16 000 - 4 000 16 000 - 4 000 16 000 - 344 116 362 - 28 525SOY

7 098 10 000 10 000 10 000 10 000 10 000 10 000 10 000 77 098

1 316 - 437 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 29 316 - 7 437
1 437 - 1 122 16 000 - 4 000 16 000 - 3 757 16 000 - 4 000 16 000 - 3 959 16 000 - 4 000 16 000 - 4 000 16 000 - 344 113 316 - 28 194SUN

3 492 10 000 10 000 10 000 10 000 10 000 10 000 10 000 73 492

4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 32 000 - 8 000
16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 128 000 - 32 000COR

10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 80 000

0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 4 000 - 1 000 0 - 0 4 000 - 1 000 8 000 - 2 000
0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 16 000 - 4 000 0 - 0 16 000 - 4 000 32 000 - 8 000RIC

0 0 0 0 0 10 000 0 10 000 20 000

1 604 - 411 3 836 - 912 2 757 - 676 4 000 - 1 000 4 000 - 988 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 28 199 - 6 988
1 604 - 411 3 928 - 1 078 2 757 - 676 16 000 - 4 000 8 688 - 2 563 11 518 - 3 296 16 000 - 4 000 16 000 - 3 985 76 497 - 20 011TUB

1 816 5 185 5 864 10 000 10 000 10 000 10 000 10 000 62 865

4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 32 000 - 8 000
16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 128 000 - 32 000GRA

10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 80 000

844 - 173 4 000 - 1 000 1 175 - 343 4 000 - 1 000 3 236 - 800 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 25 256 - 6 317
844 - 173 15 967 - 3 930 1 175 - 343 16 000 - 4 000 3 236 - 965 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 85 223 - 21 412ORC

657 10 000 3 026 10 000 3 590 10 000 10 000 10 000 57 273

672 - 207 4 000 - 987 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 28 672 - 7 194
672 - 207 5 399 - 1 545 6 255 - 1 649 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 92 327 - 23 402VIN

574 5 115 9 200 10 000 10 000 10 000 10 000 10 000 64 889

4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 32 000 - 8 000
16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 128 000 - 32 000BLF

10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 80 000

4 000 - 1 000 4 000 - 1 000 2 598 - 648 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 30 598 - 7 648
16 000 - 4 000 16 000 - 4 000 2 598 - 717 16 000 - 4 000 16 000 - 3 896 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 114 598 - 28 614COF

10 000 10 000 5 317 10 000 10 000 10 000 10 000 10 000 75 317

4 000 - 1 000 4 000 - 1 000 0 - 0 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 28 000 - 7 000
16 000 - 4 000 16 000 - 4 000 0 - 0 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 112 000 - 28 000NGL

10 000 10 000 0 10 000 10 000 10 000 10 000 10 000 70 000

4 000 - 1 000 4 000 - 1 000 3 983 - 925 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 31 983 - 7 925
16 000 - 4 000 16 000 - 4 000 4 920 - 1 401 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 116 920 - 29 401WOM

10 000 10 000 6 189 10 000 10 000 10 000 10 000 10 000 76 189

4 000 - 1 000 4 000 - 1 000 0 - 0 4 000 - 1 000 3 437 - 768 4 000 - 1 000 0 - 0 4 000 - 1 000 23 437 - 5 768
16 000 - 4 000 16 000 - 4 000 0 - 0 16 000 - 3 773 7 654 - 1 795 16 000 - 4 000 0 - 0 16 000 - 3 932 87 654 - 21 500NMS

10 000 10 000 0 10 000 3 140 10 000 0 10 000 53 140

4 000 - 1 000 3 990 - 748 0 - 0 4 000 - 931 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 27 990 - 6 679
15 713 - 3 853 5 274 - 1 194 0 - 0 16 000 - 2 137 16 000 - 3 972 16 000 - 4 000 6 817 - 4 000 16 000 - 4 000 91 805 - 23 157BDS

10 000 9 097 0 10 000 10 000 10 000 0 10 000 59 097

4 000 - 1 000 0 - 0 0 - 0 0 - 0 3 715 - 818 0 - 0 0 - 0 0 - 0 7 715 - 1 818
16 000 - 4 000 0 - 0 0 - 0 0 - 0 4 773 - 2 114 0 - 0 0 - 0 0 - 0 20 773 - 6 114GPS

10 000 0 0 0 4 383 0 0 0 14 383

4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 32 000 - 8 000
16 000 - 4 000 16 000 - 3 915 16 000 - 4 000 16 000 - 3 957 16 000 - 3 586 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 128 000 - 31 459WAT

10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 80 000
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TABLE IV: Number of extracted pixels for the boundary data set for each class and each buffer size.

Class Boundary size 2B (in meters)
200 400 1 000 2 000 3 000 4 000

DEA 13 210 24 795 54 063 89 637 120 212 145 055

DIA 69 801 129 865 290 381 551 337 793 284 985 294

ICA 37 873 76 091 175 984 345 776 499 108 632 258

ROA 4 413 8 319 20 344 42 039 63 063 77 133

OIL 39 251 73 323 149 778 250 106 329 672 408 112

STC 62 048 119 209 250 463 440 889 583 845 710 629

PRO 13 729 27 975 68 267 124 310 158 918 196 369

SOY 54 631 107 367 243 272 404 260 536 731 667 757

SUN 140 271 262 218 574 634 987 998 1 315 013 1 597 642

COR 139 962 261 293 583 261 1 019 811 1 360 352 1 651 259

RIC 7 952 14 465 32 304 63 066 82 738 95 780

TUB 4 479 10 608 21 697 41 108 57 657 74 043

GRA 151 587 289 454 636 485 1 141 138 1 551 963 1 892 411

ORC 10 512 20 144 46 956 81 462 109 277 133 584

VIN 29 979 56 131 129 244 239 707 323 826 403 441

HAF 334 754 634 454 1 430 734 2 480 683 3 323 765 3 974 349

SOF 623 400 1 175 363 2 615 784 4 755 157 6 669 116 8 524 143

NGP 458 962 881 752 1 977 349 3 410 308 4 606 858 5 621 974

WOM 236 179 443 113 944 710 1 542 605 2 040 969 2 511 469

NMS 81 900 155 856 324 391 483 110 618 084 785 524

BDS 8 480 16 246 47 651 69 107 91 400 112 524

GES 7 7 608 2 887 5 311 5 390

WAT 262 745 507 158 1 170 362 2 177 128 3 098 221 3 910 482

Total 2 786 125 5 295 206 11 788 722 20 743 629 28 339 383 35 116 622

Unlabelled 466 238 887 200 1 966 564 3 427 563 4 639 251 5 710 571

2B

Region 1

Region 2

Fig. 4: Synthetic example of random selection of pixels on
the boundary between two regions. Gray pixels are selected
to compose the boundary data set.

B. Pre-processing

Feature scaling was performed before the learning step,
mean and standard deviation were estimated for each fea-
ture on the training data set from the classification data
set and then used to standardize the data on the different
data sets (training, validation, test and boundary) [106]. The
standardization was performed with the Scikit-Learn function
StandardScaler [107].

