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Land Cover Classification with Gaussian Processes
using spatio-spectro-temporal features

Valentine Bellet, Student Member, IEEE, Mathieu Fauvel, Senior Member, IEEE, and Jordi Inglada

Abstract—In this article, we propose an approach based on
Gaussian Processes (GP) for large scale land cover pixel-based
classification with Sentinel-2 satellite image time-series (SITS).
We used a sparse approximation of the posterior combined with
variational inference to learn the GP’s parameters. We applied
stochastic gradient descent and GPU computing to optimize our
GP models on massive data sets. The proposed GP model can be
trained with hundreds of thousands of samples, compared to few
thousands for traditional GP methods. Moreover, we included the
spatial information by adding the geographic coordinates into
the GP’s covariance function to efficiently exploit the spatio-
spectro-temporal structure of the SITS. We ran experiments
with Sentinel-2 SITS of the full year 2018 over an area of
200 000 km2 (about 2 billion pixels) in the south of France,
which is representative of an operational setting. Adding the
spatial information significantly improved the results in terms
of classification accuracy. With spatial information, GP models
have an overall accuracy of 79.8. They are more than three points
above Random Forest (the method used for current operational
systems) and more than one point above a multi-layer perceptron.
Compared to a Transformer-based model (which provides state of
the art results in the literature, but are not applied in operational
systems), GP models are only one point below.

Index Terms—Satellite Image Time-Series (SITS), Sentinel-2,
Land Cover Map, Pixel-Based, Classification, Large Scale, Sparse
Variational Gaussian Processes, Earth Observation (EO), Remote
Sensing.

I. INTRODUCTION

THE increasing number of Earth observation satellites
generates a huge amount of data with heterogeneous

modalities (e.g. optical, radar, etc.) at various resolutions
(e.g. sub-metric, decametric, etc). Among them, the Sentinel-2
constellation provides free and open data with a 5-day revisit
time at high spectral and spatial resolutions (four spectral
bands at 10m, six at 20m and three at 60m per pixel) [1].
This mission was designed to monitor Earth’s surface changes.
Models based on these optical satellite image time-series
(SITS) can explain and predict the states and trends of our
environment. They are essential to understand the challenges
related to climate change [2]. Since their launch in 2015 and
2017, SITS from the twin Sentinel-2 satellites have already
shown a clear benefit in biodiversity monitoring [3], [4],
forest mapping [5], [6], water quality [7], [8], agricultural
monitoring [9], [10] or disaster management [11], [12].
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Every year, around one petabyte of Sentinel-2 SITS is
generated [13]. These data, covering all continental surfaces
with a short revisit cycle, bring the opportunity of large scale
mapping (at national or even continental scales). To fully
benefit from the information gathered by these massive geo-
spatial data, automatic methods are needed for their analysis.
Over the past 20 years, statistical methods [14] and then
machine learning (ML) based methods [15] have shown great
potential for various thematic applications. From those, the
best known is certainly automatic land use/cover classification
(LUCC), which consists in assigning a class among a set of
predefined ones to each pixel from the area of interest. Three
main challenges are associated to large scale LUCC:

1) The spatio-spectro-temporal structure of the SITS: each
pixel has a local spatial correlation, as well as a class-
dependent spectral and temporal correlation structure that
needs to be taken into account for an accurate classifica-
tion [16].

2) The non stationarity of the class-conditional probabil-
ity distribution that implies a varying spectro-temporal
signature over the spatial domain. This phenomenon is
particularly critical for the large scale area classification
problems where phenology and topographic conditions
exacerbate this issue. Therefore, the learning algorithm
has to be able to model spatially varying class-conditional
probability distributions [17], [18].

3) The volume (defined as number of pixels times number
of dates times number of spectral features) of the data to
be processed, both at the learning and inference stages,
which require fast and effective algorithms that scale well.

Kernel-based algorithms have shown to perform well for
LUCC [19]. Support Vector Machines (SVM) were widely
applied in land cover classification with multi and hyper-
spectral images [15], [20]–[22]. However, the computational
complexity of kernel-methods is cubic w.r.t. the number of
samples used to train the model, and become quickly in-
tractable as the number of samples increases. Therefore, kernel
methods have rarely been used for large-scale mapping despite
their learning capacity.

Another ML algorithm widely investigated is Random For-
est (RF) [23]. It has shown to perform well for different case
studies [24] and has been favorably applied to large scale
classification problems, such as [25], [26]. Yet, RF do not
allow to incorporate information about the structure of the
SITS beyond the use of specific temporal features. Indeed,
the temporal structure is not taken into account: switching
the order of the data in time series leads to the same results.
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Furthermore, the learning step requires full simultaneous view
on the training samples, which hinders parallel training imple-
mentations. In [25], the non-stationarity as well as the massive
training data set were handled by doing a spatial stratification
of the problem. The training data set was divided into strata:
each stratum corresponds to an eco-climatic region as defined
in [27]. For each stratum, an independent RF model was
trained. However, no spatial constraints were imposed during
the learning or the prediction steps and the models could
behave differently at the boundaries between strata. Thus, the
transition between two spatial strata can show artifacts due
to the discontinuity in the predictions by models of adjacent
strata.

In recent years, deep learning (DL) methods have quickly
emerged in the remote sensing community due to the in-
creased free distribution of Big Earth Observation Data, the
development of computing resources (e.g. GPU, HPC, etc.)
and the availability of open source deep learning frameworks
(e.g. Pytorch [28] or Tensorflow [29]). A large variety of DL
methods have been developed such as: multi-layer perceptrons
(MLP) [30], convolutional neural networks (CNN) [31], re-
current neural networks (RNN) [32], auto-encoders (AE) [33]
and generative adversarial networks (GAN) [34]. The main
advantage of these methods is their ability to extract features
(i.e. spatial, spectral and temporal patterns) instead of hand-
crafting them. By learning temporal patterns, long short-term
memory (LSTM) (i.e. neural layers developed to solve the
problem of vanishing gradients in RNN) have been a promis-
ing tool in SITS classification [35], [36]. To include spatial
information, spatial-sequential RNN [37] and spectral-spatial
RNN [38] have been developed. Besides, CNN models which
are commonly used with images have also shown very good re-
sults [39], [40]. By adding coordinate information into feature
maps, performance results with CNN have been improved in
SITS classification [41], [42]. Therefore, methods combining
both RNN and CNN networks have been developed [43], [44].
Temporal CNN, which combine features across time with
convolutions, have also proved to be effective [45]. Recently,
methods based on the attention principle have shown very
interesting results [46], [47]. One major problem with all these
DL methods is their ”black-box” nature: their parameters are
hardly interpretable.

Gaussian Processes (GP) are stochastic non-parametric ap-
proaches combining Bayesian and kernel methods for re-
gression and classification problems [48]. They have been
successfully applied in remote sensing for parameter esti-
mation [49]–[52] or for classification [53]–[55]. Unlike DL
models, GP can be interpretable through their parameters
(e.g. temporal correlation for the length-scale parameter in a
Radial Basis Function (RBF) covariance function [48], [55]).
Furthermore, their Bayesian nature enables the estimation of
posterior distributions rather than point-wise values which is
useful to assess prediction uncertainties. Another interesting
property of GP is the possibility to define suitable kernel
functions, as with SVM, and to learn their parameters through
gradient descent, unlike SVM [48, Chapter 5].

However, conventional GP are limited to few thousands of
training inputs since their complexity scales cubically w.r.t. the

number of training samples. In recent years, several solutions
have been proposed to deal with large amounts of data [56].
For example, [57] proposed an approach based on the ap-
proximation of the posterior distribution that uses variational
inference. Stochastic gradient descent and GPU computing can
therefore be exploited to optimize GP models. Such recent
methods drastically reduce the computing complexity and have
been applied to large scale data in computer vision.

The contributions of this work are three-fold and follow
the survey of GP for Earth Observation (EO) data analysis
of G. Camps-Valls et al. [52]. First, we formally introduce a
large scale GP model recently proposed in the computer vision
community, and make connection with existing literature in
EO data analysis with GP. Second, we propose two kernel
functions allowing the structure of the SITS to be taken
into account in the processing. Fundamentally, the spatial
coordinates of a given pixel are included in the covariance
function in addition to the spectro-temporal features to model
the spatial dependency between pixels. The parameters of the
covariance functions are optimized with a lower bound of the
marginal likelihood. This point has not been investigated so far
for SITS classification at large scale. Some works have been
proposed to use contextual information with GP [58], [59]
but spatial dependency was limited to a close neighborhood
(e.g., 5×5 pixels) with a small training set size. Third, we
report an intensive large scale classification benchmark with
conventional methods and recent deep models. A novelty w.r.t.
existing works concerns the analysis of spatial stratification
and its effects on the continuity of the prediction across the
different strata. A comparison with the non-stratified counter-
part is also performed. As a by-product of the paper, we also
release the data set and the source code1.

The remainder of this paper is organized as follows. A
formal review of conventional GP is presented in Section II.
The proposed GP model used for the pixel-based large scale
land cover classification is explained and described in Sec-
tion III. The model parametrization choices are discussed in
Section IV. The experimental setup is detailed in Section VI
and the comparison with the state-of-the-art methods is pro-
vided in Section VII. Section VIII proposes an analysis of the
specific characteristics of GP. Finally, Section IX concludes
this paper and opens discussions on future works.

II. GAUSSIAN PROCESSES

The training data, defined as a pair of input and output
data, is used to train ML algorithms. In remote sensing, input
data are usually represented as a time-series (e.g. sequence of
pixels organized in time order). Each pixel is itself a vector
defined with the same number of features (e.g. usually spectral
reflectances or indices). The output data, also called target,
is the measure that wants to be predicted, in classification
problem it is known as the class or the label.

In the following, the training set is denoted S =
{xi,yi}Ni=1, where N is the number of pixels, xi ∈ Rd+d′

is a pixel i represented by its corresponding d spectro-
temporal measurements and its d′ spatial measurements (e.g.

1https://gitlab.cesbio.omp.eu/belletv/land cover southfrance gp

https://gitlab.cesbio.omp.eu/belletv/land_cover_southfrance_gp
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coordinates), yi ∈ RP with P ≥ 1 is the value to be predicted,
or target, associated to pixel i. For instance, in a classification
problem yi corresponds to the membership degree of the pixel
to each class.

A. Univariate Gaussian Processes

An univariate GP f is completely specified by its real-
valued mean function m and its covariance function k: f ∼
GP(m, k) [48]. In this paper, m and k are assumed to be
modeled by parametric functions with hyper-parameters θm
and θk, respectively, and k is constrained to be a positive semi-
definite function [48, Chapter 4]. Noting f(X) the random
vector defined as f(X) =

[
f(x1), . . . , f(xN )

]>
, f(X) fol-

lows a multivariate Gaussian distribution: f(X) ∼ NN (µ,K)

with µ =
[
m(x1), . . . ,m(xN )

]>
and K such as Kij =

k(xi,xj), ∀i, j ∈ {1, . . . , N}2.
Univariate GP are commonly used to regress a scalar

target value (yi ∈ R) through a link function ψ that relates
the univariate latent variable f(xi) to the observed yi. In
the regression case, we denote X =

[
x1, . . . ,xN

]>
and

y =
[
y1, . . . , yN

]>
. To model realistic situations, an usual

approach is to consider a noisy version of the function value
such as

yi = ψ
(
f(xi)

)
= f(xi) + εi (1)

with εi ∼ N (0, σ2) and σ the noise level. The likelihood is
simply

p
(
yi|f(xi)

)
= N1

(
yi|f(xi), σ2

)
. (2)

Assuming i.i.d. samples, the full likelihood is given by

p
(
y|f(X)

)
=

N∏
i=1

p
(
yi|f(xi)

)
= NN (y|f(X), σ2IN ). (3)

Given a new input x∗ the prediction is done by taking the
maximum a posteriori (MAP) of the predictive distribution
obtained by marginalizing over the latent variables f(x∗).
Every term follows a Gaussian distribution and therefore
the posterior distribution is also Gaussian. Using standard
Gaussian equalities, it can be written analytically [60, Chapter
2.3.2 and 2.3.3]:

p(y∗|y,X,x∗) = NN (y∗|µ∗, σ2
∗), (4)

with

µ∗ = m(x∗) + k>∗ (K + σ2IN )−1(y − µ), (5)

σ2
∗ = k(x∗,x∗)− k>∗ (K + σ2IN )−1k∗ + σ2, (6)

and with k∗ = [k(x1,x∗), . . . , k(xN ,x∗)]
>. For a Gaussian

distribution, the MAP is given by the mean of the distribution,
i.e., ŷ∗ = µ∗. Furthermore, the GP framework allows to
estimate the uncertainty of the prediction through the variance
of the posterior distribution σ2

∗.
The hyper-parameters θ = {θm,θk, σ2} strongly influence

the prediction since they appear in (5) and (6) (θm and θk
are respectively the parameters of the functions m and k).

They are usually optimized by maximizing the log-marginal
likelihood of the model on the training set S [48, Chapter 2]:

log p(y|X,θ) =− 1

2
(y − µ)T(K + σ2IN )

−1
(y − µ)

− 1

2
log
(
|K + σ2IN |

)
− N

2
log(2π).

(7)

The derivatives of Equation (7) are analytically tractable and
the optimization of θ can be done using constrained gradient
descent [48, Chapter 5 and Appendix A.3].

In comparison to other non-linear prediction algorithms,
such as SVM or kernel ridge regression, GP offer the pos-
sibility to automatically tune their hyper-parameters θ. GP
also provide the variance of the point-wise estimation. These
properties made GP for regression widely used by the remote
sensing community in the last decade [61]–[64].

However, conventional GP scale poorly w.r.t. the number
of training samples. The main bottleneck comes from the
computational cost of the matrix inversion and the computation
of the determinant in (7). These operations scale cubically
with the number of training pixels and, moreover, the storage
complexity is O(N2). This is the main reason explaining why
GP have only been used on data sets limited to a few thousand
pixels [52].

We discuss in Section III some solutions that have been
explored in the last decade to apply large data sets to GP.
However, the extension of univariate GP to multivariate GP for
the purpose of classification is presented first in the following
section.

B. Multivariate Gaussian Processes

Likewise univariate GP, a P -multivariate GP f is specified
by its vector-valued mean function m ∈ RP and its positive
matrix-valued covariance function K ∈ RP×P . We have f ∼
GP(m,K) with:

m(x) = [m1(x) ... mP (x)]
>
,

K(x,x) =

[
k11(x,x) ... k1P (x,x)

... kpp′(x,x) ...
kP1(x,x) ... kPP (x,x)

]
,

where kpp′(x,x) is the covariance between two univariate GP:
fp(x) and fp′(x) with p, p′ ∈ {1, . . . , P} and K of size P×P .
Similarly to univariate GP, all marginals follow a Gaussian
distribution, noting

f(X) = [f1(x1), . . . , fP (x1), . . . , f1(xN ), . . . , fP (xN )]>

the random vector of size NP , then f(X) ∼ NNP (µo,Ko)
with µo = [m(x1), . . . ,m(xN )]> and

Ko =

 K(x1,x1) · · · K(x1,xN )
...

. . .
...

K(xN ,x1) · · · K(xN ,xN )

 .
Multivariate GP are also known as multi-output or multi-task
GP [65]. For instance, they are used when the learning task
has several correlated outputs (e.g. several variables to regress
given a single input, multi-class classification, etc.) [66].

The main challenge in multivariate GP is to define and
optimize the cross-covariance function kpp′ that:
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1) lead to a valid covariance function K,
2) exploit the multivariate structure of the problem to be
inferred,
3) can be efficiently computed (Ko of size NP ×NP ).
The most common approach is to consider separable kernels
where one kernel acts on the input sample and another kernel
models the interaction between the outputs [67]. The linear
model of co-regionalization (LMC) exploits this formulation
[68], [69]. It defines each marginal fp as a linear combination
of L independent univariate GP gl:

f = Ag (8)

with A ∈ RP×L and gl ∼ GP(ml, kl). The processes {gl}Ll=1

are independent for l 6= l′. Many multivariate GP models
from the literature are particular cases of the LMC, see for
instance [67], [70]. In remote sensing, LMC was used to
regress biophysical variables in [71] using MODIS time-series.
Moreover, it was also used for land cover classification from
Sentinel-2 time-series in [55].

Another common approach to remove the separable as-
sumption is using convolution processes [72]–[74]. Convolu-
tion processes can capture more dependence between outputs
than LMC (e.g. translation between outputs), but they lack
a formulation that scales well with the number of training
samples [75]. Therefore, the LMC is used in the following
because efficient optimization procedures exist [75]–[77], as
discussed in Section III-B.

C. LMC for Gaussian Process classification

In the case of classification with C classes, the target is such
as yi ∈ {0, 1}C with all its values set to zero except for the
element yic = 1 for xi of class c. In the classification case,
we denote X =

[
x1, . . . ,xN

]>
and Y =

[
y1, . . . ,yN

]>
.

A softmax function σ is used as link function to relate the
multivariate latent variable f(xi) = [f1(xi), . . . , fC(xi)]

> and
the observation yi:

yi =σ(f(xi))

=
1∑C

c′=1 exp(fc′(xi))
×

exp(f1(xi))...
exp(fC(xi))

 . (9)

The associated likelihood for the sample i is written:

p(yi|f(xi)) =
C∏
c=1

[
exp(fc(xi))∑C

c′=1 exp(fc′(xi))

]yic
=

exp(y>i f(xi))∑C
c′=1 exp(fc′(xi))

,

(10)

or using the LMC

p(yi|g(xi),A) =
exp(y>i Ag(xi))∑C
c′=1 exp(e

>
c′Ag(xi))

, (11)

with ec′ a C-dimensional vector made of zeros except at
position c′ for which the value is one and with A ∈ RC×L.
Conventional GP for classification use a trivial LMC [48,
Chapter 3]: the number of latent processes is equal to the

number of classes (L = C), and all latent univariate GP share
the same covariance operator2.

Contrary to the univariate regression case, the likeli-
hood (10) is not conjugate to the Gaussian distribution and
thus analytic expressions of the marginal and predictive dis-
tributions are not available.

Sampling methods, such as Markov chain Monte Carlo
(MCMC) [78], provide exact computation but at prohibitive
computational costs that discard such approaches for large
scale scenarios. Alternatively, two popular approximation
methods overcoming the non-Gaussian likelihood were dis-
cussed for the pixel-wise land-cover classification of several
satellite images [79]. These methods, namely the Laplace
approximation [80] and the Expectation Propagation [81]
were positively compared to SVM in terms of classification
accuracy. However, as the authors of [79] concluded, the
computational complexity is O(N3C) and thus not applicable
to large data sets.

To summarize this brief overview, GP for classification have
interesting properties for remote sensing: they allow model
selection with the optimization of the marginal likelihood and
provide a full posterior predictive distribution rather than point
estimates. Fig. 1 outlines the model’s architecture used for
multi-class classification. However, conventional GP for multi-
class classification exhibit two bottlenecks: first, the prior
leads to high computational load that scales cubically w.r.t. to
the number of training samples; second, the likelihood does
not lead to an analytical solution and other approximations
are needed. In the following, advances that alleviate the
computational cost of GP are presented.