C. Competitive methods

The GP model described in section IV was implemented
using the library GPyTorch. It is based on PyTorch and has

been developed to exploit the usage of GPU hardware [108].
The number of gl latent functions was selected with L = C.
The matrix A which is the linear relation between GP was
initialized with random values drawn from a standard Gaussian
distribution. The prediction was done using 10 draws from the
MC sampling. Studies have been made with a higher number
of samples but results were similar.

Our GP model was compared with three different clas-
sification methods. The first two do not take into account
the spectro-temporal structure of the data, e.g., modifying
the order of the temporal acquisitions would not change the
behavior of the algorithm. The last one takes the temporal
structure into account to process the SITS.

a) Random Forest (RF): The Random Forest Classifier
from the Scikit-Learn library [107] was used to train the RF
model. Standard parameter settings were used: 100 trees with
no maximum depth and the number of features considered for
splitting at each leaf node is equal to the square root of the
total number of features.

b) Multi-layer Perceptron (MLP): The MLP model was
built with four hidden layers. The number of neurons in the
first layer is the number of features divided by 2 (481/2 = 240
or 483/2 = 241) and in the last three layers: the number of
classes multiplied by 3 (23× 3 = 69). The activation function
used is the ReLu.

c) Lightweight Temporal Self-Attention (LTAE): In
LTAE, temporal inputs are divided in channels distributed
among several compact attention heads. Each head operates in
parallel and can extract highly-specialized temporal features.
These features are concatenated to create a single represen-
tation. A more detailed description and the parameters used
from the LTAE model are given in [44]. The implementation
is based on the Pytorch library.
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For GP and neural networks, the Adam optimizer was used.
Solver parameters are given in Table V. They were found by
trial and error.

TABLE V: Parameter values for the Adam optimizer for GP,
MLP and LTAE.

GP MLP LTAE
Number of epochs E 100 300 100
Batch size β 1024 1000 1000
Learning rate η 1× 10−3 1× 10−5 1× 10−5

For each classification method defined previously, two dif-
ferent models are learned: λt-model and φλt-model. λt-model
is the model trained using only spectro-temporal features xλt.
φλt-model is the one trained using spectro-temporal features
xλt but also spatial features xφ as defined in section V-A. The
number of trainable parameters for each method in the global
configuration classification is summarized in the Table VI.

TABLE VI: Number of trainable parameters for each model
in the global configuration classification.

Model # of parameters
λt-GP 584 200

φλt-GPSC 586 569
φλt-GPPC 586 523
λt-MLP 143 579
φλt-MLP 144 612
λt-LTAE 239 521
φλt-LTAE 240 005

VII. RESULTS

This section describes the results obtained for the clas-
sification and boundary data sets: the global performance
accuracy of each method in the Southfrance area and the
spatial continuity of the predictions in the boundary zones.
Quantitative results but also qualitative ones are given for each
case.

A. Performance results in the Southfrance area

1) Quantitative results: Classification metrics were com-
puted using the test data set from the classification data set
Southfrance in both configurations (stratification and global).
They were computed over the 11 runs of each model trained
either with the training data set DS-A or DS-B. The studied
models are: λt-GP, φλt-GPSC, φλt-GPPC, λt-RF, φλt-RF,
λt-MLP, φλt-MLP, λt-LTAE and φλt-LTAE. The global av-
eraged metrics (overall accuracy (OA), fscore, kappa) and the
averaged fscore for each class are presented in Appendix B
for the global and stratification configurations. The OA for
each model trained with training data sets DS-A and DS-B
are respectively presented as boxplots in Figures 5a and 5b.
For all models (GP, RF, MLP, LTAE) and configurations
(global and stratification), by adding the spatial information,
the performances are increased. Indeed, the OA is increased
by less than 1 point for RF and MLP models and between
1 and 3 points for GP and LTAE models. More precisely, in

global configuration, GP models benefit the most from the
adding of the spatial information: the OA is increased by 3
points compared to less than 1 point for RF and MLP and
around 2 points for LTAE. Furthermore, GP models are the
ones with the highest variability specifically in the global
configuration. Only λt-GP and RF models have better results
with the stratification configuration compared to the global
one. Finally, by considering the best configuration (global with
spatial information), GP models are in averaged 3 points above
the RF model and 1 point above the MLP model and globally
1 point below the LTAE models.

The averaged training and prediction times were computed
for each region and each model over the 11 runs6. To process
the RF models, 20 CPU with a total memory of 100 GB were
available. For GP and DL models, 1 GPU NVIDIA Tesla
V100 was accessible. In global configuration, RF have the
quickest training time followed by LTAE, MLP and finally
GP. GP are more demanding, because of the MC sampling
for the variational posterior. Moreover, φλt-GPSC have higher
training times compared to φλt-GPPC due to a larger number
of trainable parameters.

2) Qualitative results: Land cover maps have been pro-
duced using the processing chain iota2 [104] for both strat-
ification and global configurations. Experiments were done
for all the studied models described previously on two tiles:
T31TCJ and T31TDJ . For each region, predictions were
done using the model trained with the train data set DS-
A on the 27 tiles with the best OA over the 11 runs. In
global configuration, considering an agricultural area around
Toulouse, the pixels are more homogeneous (with less salt and
pepper classification noise [109]) with the GP model trained
with the spatial information than without as shown respectively
in Figure 6b and Figure 6a7. Finally, all the land cover maps
generated are available for download 8.

B. Continuity analysis in boundary zones

In stratification configuration, two models surrounding a
boundary zone are trained independently. The main idea is
to evaluate the continuity in predictions inside the boundary
zone.

1) Quantitative results: All the pixels inside the boundary
zone (i.e. boundary data set) are predicted by both models
surrounding this zone. The number of agreements corresponds
to the number of pixels predicted with the same label by both
models. Thus, the percentage of agreement corresponds to the
number of agreements divided by the total number of pixels
predicted. This percentage can be calculated for both unlabeled
pixels and labeled pixels which are correctly predicted. The
size of the boundary has no influence as the results are similar
for different sizes of boundary B ∈ {100, 200, 500, 1000}9. In
general, RF models have higher agreements than other models
for both unlabeled and labeled pixels correctly predicted.

6Results are provided in the supplementary material.
7The land cover maps of this agricultural area around Toulouse for all

the studied models in both configurations are provided in the supplementary
material.

8DOI: 10.5281/zenodo.7077887
9All the results can be found in supplementary material.
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Fig. 5: Boxplots of the overall accuracy for each model (λt-GP, φλt-GPSC, φλt-GPPC, λt-RF, φλt-RF, λt-MLP, φλt-MLP,
λt-LTAE and φλt-LTAE). Comparison between global and stratification configurations.