2A = IC and kl = k, ∀l ∈ {1, . . . , C}.
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x∗

gLgl ...g1 ...

linear layer A∈ RC×L

m K ε ∼ N (0, 1)

f

softmax

y∗1 y∗c... : deterministic node

: random node

ĉ = argmaxcy∗

gl ∼ GP(ml,kl)

q(gl(Zl)) ∼ NM (ml,Sl)

Fig. 1: Model’s architecture proposed in this work. Using
LMC, univariate GP gl are combined to obtain multivariate GP
f . As conventional GP do not correctly perform for multi-class
classification in large scale, some approximations are made.
fi correspond to the realizations obtained with MC sampling
technique: details are provided in Section III. The trainable
parameters are written in blue, a full description is available
in Section IV.

III. LARGE SCALE MULTIVARIATE GAUSSIAN PROCESS
CLASSIFICATION

Approximations for large scale univariate GP can be mainly
categorized into two approaches: model approximation and
posterior approximation [75]. The former, which includes
the sparse GP, was successfully used in remote sensing,
as discussed in Section III-A, while the latter has barely
been investigated in this context. Yet, it has shown superior
results to model approximation in large scale classification
in computer vision [57], [77]. We propose to use Variational
Inference, one effective technique in posterior approximation,
as described in Section III-B. We apply its extension to multi-
class to SITS classification as detailed in Section III-C.

A. Model approximation

Approximation of a Gaussian process model consists in
reducing the computational complexity when computing the
prior p

(
f(X)

)
or the joint prior p

(
f(x∗)|f(X)

)
[82]. Data

structure can be taken into account to speed-up the inversion of
K, such as in [83, Chapter 5] and [84] where K is decomposed
into a Kronecker product of smaller matrices. Using properties
of the Kronecker product, all operations involving matrices can
be done in O(N) time and space. However, this method does
not scale with the number of features.

A more general and effective approach is to seek for a low
rank approximation of K using a set of M inducing points
Z = {zi}Mi=1 with M � N [85] and to assume that f(X)
and f(x∗) are conditionally independent given f(Z). Such

approximation reduces the complexity to O(NM2) because
only KMM needs to be inverted, with KMM the kernel matrix
for Z. To find these inducing points, different techniques
were proposed: random projection [86], Nyström approx-
imation [87] or Deterministic Training Conditional (DTC)
approximation [88], etc.

In remote sensing, Bazi and Melgani [79] have used DTC
for classification, which required less training time and pro-
vided similar accuracy. Still for classification, Morales-Alvarez
et al. [89] have used random projection to construct the co-
variance matrix as well as variational posterior approximation.

An effective approach is to consider the optimization of the
inducing points during the learning step, in complement to the
mean and covariance function parameters, as proposed in [57],
[90]. Such approach considers a variational approximation of
the posterior (instead of model approximation) which gives
superior results in large scale scenarios. Considering that, this
work proposes to learn the inducing points by optimizing
the posterior using variational inference, as discussed in the
following part.

B. Posterior approximation by Variational Inference

Variational Inference (VI) aims to approximate the posterior
distribution using a distribution q [38]. The core of the VI
idea is to optimize parameters of q using a lower bound of the
posterior (the evidence lower bound - ELBO). In the following,
the inducing points are considered as latent variables that are
optimized jointly with the prior parameters θ. Noting E the
ELBO, the following result holds [38]:

log p(y|X,θ,Z) ≥ E(q),

where the model parameters are explicit. Hence optimizing
E amounts to optimizing the log-marginal likelihood of the
model.

In GP, the first formulation was proposed by Titsias [91]
for the regression case and then was extended to classification
problems by Hensman [57]. In remote sensing, VI was used
to model heteroscedastic noise in GP regression [76] and for
binary classification with model approximation [89].

Considering both the training and (non-observed) inducing
points, the ELBO E is

E(q) =
∫
q
(
f(X), f(Z)

)
× ln

{p(y, f(X), f(Z)|θ
)

q
(
f(X), f(Z)

) }
df(X)df(Z)

(12)

The variational distribution is defined as

q
(
f(X), f(Z)

)
= p
(
f(X)|f(Z),θ

)
q
(
f(Z)

)
(13)

with q
(
f(Z)

)
∼ NM (m,S). We denote θv = {m,S}

the parameters of the variational distribution. Injecting (13)
into (12) and simplifying leads to the bound proposed by [57]:

E(q) =
n∑
i=1

Eq(f(xi)|θv,θ)

[
log p

(
yi|f(xi)

)]
− KL

[
q
(
f(Z)|θv,θ

)
‖ p
(
f(Z)|θ

)]
,

(14)
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with

q
(
f(xi)|θv,θ

)
∼ N1

(
f(xi)| k>MiK

−1
MMm,

k(xi,xi)− k>MiK
−1
MM

(
KMM − S

)
K−1MMkMi

)
(15)

. The term KL is the Kullback-Leibler divergence between two
distributions. Since the prior and the variational distribution are
Gaussian, the Kullback-Leibler divergence can be computed
and derived analytically [48, Chapter A.3.1]. The expectation
term in (14) can be computed analytically for a regression
problem [91]. The likelihoods cannot be calculated analytically
as it was (10). However, it can be estimated using Gauss-
Hermite quadrature (for binary problems) or by Monte Carlo
(MC) sampling (for multi-class problems) [57]. The latter is
discussed in the next section.

As explained in [92], the expectation term is factored
over data points, it is thus possible to optimize (14) using
stochastic optimization [93] without the O(N3) computational
and O(N2) storage complexities. The resulting complexity is
linear with the batch size and it is cubic with the number
of inducing points. Using such strategy, Hensman et al. [57]
optimized the whole model, i.e. {θ,θv,Z}, on 700 000 points
for a regression problem on a mono-CPU computer.

C. Variational Inference for multi-class GP classification

In this part, we describe how VI is applied to GP classifica-
tion with LMC. First, as in [77], a more general LMC than in
Section II-C is used: we assume that each univariate latent GP
gl has its own mean and covariance functions, with parameter
θl. We also associate to each latent process a set of inducing
points Zl of size M 3 and we denote g(Z) the ML-dimensional
random vector such as g(Z) =

[
g1(Z1), . . . , gL(ZL)

]>
. From

the LMC definition in Section II-B, it follows that

p
(
g(Z)|Θ

)
=

L∏
l=1

p
(
gl(Zl)|θl

)
with p

(
gl(Zl)|θl

)
Gaussian. Similarly, the variational distri-

bution for q
(
g(Z)

)
is assumed to be such as

q
(
g(Z)

)
=

L∏
l=1

q
(
gl(Zl)

)
with q(gl(Zl)) ∼ NM (ml,Sl). With these assumptions, the
ELBO can be written as

E(q) =
n∑
i=1

Eq(g(xi)|Θv,Θ)

[
log p

(
yi|g(xi),A

)]
−

L∑
l=1

KL
[
q
(
gl(Zl)|θv

l ,θl
)
‖ p
(
gl(Zl)|θl

)]
.

(16)

with Θ = {θ1, . . . ,θL}, Θv = {θv
1, . . . ,θ

v
L} and

q (g(xi)|Θv,Θ) being a L-dimensional Gaussian distribution
with diagonal covariance matrix

q (g(xi)|Θv,Θ) ∼ NL
(
g(xi)|mv,Kv). (17)

3For simplicity it is assumed that each latent process has the same number
of inducing points.

Each marginal is given by (15), a consequence of the LMC: the
latent processes become dependent on one another only during
the computation of the likelihood. Specifically, the lth element
of the mean vector and of the diagonal of the covariance matrix
are totally specified by the lth latent process:

mv
l = kl

>

MiK
l−1

MMml, (18)

Kv
ll = kl(xi,xi)− kl

>

MiK
l−1

MM

(
Kl
MM − Sl

)
Kl−1

MMklMi.
(19)

As in the previous section, the KL terms can be computed
and derived in closed-form. The expectation term needs to be
approximated. MC sampling technique is used, similar to [57],
[77]. It is combined with the so-called reparametrization trick
from variational auto-encoders (VAE) to compute the deriva-
tive of the expectation during the stochastic gradient descent
[94, section 2.4]. In practice, one realization is enough for the
MC sampler during the training, as found in VAE [95], [57].

The prediction for a test sample uses the same variational
approximation for the joint prior than in the marginal likeli-
hood, and reduces to:

p(y∗|Y,X,x∗) = Eq(g(x∗)|Θv,Θ)

[
p
(
y∗|g(x∗),A

)]
(20)

with q (g(x∗)|Θv,Θ) given by (17). Again, the expectation is
not analytically tractable: the approximation is obtained with
MC sampling technique. The class is found by taking ĉ =
argmaxc y∗.

IV. MODEL DESCRIPTION

In the previous section, a general large scale GP classi-
fication model based on variational approximation has been
presented. In this section, we present the practical choices
made for the classification of large scale SITS using this
model: parametrization of the mean/covariance function, num-
ber of inducing points and initialization of the parameters. The
trainable parameters are described in Fig. 1.

A. Mean function

For each latent function gl, the mean function ml is selected
as a constant:

ml(x) = µl, (21)

the trainable parameter is therefore µl. It is initialized with the
following value: µl = 0.

B. Covariance function

In GP, the choice of the covariance function allows to
introduce prior knowledge and to infer properties of GP
posteriors [96], [48]. In remote sensing, the joint use of spatial,
spectral and temporal information has shown to improve
classification results [97]–[100]. A typical example is the use
of composite kernels made of disjoint spatial and spectral
parts for SVM hyper-spectral image classification [101]. As in
SVM, the main idea is that GP can exploit the spatio-spectro-
temporal structure of the data through the covariance function.

In this work, we define kl(x,x
′) as a composition of a

spatial covariance function klφ(xφ,x′φ) and a spectro-temporal
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covariance function klλt(xλt,x′λt), with xφ and xλt being the
spatial features and the spectro-temporal features, respectively.
This configuration prevents two spatially distant pixels to be
correlated even if they share a similar spectro-temporal profile.
Indeed, distant pixels from different classes can have a similar
vegetation phenology because of latitudinal and topographical
effects on the biological cycle. Such modeling takes into
account both the phenology and the spatial location in the
studied area.
We propose to use the Radial Basis Function (RBF) kernel

k(x,x′) = α exp

(
−‖x− x′‖22

2`2

)
for both kφ and kλt. It has two parameters: α > 0 and ` > 0.
This kernel uses isotropic distance between pixels in the spatial
and spectro-temporal domain and the proximity between two
pixels is controlled by the length-scale parameter `: a small
value tends to make all pixels uncorrelated (k(x,x′) ≈ 0) and
a high value tends to increase the correlation between pixels
(k(x,x′) ≈ 1).

Two different combinations of kernels have been investi-
gated.

The first combination is the sum of kernel:

kSl (x,x
′) = α2

lφ × klφ(xφ,x′φ) + α2
lλt × klλt(xλt,x′λt)

= α2
lφ exp

(
−
‖xφ − x′φ‖22

2`2lφ

)

+ α2
lλt exp

(
−‖xλt − x′λt‖22

2`2lλt

) (22)

For each covariance function kSl , the trainable parameters
are: (αlφ, αlλt, `lφ, `lλt). The scaling parameters αlφ and αlλt
allow to give different weights to either spatial or spectro-
temporal features. The second combination is the product of
kernel:

kPl (x,x
′) = klφ(xφ,x

′
φ)× klλt(xλt,x′λt)

= exp

(
−
‖xφ − x′φ‖22

2`2lφ

)

× exp

(
−‖xλt − x′λt‖22

2`2lλt

) (23)

For each covariance function kPl , the trainable parameters are:
(`lφ, `lλt).

The trainable parameters are initialized with the following
values:
• `lλt =

√
d, `lφ =

√
d′ with d and d′ be respectively

the square root of the features dimension, as it is usually
done in kernel methods.

• αlφ = αlλt = ln 2.
All parameters are reparameterized in log-scale to enforce

positivity constraints during the learning step.

C. Inducing points (IP)

In this work, the number M of inducing points (IP) is
common to each latent GP gl. Different methods for the
initialization of IP from the training set were investigated,

such as random selection, clustering method (k-means) and
defining a set of common or different IP per gl. None of
the investigated methods clearly outperforms the simplest one:
random selection with the same set of M points for each gl4.

D. Model complexity

As described previously, for each latent function gl, the
same mean and kernel function were chosen as well as the
same number of inducing points. Three different GP clas-
sification models were studied: λt-GP, φλt-GPSC and φλt-
GPPC. λt-GP is a GP model using only the spectro-temporal
covariance function kλt(xλt,x′λt). φλt-GPSC and φλt-GPPC
are models with kSl (x,x

′) and kPl (x,x
′), whose covariance

functions are defined in (22) and (23), respectively. Parameters
for each model and their corresponding sizes are summarized
in the Table I.

TABLE I: Description of the model parameters and their
corresponding sizes. The last line corresponds to the total
number of parameters for each model.

λt-GP φλt-GPSC φλt-GPSC
kl 1 4 2
ml 1 1 1
Zl M × d M(d+ d′) M(d+ d′)
ml M M M

Sl
M(M+1)

2
M(M+1)

2
M(M+1)

2
A L× C L× C L× C

Total L× (1 + 1+ L× (4 + 1+ L× (2 + 1+
d×M+ (d+ d′)×M+ (d+ d′)×M+

M +
M(M+1)

2
) M +

M(M+1)
2

) M +
M(M+1)

2
)

+L× C +L× C +L× C

V. DATA SET

This section presents the different data sets used in the
experiments and their corresponding pre-processing tasks. The
Southfrance study area is located in the south of metropolitan
France and it covers an area of approximately 200 000 km2.
It is composed of 27 Sentinel-2 tiles, as displayed in Fig. 2.
The area provides a large variety of landscapes, ranging from
coastal, through rural and urban, to mountainous areas for
about two billion pixels.

A. SITS Sentinel-2

All available acquisitions of level 2A between January 2018
and December 2018 for the Sentinel-2 tiles were downloaded
from the Theia Data Center5.

4Some results are provided in the Supplementary Material, Section I.
5https://www.theia-land.fr/en/products/

https://www.theia-land.fr/en/products/
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Fig. 2: Location of the 27 studied tiles where a blue square
corresponds to one tile as provided by the Theia Data Center5.
Each tile is displayed with its name in the Sentinel-2 nomen-
clature. Eco-climatic regions (region 1 to region 8) are dis-
played for the study area. (background map © OpenStreetMap
contributors)

Surface reflectance time-series were produced using the
MAJA processing chain, which corrects atmospheric, adja-
cency and slope effects, and provides cloud and shadow
masks [102]. All spectral bands at a spatial resolution of 10
and 20m/pixel were used. Bands at 20m/pixel were spatially
up-sampled to 10m/pixel using a bicubic interpolation, as
implemented in the Orfeo ToolBox and its SuperImpose appli-
cation [103]. In addition to the spectral channels, three spectral
indices were also used: normalized difference vegetation in-
dex (NDVI), normalized difference water index (NDWI) and
Brightness [104]. Furthermore, two geographic coordinates
were also extracted for each pixel. These spatial features are
in meters in the Lambert 93 projection. Thus for each pixel,
13 spectral features were extracted for each date in addition
to two spatial features. To cope with the clouds/shadows and
different temporal sampling among the tiles, the data have
been linearly resampled onto a common set of virtual dates
with an interval of 10 days, for a total of 37 dates [25].

Finally, a set of 483 features describes each pixel as d+ d′

with:

• d : 37 interpolated dates × 13 spectral features,
• d′ : 2 spatial features.

B. Reference data

The reference data used in this work is composed of 23
land cover classes ranging from artificial areas to vegetation
and water bodies. It is the result of the fusion of different data
sources:

1) CORINE Land Cover (CLC 2012): an inventory of land
cover in 44 classes with a Minimum Mapping Unit of
25ha [105].

2) Urban Atlas (UA 2012): a geometrically accurate descrip-
tion of the various artificial cover types [106].

3) French National Geographic Institute (BD-Topo): a na-
tional topographical map [107].

4) Agricultural Land Parcel Information System, Registre
Parcellaire Graphique (RPG 2018): a spatial register of

TABLE II: Land cover classes used for the experiments with
their corresponding color code and their respective area.

Color Code Name Area (km2)
CUF Continuous urban fabric 104
DUF Discontinuous urban fabric 654
ICU Industrial and commercial units 564
RSF Road surfaces 62
RAP Rapeseed 297
STC Straw cereals 564
PRO Protein crops 150
SOY Soy 470
SUN Sunflower 1 441
COR Corn 1 030
RIC Rice 77
TUB Tubers / roots 49
GRA Grasslands 1 167
ORC Orchards and fruit growing 93
VIN Vineyards 523
BLF Broad-leaved forest 1 593
COF Coniferous forest 4 934
NGL Natural grasslands 3 386
WOM Woody moorlands 1 713
NMS Natural mineral surfaces 1 680
BDS Beaches, dunes and sand plains 126
GPS Glaciers and perpetual snows 164
WAT Water bodies 14 567

agricultural parcels with the associated crop type as
provided by farmer declarations [108].

5) The Randolph Glacier Inventory (RGI): a global inven-
tory of glacier outlines [109].

Following the methodology described in [25], all the infor-
mation from these different sources has been aggregated, both
spatially and semantically, to create the reference data set. It
is provided as a set of non-overlapping spatial polygons. The
nomenclature of the 23 land cover classes can be found in
Table II.

C. Eco-climatic regions

As discussed in Section I, the complexity of the classi-
fication problem can be reduced by stratifying the spatial
area into sub-regions. In this work, French metropolitan eco-
climatic regions originaly proposed in [27] were used as strata.
In each region, meteorological and topographical conditions
are similar, thus the spectro-temporal variability of the pixel
reflectance is reduced. All the eco-climatic regions are rep-
resented in the study area, but with varying proportions as
shown in Fig. 3. Fig. 2 presents the eco-climatic regions over
our Southfrance study area.

1 2 3 4 5 6 7 8
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Fig. 3: Surface (in km2) of each eco-climatic region in the
Southfrance study area.
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VI. EXPERIMENTAL SETUP

In this section, we explain how the data sets introduced in
the previous section are used for the experiments. Moreover,
we introduce three different competitive classification methods
used in land cover classification for comparison.

A. Data generation

Two different data sets were produced using the iota2

software [110]. A first data set called classification data set
was used to train the models and to assess their accuracies. A
second data set called boundary data set was used to evaluate
the spatial continuity of the predictions in the boundary zones
between two eco-climatic regions. A synthetic example of a
boundary zone is represented in Fig. 4.

1) Classification data set: The classification data set was
produced for each eco-climatic region. It is composed of three
spatially disjoint data subsets: training, validation and test.
The training subset was used to train the model while the
validation subset was used to monitor the stochastic gradient
descent and to detect over-fitting [93]. The test subset was used
to estimate the performance of the model in terms of classi-
fication accuracy [111]. The term spatially disjoint indicates
that pixels from one polygon fully belong to an unique data
subset (either training, validation and test). 80 000, 20 000
and 100 000 polygons were extracted to build the training,
validation and test polygons, respectively.