(a) model λt-GP (b) model φλt-GPPC

Fig. 6: Land cover maps on an agricultural area around Toulouse (tile T31TCJ) (global configuration)

However, the percentage of agreements with labeled pixels
correctly predicted is around 2 points below the ones with the
unlabeled pixels. Indeed, the continuity in predictions does not
mean that the predictions are correct. We also computed the
OA on labeled pixels for different sizes of boundary for both
global and stratification configurations9. For all methods, the
OA in the global configuration is above the stratification one.
The difference between both configuration is only 2 points
for RF models and more than 4 points for DL methods. The
stratification configuration is only beneficial for RF methods,
as results found in section VII-A1.

2) Qualitative results: Considering a specific boundary
zone, land cover maps computed with λt-GP model high-
lighted discontinuities between two eco-climatic regions in
stratification configuration as shown in Figure 7a. Adding the
spatial information did not improve the prediction continuity10.
The studied boundary zone has a high elevation gradient and
has very few reference data. It can explain why adding the
spatial information did not improve the performance contrary
to what was shown in section VII-B1. Generally, for all

10Land cover maps in this specific boundary zone for all models are
provided in supplementary material.

models, the same results are found10. In global configuration,
with λt-GP model, these discontinuities are not existent as
shown in Figure 7b. Same results are found for all models10,
with or without the spatial information, which is consistent
with the results found in section VII-B1. Moreover, adding
the spatial information clearly modify the predictions in the
case of GP or LTAE models which is not the case for RF or
MLP models.

VIII. DISCUSSION

Beyond the quantitative and qualitative assessment of GP
with respect to other approaches performed in the previous
section, we propose here an analysis of the specific outputs
of GP. One advantage of GP with respect other ML or DL
approaches is their ability to produce full posterior predictive
distributions and not only point estimates. Section VIII-A
will discuss this aspect. As we claimed in section I, another
interesting feature of GP is the interpretability of the learned
parameters. Section VIII-B will focus on the interpretation of
some of these parameters and, in particular, their evolution
during the training.
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(a) stratification configuration (b) global configuration

Fig. 7: Land cover maps between two eco-climatic regions computed with λt-GP model (tile T31TDJ). The black line
represents the boundary between regions.

A. Posterior predictive distribution

As described in section III, the posterior predictive dis-
tribution is not Gaussian and has to be estimated with MC
sampling. For each sample, the class membership probabilities
are computed by averaging the random draws. The class
with the largest value is selected as the predicted class. In
addition to the average value, standard deviation could also
be computed as a measure of uncertainty of the classifier.
Figures 8 and 9 represent the approximate posterior predictive
distributions (obtained with 100 draws) of the two largest class
membership probabilities for respectively a pixel correctly
predicted and a pixel incorrectly predicted. In the case of
a correctly predicted pixel, whatever the draw, the model
is very confident: the marginal distributions are tight thus
the variance is low. However, in the case of an incorrectly
predicted pixel, we observe wide marginal distributions which
can be interpreted as higher uncertainty.

Another possibility to observe this trend is by looking at
marginal distributions of the selected class membership for
correctly or incorrectly predicted pixels. Indeed, Figure 10
shows that on average, the posterior predictive distribution of
pixels correctly predicted has a higher mean but also a smallest
standard deviation than the posterior predictive distribution of
pixels not correctly predicted.

B. Interpretation of the learned parameters

As described in section IV, different parameters are opti-
mized during the training step. In the following, we will focus
our study on two different learned parameters: the inducing
points Zl and the matrix A.

1) Spatial location of IP: Inducing points (IP) are used to
approximate the posterior and their values are optimized to
find a posterior as similar as possible to the true posterior
on the learning samples [69]. Relevant information can be
obtained by looking at the IP after optimization. Visualizing
the 481 spectro-temporal features is not possible and we
restrict here to only 2 spatial features, see Appendix C. The
plotted ellipses represent the spatial area inside which the
spatial correlation is greater than 0.9. The spatial distribution

0.0

0.2

0.4

0.6

0.8

1.0

cla
ss

 S
OY

0.00 0.25 0.50 0.75 1.00
class SOY

0.0

0.2

0.4

0.6

0.8

1.0

cla
ss

 C
OR

0.00 0.25 0.50 0.75 1.00
class COR

Fig. 8: Posterior predictive distributions, estimated with 100
draws, of the two largest class membership probabilities for
a pixel correctly predicted (true class: SOY). Marginal dis-
tribution of each class is shown on the diagonal and joint
distribution between two classes is shown on the off-diagonal.

of the optimized IP can be qualified as regular: the points
are more regularly spaced than in a random distribution.
Also, the obtained spatio-lengthscale `φ varies w.r.t. the latent
GP, Appendix C represents their distribution. One possible
interpretation is that the model performs a multi-scale anal-
ysis in the spatial domain: latent GP with small spatio-
lengthscale perform a local analysis while latent GP with large
spatio-lengthscale perform a global analysis and latent GP
do not even use the spatial information because their spatio-
lengthscale are to large and the spatial kernel is always close
to 1.

2) Weighting matrix of latent Gaussian Processes: As
described in section II-B, A is a mixing matrix: its coefficients
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Fig. 9: Posterior predictive distributions, estimated with 100
draws, of the two largest class membership probabilities for
a pixel incorrectly predicted (true class: SUN). Marginal
distribution of each class is shown on the diagonal and joint
distribution between two classes is shown on the off-diagonal.

acl are used to combine the L independent univariate latent GP
gl in order to estimate a final GP fc such as fc =

∑L
i=1 acigi.

The acl can be interpreted as the contribution of a latent GP to
the class-conditional posterior predictive distribution. Yet, we
have found no specific pattern in A among the different results
and we were not able to derive any specific interpretations:
all GP contribute significantly. A possible extension would
be to add sparsity constraints on A in order to improve the
interpretability.

IX. CONCLUSIONS AND PERSPECTIVES

This work introduced an approach based on variational
Gaussian Processes (GP) for land cover pixel-based classifi-
cation at large scale. The discussed model combines sparse
methods with variational inference and is able to scale to
large data sets. The spatio-spectro-temporal structure of the
SITS was taken into account through a dedicated covariance
function. Experiments were conducted on Sentinel-2 SITS of
the full year 2018 on a total of 27 tiles on the south of France.
In terms of accuracy, GP models outperformed conventional
ML methods (i.e. RF) and DL methods (i.e. MLP). However,
they are slightly worse than structured DL models (i.e. LTAE).
Another finding is that spatial stratification is not necessary
for advanced classifiers. Even worse, spatial discontinuities
between adjacent regions are more severe for such classifiers
w.r.t. RF.

Yet, spatial stratification in a large scale context can be of
interest since the size of the training set is reduced and the
different models can be trained in parallel. In such a case, a
possible perspective would be to impose a smooth transition
in terms of prediction between two spatial regions during the
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Fig. 10: Joint density of the standard deviation and the mean of
the posterior predictive distribution for the selected class mem-
bership (obtained with 10 draws) and their respective marginal
densities. − corresponds to 1000 pixels correctly predicted
and − corresponds to 1000 pixels incorrectly predicted. The
model φλt-GPSC was trained on a global configuration.

learning step. Following [110], we are considering to introduce
an auxiliary GP linking pairs of adjacent regions at boundaries
to constrain similar predictions in those areas.