Next, pixels were randomly sampled from these polygons.
Two sizes for the training-validation have been investigated
for the learning step: (4 000, 1 000) and (16 000, 4 000)
pixels per class, respectively called data set DS-A and data
set DS-B. 10 000 pixels were extracted for the test set (except
for the classes with fewer pixels, for which all were selected).

Two learning scenarios were considered: with and without
stratification. For the former scenario (stratification configura-
tion), a dedicated learning model was fit on each eco-climatic
region, and global predictions were obtained by concatenating
per-region model predictions over the full area. For the second
scenario (global configuration), only one model was learned
using pixels gathered from the eight classification data sets.

The performance of each model in terms of classification
accuracy for the two scenarios was computed using classical
classification metrics (overall accuracy (OA), F-score). To cor-
rectly estimate the classification metrics, 11 runs with different
random pixel samplings were done. Table V in Appendix B
provides the average number of pixels for each class and each
region for the 11 training-validation-test pixels subsets.

2) Boundary data set: The spatial continuity of the model
predictions at the border of two eco-climatic regions is as-
sessed thanks to the boundary data set. A synthetic example
of a boundary data set is represented in Fig. 4. It is composed
of labeled and unlabeled pixels in a boundary zone around the
boundary of two regions6. Several buffer sizes B have been
investigated: B ∈ {100, 200, 500, 1000, 1500, 2000} meters,
the total width of the buffer being equal to 2 × B. All
available labeled pixels were selected except those included

6Examples with real data are given in Supplementary Material, Section II.

in the training and validation data sets. From the available
unlabeled pixels, approximately 1% were selected. Table VI in
Appendix B summarizes the number of labeled and unlabeled
pixels for each buffer size.

2B

Region 1

Region 2

Fig. 4: Synthetic represention of a boundary zone: the full line
represents the boundary between two eco-climatic regions and
the area inside the dotted lines corresponds to the boundary
zone. Gray pixels are selected to compose the boundary data
set.

B. Pre-processing
Feature scaling was performed before the learning step.

Mean and standard deviation were estimated for each fea-
ture on the training data set from the classification data
set and then used to standardize the data on the different
data sets (training, validation, test and boundary) [112]. The
standardization was performed with the Scikit-Learn function
StandardScaler [113].

C. Competitive methods
The GP model described in Section IV was implemented

using the GPyTorch library. It is based on PyTorch and has
been developed to exploit the usage of GPU hardware [114]
for GP. The number of gl latent functions was selected with
L = C. The matrix A which is the linear relation between
GP was initialized with random values drawn from a standard
Gaussian distribution. The prediction was done by using 10
draws from the MC estimation. Studies have been made with
a higher number of draws but results were similar.

Our GP model was compared with three different classifica-
tion methods. The first two methods do not take into account
the spectro-temporal structure of the data, e.g., modifying
the order of the temporal acquisitions would not change the
behavior of the algorithm. The last one takes the temporal
structure into account to process the SITS.

a) Random Forest (RF): The Random Forest Classifier
from the Scikit-Learn library [113] was used to train the RF
model. Standard parameter settings were used: 100 trees with
no maximum depth and the number of features considered for
splitting at each leaf node was equal to the square root of the
total number of features.
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b) Multi-layer Perceptron (MLP): The MLP model was
built with four hidden layers. The number of neurons in the
first layer was the number of features divided by two (481/2 =
240 or 483/2 = 241) and in the last three layers: the number
of classes multiplied by three (23 × 3 = 69). The activation
function used was the ReLU.

c) Lightweight Temporal Self-Attention (LTAE): In
LTAE, temporal inputs were divided in channels distributed
among several compact attention heads. Each head operated
in parallel and extracted highly-specialized temporal features.
These features were concatenated to create a single represen-
tation. A more detailed description and the parameters used
from the LTAE model are given in [46]. The implementation
was based on the Pytorch library.

For GP and neural networks, the Adam optimizer was used.
Solver parameters are given in Table III. They were found by
trial and error.

TABLE III: Parameter values for the Adam optimizer for GP,
MLP and LTAE.

GP MLP LTAE
Number of epochs E 100 300 100
Batch size β 1024 1000 1000
Learning rate η 1× 10−3 1× 10−5 1× 10−5

For each classification method previously defined, two dif-
ferent models were learned: λt-model and φλt-model. λt-
model was the model trained using only spectro-temporal
features xλt. φλt-model was the one trained using spectro-
temporal features xλt but also spatial features xφ as defined
in Section V-A. The number of trainable parameters for each
method in the global configuration classification is summa-
rized in the Table IV.

TABLE IV: Number of trainable parameters for each model
in the global configuration classification.

Model # of parameters
λt-GP 584 200

φλt-GPSC 586 569
φλt-GPPC 586 523
λt-MLP 143 579
φλt-MLP 144 612
λt-LTAE 239 521
φλt-LTAE 240 005

VII. RESULTS

First, this section describes the results obtained using the
classification data set: the global performance accuracy of each
method in the Southfrance area. Then, results concerning the
spatial continuity of the predictions in the boundary zones
using the boundary data set are studied. For each case,
quantitative results but also qualitative ones are given.

A. Performance results in the Southfrance area

1) Quantitative results: Classification metrics were com-
puted using the test data set from the classification data set

in both configurations (stratification and global)7. They were
computed over the 11 runs of each model trained either with
the DS-A or the DS-B training data set. The studied models
are: λt-GP, φλt-GPSC, φλt-GPPC, λt-RF, φλt-RF, λt-MLP,
φλt-MLP, λt-LTAE and φλt-LTAE.

The overall accuracy (OA) for each model trained with
training data sets DS-A and DS-B are respectively presented
using boxplots in Fig. 5a and Fig. 5b. The averaged F-score by
class for each model trained with training data sets DS-A and
DS-B on global and stratification configurations are presented
using bar plots in Fig. 12, 13, 14, 15 in Appendix C. Raw
results are reported in the supplementary materials.

The Wilcoxon rank-sum test [115] was used to assess the
statistical significance of the observed differences over the MC
runs, for each pair of classification methods. The null hypothe-
sis was rejected at a significance level of alpha= 0.01. Results
are reported in Fig. 6a. For the stratification configurations, all
the results are significantly different. Similar results are found
for the global configurations, except between λt-GP and φλt-
RF. For the larger training data set, results are reported in
Fig. 6b. Some results are not significantly different in terms
of classification accuracy.

According to the Wilcoxon’s tests, we can see that with the
data set DS-A all models, for each configuration, benefit from
the included spatial information. Indeed, the OA is increased
by less than one point for RF and MLP models and between
one and three points for GP and LTAE models. Furthermore,
GP models take more advantage of the spatial information
than the other methods: the OA is increased by three points
compared to less than one point for RF and MLP and around
two points for LTAE. Furthermore, GP models have the highest
improvement, specifically in the global configuration. Only λt-
GP and RF models have better results with the stratification
configuration compared to the global one. Finally, by consid-
ering the best configuration, global with spatial information,
GP models are in average three points above RF models, one
point above MLP models and one point below LTAE models.

The averaged training and prediction times were computed
for each region and each model over the 11 runs8. To process
the RF models, 20 CPU with a total of RAM of 100 GB were
available. For GP and DL models, 1 NVIDIA Tesla V100 GPU
was used. In the global configuration, RF have the shortest
training time followed by LTAE, MLP and finally GP. GP
are more demanding, because of the MC sampling technique
for the variational posterior. Moreover, φλt-GPSC have higher
training times compared to φλt-GPPC, which can be explained
by the presence of an indeterminate form for φλt-GPSC.

2) Qualitative results: Land cover maps have been pro-
duced using the iota2 processing chain [110] for both
stratification and global configurations. Experiments were
done for all the studied models previously described on two
tiles: T31TCJ and T31TDJ . For each region, predictions
were done using the model trained with the train data set
DS-A on the 27 tiles with the best OA over the 11 runs.

7A complete summary of classification metrics (OA, F-score, F-score per
class, recall per class and precision per class) are provided in Supplementary
Material, section IV.

8Results are provided in the Supplementary Material, Section III.
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Fig. 5: Boxplots of the overall accuracy for each model (λt-GP, φλt-GPSC, φλt-GPPC, λt-RF, φλt-RF, λt-MLP, φλt-MLP,
λt-LTAE and φλt-LTAE). Comparison between global and stratification configurations.
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Fig. 6: Wilcoxon rank-sum tests results. Every pair of classification methods was tested and the null hypothesis was rejected
at a significance level of alpha= 0.01. Red cells indicate that the observed differences in terms of F-score over the MC runs
between the two classification methods are not significantly different. Green cells correspond to significant observed differences.
The cells above the diagonal of the table contain Wilcoxon test results for the stratification configuration, while cells below
the diagonal contain the results for the global configuration. Fig. 6a corresponds to results obtained with the data set DS-A
and Fig. 6b corresponds to results obtained with the data set DS-B.

Fig. 7a and Fig. 7b represent the land cover map obtained
with a GP model respectively trained without and with spatial
information in the global configuration. The results obtained
on this agricultural area around Toulouse show that the pixels
are more homogeneous (with less salt and pepper classification
noise [116]) when the spatial information is added9. Finally, all
the land cover maps generated are available for download 10.

9The land cover maps of this agricultural area around Toulouse for all
the studied models in both configurations are provided in the Supplementary
Material, Section V.

10DOI: 10.5281/zenodo.7077887

B. Continuity analysis in boundary zones

In the stratification configuration, two models surrounding
a boundary zone were trained independently. The goal of this
section is to evaluate the continuity of the predictions inside
the boundary zone.

1) Quantitative results: All the pixels inside the boundary
zone (i.e. boundary data set) were predicted by both models
surrounding this zone. The number of agreements corresponds
to the number of pixels predicted with the same label by both
models. Thus, the percentage of agreement corresponds to the
number of agreements divided by the total number of pixels
predicted. This percentage was calculated for both unlabeled

https://doi.org/10.5281/zenodo.7077887
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(b) model φλt-GPPC

Fig. 7: Land cover maps obtained on an agricultural area around Toulouse (tile T31TCJ) (global configuration)

and labeled pixels which are correctly predicted. The size of
the boundary has no influence as the results are similar for
different boundary sizes B ∈ {100, 200, 500, 1000}, as shown
in Table VII in Appendix D. In general, RF models have
higher agreement than other models for both unlabeled and
labeled pixels correctly predicted. However, the percentage of
agreement with labeled pixels correctly predicted is around
two points below the ones with the unlabeled pixels. Indeed,
the continuity in predictions does not mean that the predictions
are correct. The OA on labeled pixels for different boundary
sizes for both global and stratification configurations are
presented in Table VIII in Appendix D. For all methods, the
OA in the global configuration is above the stratification one.
The difference between both configurations is only two points
for RF models and more than four points for DL methods. The
stratification configuration is only beneficial for RF methods,
as results found in Section VII-A1. For all models, the
performances increase when the spatial information is added.

2) Qualitative results: As expected, there is no discon-
tinuity in predictions between two eco-climatic regions for
the global configuration with the λt-GP model as shown in
Fig. 8b. However, for the stratification configuration discon-
tinuities can be found. Specifically, we found discontinuities
for zones where there is a high topography gradient and very
scarce reference data, as shown in Fig. 8a. Similar results
are obtained for all models11. Moreover, for the stratification
configuration, adding the spatial information did not improve
the prediction continuity11 for every models.

VIII. DISCUSSION

Beyond the quantitative and qualitative assessment of GP
with respect to existing methodologies, we propose here an
analysis of the specific attributes of GP. One advantage of
GP with respect other ML or DL approaches is their ability
to produce full posterior predictive distributions and not only
point estimates. This aspect is discussed in Section VIII-A. As
we claimed in Section I, another interesting feature of GP is
the interpretability of the learned parameters. Section VIII-B

11Land cover maps in this specific boundary zone for all models are
provided in Supplementary Material, Section VI.

focuses on the interpretation of some of these parameters and,
in particular, their evolution during the training.

A. Posterior predictive distribution

As described in Section III, the posterior predictive dis-
tribution is not Gaussian and has to be estimated with MC
sampling technique. For each sample, the class membership
probabilities are computed by averaging the random draws.
The class with the highest value is selected as the predicted
class. In addition to the average value, standard deviation can
also be computed as a measure of classifier uncertainty. Fig. 9
and Fig. 10 represent the approximate posterior predictive
distributions obtained with 100 draws. The two largest class
membership probabilities are represented for respectively a
correctly predicted pixel and an incorrectly predicted one. In
the case of a correctly predicted pixel, regardless of the draw,
the model is very confident: the marginal distributions are
tight, thus the variance is low. However, in the case of an
incorrectly predicted pixel, we observe wide marginal distri-
butions which can be interpreted as having higher uncertainty.

It is also possible to observe this trend by looking at
the marginal distributions of the selected class membership
for correctly or incorrectly predicted pixels. Indeed, Fig. 11
shows that, on average, the posterior predictive distribution of
correctly predicted pixels has a higher mean but also a lower
standard deviation than the posterior predictive distribution of
incorrectly predicted pixels.

B. Interpretation of the learned parameters

As described in Section IV, different parameters are opti-
mized during the training step. In the following, we focus our
study on two different learned parameters: the inducing points
Zl and the matrix A.

1) Spatial location of IP: Inducing points (IP) are used to
approximate the posterior and their values are optimized to
find a posterior as similar as possible to the true posterior
on the training samples [75]. Relevant information can be
obtained by looking at the IP after optimization. Visualizing
the 481 spectro-temporal features is not possible and we
restrict here to the two spatial features only, see Appendix E.
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Fig. 8: Land cover maps between two eco-climatic regions computed with the λt-GP model (tile T31TDJ). The black line
represents the boundary between regions.
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Fig. 9: Posterior predictive distributions, estimated with 100
draws, of the two largest class membership probabilities for
a pixel correctly predicted (true class: SOY). Marginal dis-
tribution of each class is shown on the diagonal and joint
distribution between two classes is shown on the off-diagonal.

The plotted ellipses represent the spatial area inside which the
spatial correlation is greater than 0.9. The spatial distribution
of the optimized IP can be qualified as regular: the points
are more regularly spaced than in a random distribution.
Also, the obtained spatio-length-scale `φ varies w.r.t. the latent
GP, Appendix E represents their distribution. One possible
interpretation is that the model achieves a multi-scale analysis
in the spatial domain. Indeed, a latent GP with small spatio-
length-scale perform a local analysis i.e. its spatial kernel
rapidly tends to zero for closed pixels and thus limits its
influence locally in the spatial domain. The latent GP with
large spatio-length-scale performs a spatially wider analysis:
the spatial kernel is always close to one, even for faraway
pixels.
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Fig. 10: Posterior predictive distributions, estimated with 100
draws, of the two largest class membership probabilities for
a incorrectly predicted pixel (true class: SUN). Marginal
distribution of each class is shown on the diagonal and joint
distribution between two classes is shown on the off-diagonal.

2) Weighting matrix of latent Gaussian Processes: As
described in Section II-B, A is a mixing matrix: its coefficients
acl are used to combine the L independent univariate latent
GP gl to estimate a final GP fc such as fc =

∑L
i=1 acigi.

The acl can be interpreted as the contribution of a latent GP to
the class-conditional posterior predictive distribution. Yet, we
have found no specific pattern in A among the different results
and we were not able to derive any specific interpretations: all
GP contribute significantly. A possible extension would be to
add sparsity constraints on A to improve the interpretability.

IX. CONCLUSIONS AND PERSPECTIVES

This work introduces an approach based on sparse vari-
ational Gaussian Processes (GP) for land cover pixel-based
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Fig. 11: Joint density of the standard deviation and the mean
of the posterior predictive distribution for the selected class
membership (obtained with 10 draws) and their respective
marginal densities. − corresponds to 1000 correctly predicted
pixels and − corresponds to 1000 incorrectly predicted pixels.
The model φλt-GPSC was trained on a global configuration.

classification at large scale. The discussed model combines
sparse methods with variational inference and is able to scale
to large data sets. The spatio-spectro-temporal structure of the
SITS is taken into account through a dedicated covariance
function. Experiments were conducted on Sentinel-2 SITS of
the full year 2018 in an area of 200 000 km2 in the south
of France. In terms of accuracy, GP models outperformed
conventional ML methods (i.e. RF) and DL methods (i.e.
MLP). However, they are slightly worse than structured DL
models (i.e. LTAE). Another finding is that spatial stratification
is not necessary for advanced classifiers. Even worse, spatial
discontinuities between adjacent regions are more severe for
such classifiers w.r.t. RF.

Yet, spatial stratification in a large scale context can be of
interest since the size of the training set is reduced and the
different models can be trained in parallel. In such a case, a
possible perspective would be to impose a smooth transition
in terms of prediction between two spatial regions during the
learning step. Following [117], we are considering to introduce
an auxiliary GP linking pairs of adjacent regions at boundaries
to constrain similar predictions in those areas.

Another perspective of this work is to implement feature
extraction to take greater account of the spectro-temporal
structure in the GP. The estimation of the inducing points
involves a high number of parameters and is time-consuming:
reducing the number of features could be beneficial for the
convergence of the algorithm.

In the interest of reproducible research, the imple-
mentation of the models is made available in the fol-
lowing repository: https://gitlab.cesbio.omp.eu/belletv/land

cover southfrance gp.
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[54] P. Morales-Álvarez, A. Pérez-Suay, R. Molina, and G. Camps-Valls,
“Remote Sensing Image Classification With Large-Scale Gaussian
Processes,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 56, no. 2, pp. 1103–1114, 2018.

[55] A. Constantin, M. Fauvel, and S. Girard, “Joint Supervised Classifica-
tion and Reconstruction of Irregularly Sampled Satellite Image Times
Series,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60,
p. 4403913, May 2021.

[56] H. Liu, Y.-S. Ong, X. Shen, and J. Cai, “When gaussian process meets
big data: a review of scalable gps,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 31, pp. 4405–4423, Jan. 2020.

[57] J. Hensman, A. Matthews, and Z. Ghahramani, “Scalable Variational
Gaussian Process Classification,” in In Proceedings of the 18th Interna-
tional Conference on Artificial Intelligence and Statistics, pp. 351–360,
2015.

[58] H. Hassouna, F. Melgani, and Z. Mokhtari, “Spatial contextual gaus-
sian process learning for remote-sensing image classification,” Remote
Sensing Letters, vol. 6, no. 7, pp. 519–528, 2015.

[59] S. Sun, P. Zhong, H. Xiao, and R. Wang, “Spatial contextual classi-
fication of remote sensing images using a gaussian process,” Remote
Sensing Letters, vol. 7, no. 2, pp. 131–140, 2016.

[60] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

[61] S. S. Ghosh, S. Dey, N. Bhogapurapu, S. Homayouni, A. Bhattacharya,
and H. McNairn, “Gaussian Process Regression Model for Crop
Biophysical Parameter Retrieval from Multi-Polarized C-Band SAR
Data,” Remote Sensing, vol. 14, no. 4, 2022.