The implementation of the models is available in the
open-source repository: https://gitlab.cesbio.omp.eu/belletv/
land cover southfrance gp.

Another perspective of this work is to implement feature ex-
traction in order to take greater account of the spectro-temporal
structure in the GP. The estimation of the inducing points
involves a high number of parameters and is time-consuming:
reducing the number of features could be beneficial for the
convergence of the algorithm.

ACKNOWLEDGMENT

The authors would like to thank Benjamin Tardy for his
support and his help during the implementation of the different
data sets and the generation of land cover classification maps
with the iota2 software. The authors would also like to thank
the CNES for the provision of its high performance computing
(HPC) infrastructure to run the experiments presented in this
paper and the associated help.

https://gitlab.cesbio.omp.eu/belletv/ land_cover_southfrance_gp
https://gitlab.cesbio.omp.eu/belletv/ land_cover_southfrance_gp


15

REFERENCES

[1] F. Bertini, O. Brand, S. Carlier, U. Del Bello, M. Drusch, R. Duca,
V. Fernandez, C. Ferrario, M. H. Ferreira, C. Isola, V. Kirschner,
P. Laberinti, M. Lambert, G. Mandorlo, P. Marcos, P. Martimort,
S. Moon, P. Oldeman, M. Palomba, and J. Pineiro, “Sentinel-2 esa’s
optical high-resolution mission for gmes operational services,” ESA
bulletin. Bulletin ASE. European Space Agency, vol. SP-1322, 03 2012.

[2] C. Persello, J. D. Wegner, R. Hansch, D. Tuia, P. Ghamisi, M. Koeva,
and G. Camps-Valls, “Deep Learning and Earth Observation to Sup-
port the Sustainable Development Goals: Current Approaches, Open
Challenges, and Future Opportunities,” IEEE Geoscience and Remote
Sensing Magazine, pp. 2–30, 2022.

[3] C. Tarantino, M. Adamo, R. Lucas, and P. Blonda, “Change Detection
in (Semi-) Natural Grassland Ecosystems for Biodiversity Monitoring
Using Open Data,” in IGARSS 2018 - 2018 IEEE International Geo-
science and Remote Sensing Symposium, pp. 8981–8984, 2018.

[4] M. Fauvel, M. Lopes, T. Dubo, J. Rivers-Moore, P.-L. Frison, N. Gross,
and A. Ouin, “Prediction of plant diversity in grasslands using Sentinel-
1 and -2 satellite image time series,” Remote Sensing of Environment,
vol. 237, p. 111536, 2020.

[5] N. Karasiak, D. Sheeren, M. Fauvel, J. Willm, J.-F. Dejoux, and
C. Monteil, “Mapping tree species of forests in southwest France using
Sentinel-2 image time series,” in 2017 9th International Workshop on
the Analysis of Multitemporal Remote Sensing Images (MultiTemp),
pp. 1–4, 2017.

[6] J. Dalimier, M. Claverie, B. Goffart, Q. Jungers, C. Lamarche,
T. De Maet, and P. Defourny, “Characterizing the Congo Basin Forests
by a Detailed Forest Typology Enriched with Forest Biophysical
Variables,” in 2021 IEEE International Geoscience and Remote Sensing
Symposium IGARSS, pp. 673–676, 2021.

[7] M. Pereira-Sandoval, A. Ruiz-Verdù, C. Tenjo, J. Delegido, P. Urrego,
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output gaussian process prediction,” in Advances in Neural Infor-
mation Processing Systems (S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, eds.), vol. 31, Curran
Associates, Inc., 2018.

[71] A. G. Wilson, Z. Hu, R. R. Salakhutdinov, and E. P. Xing, “Stochastic
Variational Deep Kernel Learning,” Advances in Neural Information
Processing Systems, vol. 29, 2016.

[72] R. M. Neal, “Monte Carlo Implementation of Gaussian Process Models
for Bayesian Regression and Classification,” arXiv: Data Analysis,
Statistics and Probability, 1997.

[73] Y. Bazi and F. Melgani, “Gaussian Process Approach to Remote
Sensing Image Classification,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 48, no. 1, pp. 186–197, 2010.

[74] C. Williams and D. Barber, “Bayesian classification with Gaussian
processes,” IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 20, no. 12, pp. 1342–1351, 1998.

[75] T. P. Minka, “Expectation Propagation for Approximate Bayesian In-
ference,” in Proceedings of the Seventeenth Conference on Uncertainty
in Artificial Intelligence, UAI’01, (San Francisco, CA, USA), pp. 362–
369, Morgan Kaufmann Publishers Inc., 2001.
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APPENDIX A
SYMBOLS AND NOTATIONS

Symbol Meaning

A Mixing matrix, A ∈ RC×L
αl, `l Scaling, lengthscale parameter of the covari-

ance function kl
C Number of classes, c ∈ {1, ..., C}
d, d′ Number of spectro-temporal, spatial features
f ∼ GP(m, k) Univariate GP with mean function m and

covariance function k
f ∼ GP(m,K) P -multivariate GP such as f = Ag with

mean function m and covariance function K
gl ∼ GP(ml, kl) Univariate GP, the lth latent GP with mean

function ml and covariance function kl
g Vector of L independent univariate GP, g =

[g1, ..., gL]
k∗ Covariance vector between the

training inputs and the test inputs
k∗ = [k(x1,x∗), . . . , k(xN ,x∗)]

>

K Covariance matrix such as Kij = k(xi,xj),
∀i, j ∈ {1, . . . , N}2

Ko Covariance matrix such as Ko,ij =
K(xi,xj), ∀i, j ∈ {1, . . . , N}2

Kv Covariance matrix of the L-dimensional
distribution q (g(xi)|θv,θ) ∼
NL

(
g(xi)|mv,Kv)

Kv
ll The diagonal lth element of diagonal covari-

ance matrix Kv

L Number of latent processes, l ∈ {1, ..., L}
m Mean vector of the variational distribution

q(f(Z)) ∼ NM (m,S)
mv Mean matrix of the L-dimensional distribu-

tion q (g(xi)|θv,θ) ∼ NL
(
g(xi)|mv,Kv)

M Number of inducing points
µ Mean vector such as µ =[

m(x1), . . . ,m(xN )
]>

µo Mean vector such as µo =
[m(x1), . . . ,m(xN )]>

N Number of training inputs
NN (µ,K) Multivariate Gaussian distribution of N di-

mension with mean vector µ and covariance
matrix K

P Number of output GP, p ∈ {1, ..., P}
q(f(Z)) Variational distribution q(f(Z)) ∼

NM (m,S)
Sl Covariance matrix of the distribution

gl(Zl) ∼ NM (ml,Sl) q
Θ Hyper-parameters of g, Θ = {θ1, ...,θL}
θlk Parameters of the covariance function kl
θlm Parameters of the mean function ml

θl Hyper-parameters of the latent process gl,
θl = {θlm,θlk}

θV Parameters of the variational distribution q,
θV = {m,S}

ΘV Parameters of all the variational distributions
ΘV = {θVl , ...,θVL}

xi,yi The ith training input, target
xiφ, xiλt Spatial, spectro-temporal features of the ith

pixel
X Set of training inputs X = [x1, ...,xn]
Y Set of training targets Y = [y1, ...,yn]
zi The ith inducing point
Zl Set of inducing points for the latent process

gl, Zl = {zli}Mi=1
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APPENDIX B
QUALITATIVE RESULTS: CLASSIFICATION METRICS

Global averaged metrics (overall accuracy (OA), fscore, kappa) and the averaged fscore for each class were computed over the 11 runs
of each model trained either with the training data set DS-A or DS-B (mean % ± standard deviation). The first line corresponds to the data
set DS-A and the second line corresponds to the data set DS-B. The studied models are: λt-GP, φλt-GPSC, φλt-GPPC, λt-RF, φλt-RF,
λt-MLP, φλt-MLP, λt-LTAE and φλt-LTAE. The first table corresponds to the global configuration and the second table corresponds to the
stratification configuration.