[62] J. Verrelst, J. P. Rivera, J. Moreno, and G. Camps-Valls, “Gaussian
processes uncertainty estimates in experimental Sentinel-2 LAI and
leaf chlorophyll content retrieval,” ISPRS Journal of Photogrammetry
and Remote Sensing, vol. 86, pp. 157–167, 2013.

[63] J. Verrelst, L. Alonso, G. Camps-Valls, J. Delegido, and J. Moreno,
“Retrieval of Vegetation Biophysical Parameters Using Gaussian Pro-
cess Techniques,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 50, no. 5, pp. 1832–1843, 2012.

[64] D. H. Svendsen, L. Martino, M. Campos-Taberner, F. J. Garcı́a-
Haro, and G. Camps-Valls, “Joint Gaussian Processes for Biophysical
Parameter Retrieval,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 56, no. 3, pp. 1718–1727, 2018.

[65] E. V. Bonilla, K. Chai, and C. Williams, “Multi-task Gaussian Process
Prediction,” NIPS Foundation, vol. 20, 2007.
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Spain, and the École Nationale Supérieure des
Télécommunications de Bretagne, Brest, France, in
1997, and the Ph.D. degree in signal processing and
telecommunications from the Université de Rennes
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APPENDIX A
SYMBOLS AND NOTATIONS

Symbol Meaning

A Mixing matrix, A ∈ RC×L
αl, `l Scaling, length-scale parameter of the covariance function kl
C Number of classes, c ∈ {1, ..., C}
d, d′ Number of spectro-temporal, spatial features
f ∼ GP(m, k) Univariate GP with mean function m and covariance function k
f ∼ GP(m,K) P -multivariate GP such as f = Ag with mean function m and covariance function K
gl ∼ GP(ml, kl) Univariate GP, the lth latent GP with mean function ml and covariance function kl
g Vector of L independent univariate GP, g = [g1, ..., gL]
k∗ Covariance vector between the training inputs and the test inputs k∗ = [k(x1,x∗), . . . , k(xN ,x∗)]

>

K Covariance matrix such as Kij = k(xi,xj), ∀i, j ∈ {1, . . . , N}2
Ko Covariance matrix such as Ko,ij = K(xi,xj), ∀i, j ∈ {1, . . . , N}2
Kv Covariance matrix of the L-dimensional distribution q (g(xi)|θv,θ) ∼ NL

(
g(xi)|mv,Kv)

Kv
ll The diagonal lth element of diagonal covariance matrix Kv

L Number of latent processes, l ∈ {1, ..., L}
m Mean vector of the variational distribution q(f(Z)) ∼ NM (m,S)
mv Mean matrix of the L-dimensional distribution q (g(xi)|θv,θ) ∼ NL

(
g(xi)|mv,Kv)

M Number of inducing points
µ Mean vector such as µ =

[
m(x1), . . . ,m(xN )

]>
µo Mean vector such as µo = [m(x1), . . . ,m(xN )]>

N Number of training inputs
NN (µ,K) Multivariate Gaussian distribution of N dimension with mean vector µ and covariance matrix K
P Number of output GP, p ∈ {1, ..., P}
q(f(Z)) Variational distribution q(f(Z)) ∼ NM (m,S)
Sl Covariance matrix of the distribution gl(Zl) ∼ NM (ml,Sl) q
Θ Hyper-parameters of g, Θ = {θ1, ...,θL}
θlk Parameters of the covariance function kl
θlm Parameters of the mean function ml

θl Hyper-parameters of the latent process gl, θl = {θlm,θlk}
θV Parameters of the variational distribution q, θV = {m,S}
ΘV Parameters of all the variational distributions ΘV = {θVl , ...,θVL}
xi,yi The ith training input, target
xiφ, xiλt Spatial, spectro-temporal features of the ith pixel
X Set of training inputs X = [x1, ...,xn]
Y Set of training targets Y = [y1, ...,yn]
zi The ith inducing point
Zl Set of inducing points for the latent process gl, Zl = {zli}Mi=1
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APPENDIX B
NUMBER OF PIXELS IN CLASSIFICATION AND BOUNDARY DATA SETS.

For both tables, the class code is provided in Table II.

TABLE V: Average number of pixels per class and regions for the classification data set. For a given class, the two first rows
(data set DS-A and B) indicate the number of training-validation pixels per region and the third rows indicates the number of
test pixels per region.

Regions Global
Class 1 2 3 4 5 6 7 8

4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 32 000 - 8 000
6 569 - 1 727 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 12 011 - 2 676 10 802 - 2 657 16 000 - 4 000 16 000 - 4 000 109 382 - 27 061CUF

7 286 10 000 10 000 10 000 10 000 10 000 10 000 10 000 77 286

4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 32 000 - 8 000
16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 128 000 - 32 000DUF

10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 80 000

4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 32 000 - 8 000
16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 128 000 - 32 000ICU

10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 80 000

3 939 - 966 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 2 562 - 658 4 000 - 1 000 4 000 - 1 000 30 501 - 7 624
5 191 - 2 104 16 000 - 4 000 7 642 - 4 000 16 000 - 4 000 9 148 - 2 769 2 562 - 658 16 000 - 4 000 16 000 - 4 000 88 543 - 23 457RSF

6 622 10 000 10 000 10 000 10 000 5 360 10 000 10 000 71 982

4 000 - 987 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 941 32 000 - 7 928
5 942 - 1 424 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 7 261 - 2 125 109 204 - 27 549RAP

4551 10 000 10 000 10 000 10 000 10 000 10 000 10 000 74 551

4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 32 000 - 8 000
16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 128 000 - 32 000STC

10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 80 000

1 073 - 340 4 000 - 1 000 1 188 - 363 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 26 261 - 6 704
1 073 - 340 9 748 - 2 596 1 188 - 363 16 000 - 4 000 16 000 - 4 000 11 945 - 2 709 16 000 - 4 000 13 154 - 3 243 85 110 - 21 253PRO

1 222 10 000 3 120 10 000 10 000 10 000 10 000 10 000 64 342

3 998 - 902 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 31 998 - 7 902
4 362 - 1 122 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 3 959 16 000 - 4 000 16 000 - 4 000 16 000 - 344 116 362 - 28 525SOY

7 098 10 000 10 000 10 000 10 000 10 000 10 000 10 000 77 098

1 316 - 437 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 29 316 - 7 437
1 437 - 1 122 16 000 - 4 000 16 000 - 3 757 16 000 - 4 000 16 000 - 3 959 16 000 - 4 000 16 000 - 4 000 16 000 - 344 113 316 - 28 194SUN

3 492 10 000 10 000 10 000 10 000 10 000 10 000 10 000 73 492

4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 32 000 - 8 000
16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 128 000 - 32 000COR

10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 80 000

0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 4 000 - 1 000 0 - 0 4 000 - 1 000 8 000 - 2 000
0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 16 000 - 4 000 0 - 0 16 000 - 4 000 32 000 - 8 000RIC

0 0 0 0 0 10 000 0 10 000 20 000

1 604 - 411 3 836 - 912 2 757 - 676 4 000 - 1 000 4 000 - 988 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 28 199 - 6 988
1 604 - 411 3 928 - 1 078 2 757 - 676 16 000 - 4 000 8 688 - 2 563 11 518 - 3 296 16 000 - 4 000 16 000 - 3 985 76 497 - 20 011TUB

1 816 5 185 5 864 10 000 10 000 10 000 10 000 10 000 62 865

4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 32 000 - 8 000
16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 128 000 - 32 000GRA

10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 80 000

844 - 173 4 000 - 1 000 1 175 - 343 4 000 - 1 000 3 236 - 800 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 25 256 - 6 317
844 - 173 15 967 - 3 930 1 175 - 343 16 000 - 4 000 3 236 - 965 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 85 223 - 21 412ORC

657 10 000 3 026 10 000 3 590 10 000 10 000 10 000 57 273

672 - 207 4 000 - 987 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 28 672 - 7 194
672 - 207 5 399 - 1 545 6 255 - 1 649 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 92 327 - 23 402VIN

574 5 115 9 200 10 000 10 000 10 000 10 000 10 000 64 889

4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 32 000 - 8 000
16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 128 000 - 32 000BLF

10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 80 000

4 000 - 1 000 4 000 - 1 000 2 598 - 648 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 30 598 - 7 648
16 000 - 4 000 16 000 - 4 000 2 598 - 717 16 000 - 4 000 16 000 - 3 896 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 114 598 - 28 614COF

10 000 10 000 5 317 10 000 10 000 10 000 10 000 10 000 75 317

4 000 - 1 000 4 000 - 1 000 0 - 0 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 28 000 - 7 000
16 000 - 4 000 16 000 - 4 000 0 - 0 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 112 000 - 28 000NGL

10 000 10 000 0 10 000 10 000 10 000 10 000 10 000 70 000

4 000 - 1 000 4 000 - 1 000 3 983 - 925 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 31 983 - 7 925
16 000 - 4 000 16 000 - 4 000 4 920 - 1 401 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 116 920 - 29 401WOM

10 000 10 000 6 189 10 000 10 000 10 000 10 000 10 000 76 189

4 000 - 1 000 4 000 - 1 000 0 - 0 4 000 - 1 000 3 437 - 768 4 000 - 1 000 0 - 0 4 000 - 1 000 23 437 - 5 768
16 000 - 4 000 16 000 - 4 000 0 - 0 16 000 - 3 773 7 654 - 1 795 16 000 - 4 000 0 - 0 16 000 - 3 932 87 654 - 21 500NMS

10 000 10 000 0 10 000 3 140 10 000 0 10 000 53 140

4 000 - 1 000 3 990 - 748 0 - 0 4 000 - 931 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 27 990 - 6 679
15 713 - 3 853 5 274 - 1 194 0 - 0 16 000 - 2 137 16 000 - 3 972 16 000 - 4 000 6 817 - 4 000 16 000 - 4 000 91 805 - 23 157BDS

10 000 9 097 0 10 000 10 000 10 000 0 10 000 59 097

4 000 - 1 000 0 - 0 0 - 0 0 - 0 3 715 - 818 0 - 0 0 - 0 0 - 0 7 715 - 1 818
16 000 - 4 000 0 - 0 0 - 0 0 - 0 4 773 - 2 114 0 - 0 0 - 0 0 - 0 20 773 - 6 114GPS

10 000 0 0 0 4 383 0 0 0 14 383

4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 32 000 - 8 000
16 000 - 4 000 16 000 - 3 915 16 000 - 4 000 16 000 - 3 957 16 000 - 3 586 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 128 000 - 31 459WAT

10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 80 000
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TABLE VI: Number of extracted pixels in the boundary data set for each buffer size. Labeled pixels for each class and also
unlabeled pixels are represented.