TABLE VII: Global configuration

λt-GP φλt-GPSC φλt-GPPC λt-RF φλt-RF λt-MLP φλt-MLP λt-LTAE φλt-LTAE

62.4 ± 3.4 69.1 ± 0.8 69.0 ± 0.9 60.8 ± 0.2 62.5 ± 0.2 65.4 ± 0.2 66.6 ± 0.3 64.7 ± 0.4 67.9 ± 0.3CUF 62.2 ± 1.7 68.1 ± 0.9 67.9 ± 1.1 60.1 ± 0.2 62.3 ± 0.2 65.4 ± 0.3 66.8 ± 0.2 64.0 ± 0.3 68.4 ± 0.3

61.3 ± 1.1 69.1 ± 0.8 68.8 ± 1.0 57.3 ± 0.2 58.6 ± 0.2 63.7 ± 0.4 65.0 ± 0.3 62.7 ± 0.5 66.7 ± 0.6DUF 63.9 ± 0.8 70.3 ± 0.8 70.1 ± 0.6 60.5 ± 0.1 62.2 ± 0.2 67.3 ± 0.2 68.8 ± 0.3 66.3 ± 0.3 71.8 ± 0.4

50.8 ± 1.5 58.3 ± 1.5 59.1 ± 1.2 49.8 ± 0.2 51.7 ± 0.3 54.1 ± 0.5 55.7 ± 0.3 53.4 ± 0.7 58.7 ± 0.4ICU 55.0 ± 0.9 62.0 ± 1.6 62.7 ± 1.1 53.8 ± 0.1 56.0 ± 0.1 60.5 ± 0.4 62.2 ± 0.3 59.6 ± 0.3 65.4 ± 0.3

77.5 ± 0.6 81.2 ± 0.9 81.6 ± 0.8 76.2 ± 0.3 77.1 ± 0.3 80.3 ± 0.4 81.2 ± 0.3 80.3 ± 0.5 83.4 ± 0.4RSF 78.4 ± 1.1 81.8 ± 0.7 82.3 ± 0.5 77.2 ± 0.2 78.4 ± 0.2 82.1 ± 0.3 83.4 ± 0.3 82.3 ± 0.2 85.5 ± 0.2

94.7 ± 0.7 94.6 ± 0.5 94.5 ± 0.7 94.5 ± 0.3 94.5 ± 0.3 94.5 ± 0.6 94.5 ± 0.6 94.9 ± 0.5 94.8 ± 0.3RAP 95.2 ± 0.5 95.3 ± 0.5 95.4 ± 0.3 95.2 ± 0.2 95.3 ± 0.2 95.3 ± 0.4 95.4 ± 0.4 95.8 ± 0.3 96.0 ± 0.4

87.5 ± 0.5 87.7 ± 0.3 87.9 ± 0.3 85.6 ± 0.1 85.7 ± 0.1 87.5 ± 0.5 87.8 ± 0.2 89.2 ± 0.3 89.6 ± 0.2STC 89.4 ± 0.4 89.7 ± 0.4 89.7 ± 0.6 87.7 ± 0.1 87.9 ± 0.1 89.7 ± 0.3 89.9 ± 0.2 91.2 ± 0.2 91.5 ± 0.2

74.3 ± 1.3 76.2 ± 1.1 76.2 ± 1.0 70.3 ± 0.3 71.0 ± 0.2 75.1 ± 1.0 75.8 ± 0.8 76.8 ± 1.0 78.9 ± 0.8PRO 77.0 ± 0.9 78.5 ± 1.2 78.3 ± 1.2 73.7 ± 0.2 74.6 ± 0.2 77.8 ± 0.6 78.9 ± 0.5 80.2 ± 0.5 81.9 ± 0.8

89.3 ± 0.5 89.6 ± 0.4 89.5 ± 0.4 87.3 ± 0.2 87.5 ± 0.3 89.5 ± 0.4 89.6 ± 0.6 91.2 ± 0.6 91.9 ± 0.4SOY 90.3 ± 0.4 90.6 ± 0.6 90.2 ± 0.5 88.6 ± 0.1 88.8 ± 0.1 90.9 ± 0.4 91.1 ± 0.5 92.5 ± 0.4 92.9 ± 0.4

88.2 ± 0.7 88.2 ± 0.8 88.6 ± 0.8 84.4 ± 0.2 84.6 ± 0.2 88.3 ± 0.4 88.3 ± 0.4 89.7 ± 0.6 90.5 ± 0.4SUN 89.6 ± 1.1 90.0 ± 0.8 89.9 ± 0.9 86.4 ± 0.1 86.5 ± 0.2 90.5 ± 0.2 90.5 ± 0.3 91.5 ± 0.3 91.9 ± 0.3

91.4 ± 0.5 91.5 ± 0.5 91.3 ± 0.5 89.5 ± 0.2 89.5 ± 0.2 91.3 ± 0.3 91.3 ± 0.2 93.3 ± 0.1 93.3 ± 0.3COR 92.0 ± 0.6 92.3 ± 0.5 92.0 ± 0.5 90.6 ± 0.1 90.7 ± 0.1 92.5 ± 0.2 92.4 ± 0.3 94.1 ± 0.2 94.0 ± 0.2

98.2 ± 0.1 98.2 ± 0.4 98.3 ± 0.2 98.4 ± 0.1 98.5 ± 0.1 97.9 ± 0.1 97.9 ± 0.2 98.2 ± 0.1 98.4 ± 0.1RIC 98.3 ± 0.2 98.5 ± 0.2 98.3 ± 0.7 98.6 ± 0.0 98.7 ± 0.0 98.3 ± 0.1 98.2 ± 0.3 98.5 ± 0.2 98.7 ± 0.1

83.0 ± 0.8 83.1 ± 0.9 83.8 ± 0.8 79.0 ± 0.3 79.5 ± 0.6 83.4 ± 0.6 83.5 ± 0.7 86.8 ± 0.8 87.9 ± 0.5TUB 85.0 ± 1.0 85.0 ± 0.8 84.6 ± 1.2 80.6 ± 0.4 81.0 ± 0.4 85.5 ± 0.8 86.0 ± 0.6 89.0 ± 0.4 89.7 ± 0.4

71.7 ± 0.8 73.7 ± 0.8 73.7 ± 0.5 70.2 ± 0.2 70.6 ± 0.2 72.3 ± 0.3 73.0 ± 0.5 73.5 ± 0.2 75.2 ± 0.2GRA 73.0 ± 0.5 74.8 ± 0.4 75.0 ± 0.5 71.7 ± 0.2 72.2 ± 0.2 73.6 ± 0.3 74.6 ± 0.4 75.1 ± 0.2 76.7 ± 0.2

74.0 ± 0.6 78.3 ± 0.7 78.4 ± 1.1 72.8 ± 0.2 74.1 ± 0.3 75.0 ± 0.6 76.2 ± 0.3 78.1 ± 0.5 80.2 ± 0.5ORC 75.6 ± 0.7 79.5 ± 0.5 79.6 ± 0.7 74.6 ± 0.2 76.0 ± 0.1 79.1 ± 0.5 80.3 ± 0.3 81.4 ± 0.4 83.6 ± 0.3

86.6 ± 0.8 88.5 ± 0.6 88.6 ± 0.5 81.7 ± 0.1 82.8 ± 0.2 87.9 ± 0.3 88.1 ± 0.3 87.7 ± 0.3 88.6 ± 0.5VIN 88.1 ± 0.6 89.6 ± 0.6 89.6 ± 0.6 83.7 ± 0.1 84.8 ± 0.1 89.7 ± 0.2 90.1 ± 0.3 89.7 ± 0.4 90.9 ± 0.2

81.7 ± 0.8 83.0 ± 0.8 83.5 ± 0.9 81.0 ± 0.2 81.5 ± 0.2 83.4 ± 0.3 84.0 ± 0.3 83.4 ± 0.2 84.5 ± 0.3BLF 83.3 ± 0.6 85.0 ± 0.4 85.1 ± 0.4 82.4 ± 0.1 83.0 ± 0.1 85.3 ± 0.2 85.7 ± 0.1 85.4 ± 0.3 87.1 ± 0.1

81.2 ± 0.7 82.0 ± 0.8 82.5 ± 0.6 81.4 ± 0.2 82.4 ± 0.2 82.0 ± 0.3 82.8 ± 0.2 83.1 ± 0.3 84.6 ± 0.3COF 82.3 ± 0.5 83.0 ± 0.6 83.5 ± 0.7 82.6 ± 0.2 83.6 ± 0.2 83.8 ± 0.2 84.4 ± 0.2 84.9 ± 0.2 86.3 ± 0.1

46.5 ± 1.4 57.5 ± 2.2 58.0 ± 1.3 47.8 ± 1.4 51.3 ± 1.2 48.0 ± 1.6 52.5 ± 1.2 46.4 ± 1.8 56.6 ± 0.9NGL 48.7 ± 1.5 58.7 ± 1.5 59.1 ± 1.2 50.2 ± 1.2 54.2 ± 1.0 52.8 ± 1.5 55.7 ± 1.3 51.8 ± 1.9 60.3 ± 0.9

48.4 ± 3.0 55.8 ± 1.1 56.5 ± 2.4 52.9 ± 0.4 55.1 ± 0.5 51.6 ± 0.7 53.4 ± 0.9 53.0 ± 1.1 59.5 ± 0.5WOM 50.0 ± 1.9 56.9 ± 1.6 57.1 ± 1.5 54.4 ± 0.5 56.8 ± 0.5 55.3 ± 0.7 57.6 ± 0.7 56.8 ± 1.0 62.1 ± 0.4

72.8 ± 0.9 78.9 ± 2.1 78.3 ± 1.7 73.5 ± 0.6 75.1 ± 0.9 73.7 ± 0.8 75.0 ± 1.3 74.5 ± 0.9 79.7 ± 0.7NMS 73.7 ± 0.8 79.1 ± 1.7 78.7 ± 1.9 74.2 ± 0.7 76.2 ± 0.8 75.8 ± 0.7 77.8 ± 0.5 77.1 ± 0.7 81.4 ± 0.6

77.0 ± 0.7 78.0 ± 4.5 81.4 ± 3.4 77.0 ± 0.5 80.0 ± 0.7 79.9 ± 0.7 81.9 ± 0.6 79.8 ± 1.2 85.1 ± 0.7BDS 78.8 ± 0.9 78.4 ± 5.3 81.8 ± 2.5 77.9 ± 0.5 80.7 ± 0.6 81.3 ± 0.5 82.8 ± 0.4 83.2 ± 0.7 86.8 ± 0.7

88.6 ± 1.0 90.4 ± 1.5 91.9 ± 0.8 89.9 ± 1.5 90.4 ± 1.5 88.2 ± 1.2 87.7 ± 1.7 82.3 ± 2.2 83.6 ± 2.8GPS 89.1 ± 0.9 90.8 ± 1.4 92.1 ± 1.3 91.1 ± 0.9 91.8 ± 0.9 89.1 ± 0.7 89.2 ± 0.9 87.5 ± 1.2 89.3 ± 0.9

95.1 ± 0.2 95.5 ± 0.5 95.9 ± 0.6 95.2 ± 0.1 95.4 ± 0.1 94.7 ± 0.2 95.3 ± 0.2 95.2 ± 0.3 96.4 ± 0.2WAT 95.5 ± 0.2 95.8 ± 0.5 95.8 ± 0.5 95.3 ± 0.1 95.5 ± 0.1 95.0 ± 0.2 95.3 ± 0.3 95.8 ± 0.1 96.8 ± 0.3

76.6 ± 0.5 79.4 ± 0.3 79.8 ± 0.4 75.3 ± 0.1 76.3 ± 0.1 77.7 ± 0.1 78.6 ± 0.2 78.5 ± 0.2 81.0 ± 0.1oa 77.8 ± 0.2 80.5 ± 0.4 80.7 ± 0.3 76.7 ± 0.1 77.8 ± 0.1 79.8 ± 0.2 80.7 ± 0.1 80.6 ± 0.2 83.1 ± 0.1

77.5 ± 0.4 80.4 ± 0.4 80.8 ± 0.4 76.4 ± 0.1 77.4 ± 0.2 78.6 ± 0.2 79.4 ± 0.2 79.0 ± 0.2 81.6 ± 0.2fscore 78.9 ± 0.2 81.5 ± 0.5 81.7 ± 0.3 77.9 ± 0.1 79.0 ± 0.1 80.7 ± 0.2 81.6 ± 0.1 81.5 ± 0.2 83.9 ± 0.1

75.4 ± 0.5 78.4 ± 0.3 78.8 ± 0.4 74.1 ± 0.1 75.1 ± 0.1 76.6 ± 0.1 77.5 ± 0.2 77.5 ± 0.2 80.1 ± 0.2kappa 76.7 ± 0.2 79.5 ± 0.4 79.7 ± 0.3 75.5 ± 0.1 76.7 ± 0.1 78.8 ± 0.2 79.7 ± 0.1 79.7 ± 0.2 82.2 ± 0.1
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TABLE VIII: Stratification configuration

λt-GP φλt-GPSC φλt-GPPC λt-RF φλt-RF λt-MLP φλt-MLP λt-LTAE φλt-LTAE

66.8 ± 0.5 71.2 ± 0.3 71.3 ± 0.4 63.6 ± 0.2 66.7 ± 0.2 65.1 ± 0.4 66.2 ± 0.3 64.6 ± 0.3 68.1 ± 0.2CUF 66.3 ± 0.4 70.5 ± 0.7 70.4 ± 0.5 63.4 ± 0.2 66.6 ± 0.2 67.2 ± 0.1 68.2 ± 0.2 65.4 ± 0.3 69.4 ± 0.3

63.6 ± 0.9 66.4 ± 0.8 67.0 ± 1.1 58.8 ± 0.4 61.1 ± 0.4 61.1 ± 0.5 61.4 ± 0.8 61.8 ± 0.4 65.6 ± 0.4DUF 66.7 ± 0.6 66.6 ± 0.8 67.4 ± 0.8 62.0 ± 0.2 64.4 ± 0.2 67.9 ± 0.4 68.8 ± 0.5 66.8 ± 0.4 70.9 ± 0.4

55.1 ± 0.4 60.0 ± 1.0 60.8 ± 0.4 53.0 ± 0.3 55.8 ± 0.4 53.1 ± 0.3 54.0 ± 0.3 51.4 ± 0.5 56.6 ± 0.3ICU 59.9 ± 0.4 64.0 ± 1.0 64.5 ± 0.5 57.1 ± 0.2 60.2 ± 0.2 60.5 ± 0.3 61.6 ± 0.4 59.1 ± 0.3 64.4 ± 0.5

80.3 ± 0.4 82.4 ± 0.8 82.6 ± 0.8 77.9 ± 0.3 79.3 ± 0.4 79.2 ± 0.3 79.8 ± 0.4 78.3 ± 0.4 80.5 ± 0.4RSF 81.1 ± 0.6 82.4 ± 1.1 82.6 ± 0.9 79.2 ± 0.2 80.4 ± 0.3 81.8 ± 0.4 82.3 ± 0.3 82.2 ± 0.3 84.3 ± 0.3

93.3 ± 0.7 93.6 ± 0.9 93.6 ± 0.7 94.5 ± 0.3 94.5 ± 0.4 91.8 ± 0.7 92.0 ± 0.7 92.4 ± 0.9 92.3 ± 0.5RAP 94.6 ± 0.5 94.6 ± 0.7 94.8 ± 0.5 94.9 ± 0.3 94.9 ± 0.3 93.6 ± 0.4 93.6 ± 0.4 94.6 ± 0.4 94.7 ± 0.5

86.3 ± 0.4 86.2 ± 0.5 86.0 ± 0.5 84.1 ± 0.2 84.3 ± 0.2 84.2 ± 0.4 84.5 ± 0.5 87.1 ± 0.3 87.4 ± 0.4STC 88.3 ± 0.4 88.1 ± 0.4 88.2 ± 0.5 86.7 ± 0.2 86.8 ± 0.3 87.8 ± 0.4 87.8 ± 0.4 90.1 ± 0.2 90.2 ± 0.3

71.6 ± 0.9 73.8 ± 0.6 72.7 ± 0.7 66.6 ± 0.5 67.5 ± 0.4 68.9 ± 0.7 69.4 ± 0.5 71.2 ± 1.3 74.0 ± 0.8PRO 73.8 ± 0.5 75.4 ± 0.8 75.2 ± 0.6 70.2 ± 0.3 70.8 ± 0.4 73.2 ± 0.8 73.7 ± 1.1 77.0 ± 0.7 78.7 ± 0.5

86.6 ± 0.6 86.6 ± 0.7 86.6 ± 0.8 86.0 ± 0.3 86.2 ± 0.3 84.6 ± 0.5 84.6 ± 0.9 87.3 ± 0.8 88.5 ± 0.7SOY 87.8 ± 0.5 87.5 ± 0.7 87.8 ± 0.5 87.5 ± 0.3 87.8 ± 0.3 87.0 ± 0.4 87.2 ± 0.5 89.7 ± 0.5 90.4 ± 0.7

85.3 ± 0.5 85.6 ± 0.4 85.8 ± 0.4 83.3 ± 0.3 83.6 ± 0.3 83.2 ± 0.5 83.5 ± 0.4 86.3 ± 0.7 87.1 ± 0.5SUN 87.4 ± 0.3 87.5 ± 0.4 87.7 ± 0.6 85.6 ± 0.3 85.9 ± 0.2 86.8 ± 0.3 86.8 ± 0.3 89.3 ± 0.3 89.7 ± 0.4

89.0 ± 0.2 88.9 ± 0.4 89.2 ± 0.4 87.4 ± 0.2 87.4 ± 0.2 87.3 ± 0.5 87.2 ± 0.6 90.5 ± 0.7 90.9 ± 0.7COR 90.3 ± 0.4 90.3 ± 0.4 90.5 ± 0.3 89.2 ± 0.2 89.3 ± 0.1 89.4 ± 0.5 89.6 ± 0.3 92.4 ± 0.4 92.7 ± 0.3

98.2 ± 0.3 98.1 ± 0.4 98.2 ± 0.2 97.8 ± 0.1 97.9 ± 0.1 97.8 ± 0.2 97.8 ± 0.3 97.6 ± 0.2 98.2 ± 0.2RIC 98.3 ± 0.2 98.1 ± 0.4 98.4 ± 0.2 97.9 ± 0.2 98.1 ± 0.2 98.0 ± 0.5 98.1 ± 0.5 98.3 ± 0.1 98.5 ± 0.2

79.0 ± 1.3 79.3 ± 1.0 80.5 ± 0.9 75.3 ± 0.7 75.8 ± 0.8 74.3 ± 2.0 75.3 ± 1.5 80.7 ± 1.3 82.2 ± 1.3TUB 79.9 ± 1.6 80.5 ± 1.6 81.2 ± 1.4 76.6 ± 1.0 77.2 ± 0.8 78.8 ± 1.5 79.2 ± 1.6 84.2 ± 1.0 85.1 ± 1.1

72.3 ± 0.5 73.8 ± 0.7 73.6 ± 0.9 70.6 ± 0.2 71.0 ± 0.2 71.0 ± 0.5 71.4 ± 0.4 72.2 ± 0.2 73.6 ± 0.2GRA 73.8 ± 0.5 74.9 ± 0.8 75.2 ± 0.6 72.2 ± 0.1 72.8 ± 0.1 73.3 ± 0.4 73.6 ± 0.4 74.8 ± 0.2 75.8 ± 0.3

75.2 ± 0.5 77.4 ± 0.7 77.1 ± 1.1 73.8 ± 0.1 75.3 ± 0.2 72.7 ± 0.7 73.9 ± 0.5 74.9 ± 0.6 77.6 ± 0.4ORC 78.4 ± 0.4 79.8 ± 0.8 79.7 ± 1.1 75.1 ± 0.1 76.7 ± 0.2 77.4 ± 0.4 78.3 ± 0.5 80.2 ± 0.3 81.6 ± 0.3

86.9 ± 0.3 88.3 ± 0.6 88.5 ± 0.6 83.5 ± 0.2 84.6 ± 0.3 83.9 ± 0.9 85.1 ± 0.8 85.4 ± 0.3 87.1 ± 0.3VIN 88.1 ± 0.8 89.3 ± 0.7 89.7 ± 0.4 84.6 ± 0.3 85.9 ± 0.2 88.1 ± 0.6 88.4 ± 0.6 88.7 ± 0.3 89.9 ± 0.2

82.2 ± 0.4 83.3 ± 0.6 83.4 ± 0.7 81.5 ± 0.2 82.2 ± 0.2 80.9 ± 0.3 81.6 ± 0.3 81.1 ± 0.3 82.2 ± 0.7BLF 83.9 ± 0.3 84.5 ± 0.5 84.9 ± 0.5 82.9 ± 0.1 83.6 ± 0.1 84.0 ± 0.3 84.6 ± 0.2 84.4 ± 0.3 85.6 ± 0.3

80.9 ± 0.5 80.3 ± 0.9 80.7 ± 0.7 81.0 ± 0.4 82.0 ± 0.4 79.7 ± 0.6 80.4 ± 0.5 81.6 ± 0.4 82.7 ± 0.6COF 82.3 ± 0.3 80.6 ± 1.0 81.2 ± 0.9 82.4 ± 0.2 83.4 ± 0.3 82.4 ± 0.5 82.9 ± 0.3 84.0 ± 0.3 84.6 ± 0.5

49.6 ± 2.6 56.0 ± 2.1 54.4 ± 1.5 50.9 ± 1.2 54.0 ± 1.3 48.8 ± 2.5 51.4 ± 2.2 48.0 ± 1.6 56.7 ± 2.0NGL 52.7 ± 1.9 54.8 ± 1.3 55.2 ± 1.3 53.0 ± 1.4 56.3 ± 1.4 53.3 ± 2.0 55.4 ± 2.1 52.6 ± 1.6 59.4 ± 1.4

55.4 ± 1.0 57.5 ± 0.9 58.4 ± 0.9 55.2 ± 0.6 57.1 ± 0.5 52.7 ± 1.1 53.7 ± 1.2 54.4 ± 1.0 58.8 ± 0.7WOM 56.1 ± 1.0 57.8 ± 1.0 58.9 ± 0.5 56.2 ± 0.6 58.2 ± 0.5 56.1 ± 0.9 57.0 ± 0.8 57.4 ± 1.1 61.3 ± 0.5

78.0 ± 1.4 79.8 ± 1.2 80.5 ± 2.0 78.6 ± 1.3 79.9 ± 1.5 77.6 ± 1.3 79.1 ± 1.0 78.8 ± 0.7 81.3 ± 0.9NMS 78.6 ± 0.9 79.5 ± 1.3 80.2 ± 1.7 79.1 ± 0.9 80.1 ± 1.1 78.1 ± 0.9 79.2 ± 0.9 80.0 ± 0.6 82.2 ± 0.3

77.5 ± 1.7 69.5 ± 4.8 72.2 ± 3.6 75.8 ± 1.1 79.1 ± 1.5 76.1 ± 1.6 78.0 ± 1.4 74.8 ± 1.2 81.5 ± 0.7BDS 78.7 ± 1.2 63.5 ± 4.6 68.0 ± 4.6 77.1 ± 0.8 79.6 ± 1.0 78.9 ± 0.9 79.7 ± 1.5 80.1 ± 0.8 83.5 ± 0.8

91.0 ± 2.9 93.3 ± 0.5 93.7 ± 1.3 92.2 ± 1.8 92.8 ± 1.6 89.9 ± 3.4 90.9 ± 1.2 89.4 ± 1.0 90.6 ± 1.5GPS 91.3 ± 2.1 92.3 ± 1.4 92.0 ± 2.2 93.0 ± 1.4 93.5 ± 1.5 90.5 ± 2.2 91.7 ± 1.5 90.8 ± 1.3 92.4 ± 1.7

95.4 ± 0.5 94.6 ± 1.1 94.7 ± 0.7 95.9 ± 0.3 96.0 ± 0.4 94.5 ± 0.4 94.5 ± 0.6 94.6 ± 0.4 95.4 ± 0.5WAT 95.6 ± 0.5 93.2 ± 1.0 94.1 ± 0.8 96.1 ± 0.2 96.1 ± 0.3 94.9 ± 0.5 94.8 ± 0.5 95.9 ± 0.4 96.0 ± 0.4

77.2 ± 0.2 78.4 ± 0.2 78.6 ± 0.2 75.7 ± 0.2 76.8 ± 0.1 75.4 ± 0.2 76.1 ± 0.3 76.8 ± 0.2 79.1 ± 0.3oa 78.7 ± 0.2 78.9 ± 0.2 79.4 ± 0.2 77.2 ± 0.1 78.4 ± 0.1 78.5 ± 0.2 79.1 ± 0.2 79.9 ± 0.2 81.8 ± 0.2

78.2 ± 0.3 79.4 ± 0.3 79.6 ± 0.3 76.8 ± 0.2 78.0 ± 0.1 76.5 ± 0.2 77.2 ± 0.3 77.6 ± 0.2 80.0 ± 0.3fscore 79.8 ± 0.2 79.8 ± 0.3 80.3 ± 0.3 78.3 ± 0.1 79.5 ± 0.1 79.5 ± 0.2 80.1 ± 0.3 80.8 ± 0.2 82.7 ± 0.2

76.1 ± 0.2 77.4 ± 0.3 77.6 ± 0.3 74.5 ± 0.2 75.7 ± 0.1 74.2 ± 0.2 74.9 ± 0.3 75.7 ± 0.2 78.1 ± 0.3kappa 77.6 ± 0.2 77.9 ± 0.2 78.4 ± 0.2 76.1 ± 0.1 77.3 ± 0.1 77.4 ± 0.2 78.0 ± 0.2 78.9 ± 0.2 80.9 ± 0.2
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APPENDIX C
INTERPRETATION OF THE LEARNED PARAMETERS: INFLUENCE OF THE SPATIAL INFORMATION

(a) latent GP number 12 (b) latent GP number 15

Fig. 11: Spatial location of inducing points (IP) for 2 different latent GP: • and • represent spatio IP respectively before and
after optimization. Orange and green ellipses correspond to the spatial area inside which the spatial correlation is greater than
0.9 respectively for the latent GP number 12 and 15. The model φλt-GPPC was trained on a global configuration.
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Fig. 12: Distribution of the spatio lengthscale `φ for all the latent GP: • and • represent the spatio lengthscale `φ respectively
for the GP latent number 12 and 15.
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