Class Buffer size 2B (in meters)
200 400 1 000 2 000 3 000 4 000

CUF 13 210 24 795 54 063 89 637 120 212 145 055

DUF 69 801 129 865 290 381 551 337 793 284 985 294

ICU 37 873 76 091 175 984 345 776 499 108 632 258

RSF 4 413 8 319 20 344 42 039 63 063 77 133

RAP 39 251 73 323 149 778 250 106 329 672 408 112

STC 62 048 119 209 250 463 440 889 583 845 710 629

PRO 13 729 27 975 68 267 124 310 158 918 196 369

SOY 54 631 107 367 243 272 404 260 536 731 667 757

SUN 140 271 262 218 574 634 987 998 1 315 013 1 597 642

COR 139 962 261 293 583 261 1 019 811 1 360 352 1 651 259

RIC 7 952 14 465 32 304 63 066 82 738 95 780

TUB 4 479 10 608 21 697 41 108 57 657 74 043

GRA 151 587 289 454 636 485 1 141 138 1 551 963 1 892 411

ORC 10 512 20 144 46 956 81 462 109 277 133 584

VIN 29 979 56 131 129 244 239 707 323 826 403 441

BLF 334 754 634 454 1 430 734 2 480 683 3 323 765 3 974 349

COF 623 400 1 175 363 2 615 784 4 755 157 6 669 116 8 524 143

NGL 458 962 881 752 1 977 349 3 410 308 4 606 858 5 621 974

WOM 236 179 443 113 944 710 1 542 605 2 040 969 2 511 469

NMS 81 900 155 856 324 391 483 110 618 084 785 524

BDS 8 480 16 246 47 651 69 107 91 400 112 524

GPS 7 7 608 2 887 5 311 5 390

WAT 262 745 507 158 1 170 362 2 177 128 3 098 221 3 910 482

Total 2 786 125 5 295 206 11 788 722 20 743 629 28 339 383 35 116 622

Unlabeled 466 238 887 200 1 966 564 3 427 563 4 639 251 5 710 571
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APPENDIX C
QUANTITATIVE RESULTS: CLASSIFICATION DATA SET

Averaged F-score for each class computed over the 11 runs are represented by bar plots. Fig. 12 and Fig. 13 respectively correspond to
models trained with the training data set DS-A or DS-B on global configuration. Fig. 14 and Fig. 15 respectively correspond to models
trained with the training data set DS-A or DS-B on stratification configuration. The class code is provided in Table II.
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Fig. 12: F-score per class, global configuration (data set DS-A)
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Fig. 13: F-score per class, global configuration (data set DS-B)
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Fig. 14: F-score per class, stratification configuration (data set DS-A)
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Fig. 15: F-score per class, stratification configuration (data set DS-B)
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APPENDIX D
QUANTITATIVE RESULTS: BOUNDARY DATA SET

TABLE VII: Averaged percentage of agreement (between two adjacent models) for different sizes of boundary zones (B ∈
{100, 200, 500, 1000}) (mean % ± standard deviation computed with 11 runs). Comparison between unlabeled pixels and
labeled pixels correctly predicted.

B Pixels λt-GP φλt-GPSC φλt-GPPC λt-RF φλt-RF λt-MLP φλt-MLP λt-LTAE φλt-LTAE

100 unlabeled 66.3 ± 0.7 64.6 ± 1.0 66.2 ± 0.8 72.6 ± 0.5 72.1 ± 0.4 65.2 ± 0.6 64.4 ± 0.6 68.4 ± 0.6 66.0 ± 0.8
labeled correctly predicted 66.6 ± 0.6 68.5 ± 0.6 69.8 ± 0.6 69.2 ± 0.4 70.5 ± 0.8 64.9 ± 0.4 65.6 ± 0.4 66.4 ± 0.4 68.2 ± 0.5

200 unlabeled 66.2 ± 0.7 64.7 ± 0.9 66.2 ± 0.8 72.6 ± 0.5 72.1 ± 0.3 65.1 ± 0.6 64.4 ± 0.6 68.3 ± 0.6 66.0 ± 0.9
labeled correctly predicted 66.5 ± 0.6 68.3 ± 0.6 69.5 ± 0.6 69.2 ± 0.4 70.5 ± 0.4 64.9 ± 0.4 65.6 ± 0.4 66.3 ± 0.4 68.1 ± 0.5

500 unlabeled 66.0 ± 0.7 64.5 ± 0.9 66.1 ± 0.8 72.5 ± 0.5 71.8 ± 0.3 65.0 ± 0.5 64.2 ± 0.6 68.2 ± 0.6 65.9 ± 0.8
labeled correctly predicted 66.6 ± 0.5 68.2 ± 0.5 69.4 ± 0.5 69.3 ± 0.4 70.5 ± 0.3 65.1 ± 0.4 65.8 ± 0.4 66.4 ± 0.4 68.2 ± 0.5

1000 unlabeled 65.8 ± 0.7 64.3 ± 0.9 65.8 ± 0.8 72.3 ± 0.5 71.8 ± 0.3 64.8 ± 0.6 64.0 ± 0.6 68.0 ± 0.6 65.7 ± 0.8
labeled correctly predicted 66.9 ± 0.5 68.5 ± 0.5 69.7 ± 0.5 69.4 ± 0.4 70.8 ± 0.4 65.4 ± 0.3 66.2 ± 0.3 66.8 ± 0.4 68.6 ± 0.5

TABLE VIII: Averaged overall accuracy (OA) computed on labeled pixels for different sizes of boundary zones (B ∈
{100, 200, 500, 1000}) (mean % ± standard deviation computed with 11 runs). Comparison between global configuration
and stratification configuration.

B Pixels λt-GP φλt-GPSC φλt-GPPC λt-RF φλt-RF λt-MLP φλt-MLP λt-LTAE φλt-LTAE

100 global 77.1 ± 0.6 79.3 ± 0.7 79.9 ± 0.6 77.7 ± 0.1 78.7 ± 0.4 77.8 ± 0.2 78.8 ± 0.1 78.0 ± 0.4 80.6 ± 0.2
stratification 74.6 ± 0.4 76.5 ± 0.4 77.3 ± 0.4 75.6 ± 0.2 76.8 ± 0.7 73.1 ± 0.3 74.0 ± 0.2 74.2 ± 0.3 76.2 ± 0.3

200 global 77.0 ± 0.6 79.2 ± 0.6 79.8 ± 0.6 77.6 ± 0.1 78.7 ± 0.1 77.8 ± 0.3 78.7 ± 0.1 78.0 ± 0.4 80.6 ± 0.2
stratification 74.6 ± 0.4 76.5 ± 0.3 77.2 ± 0.3 75.6 ± 0.2 76.9 ± 0.2 73.2 ± 0.3 74.0 ± 0.2 74.1 ± 0.3 76.2 ± 0.3

500 global 77.3 ± 0.6 79.3 ± 0.7 79.9 ± 0.6 77.7 ± 0.1 78.7 ± 0.1 77.9 ± 0.2 78.9 ± 0.1 78.1 ± 0.3 80.6 ± 0.2
stratification 74.8 ± 0.3 76.4 ± 0.4 77.2 ± 0.3 75.9 ± 0.2 77.0 ± 0.2 73.6 ± 0.2 74.4 ± 0.2 74.4 ± 0.3 76.4 ± 0.3

1000 global 77.5 ± 0.6 79.6 ± 0.7 80.1 ± 0.6 77.8 ± 0.1 79.0 ± 0.1 78.1 ± 0.2 79.1 ± 0.1 78.3 ± 0.3 80.9 ± 0.2
stratification 75.4 ± 0.3 77.0 ± 0.4 77.7 ± 0.2 76.2 ± 0.3 77.5 ± 0.2 74.1 ± 0.3 75.0 ± 0.2 74.8 ± 0.3 76.8 ± 0.3
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APPENDIX E
INTERPRETATION OF THE LEARNED PARAMETERS: INFLUENCE OF THE SPATIAL INFORMATION

(a) latent GP number 12 (b) latent GP number 15

Fig. 16: Spatial location of inducing points (IP) for 2 different latent GP: • and • represent spatio IP respectively before and
after optimization. Orange and green ellipses correspond to the spatial area inside which the spatial correlation is greater than
0.9 respectively for the latent GP number 12 and 15. The model φλt-GPPC was trained on a global configuration.
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Fig. 17: Distribution of the spatio length-scale `φ for all the latent GP: • and • represent the spatio length-scale `φ respectively
for the GP latent number 12 and 15.


	Introduction
	Gaussian Processes
	Univariate Gaussian Processes
	Multivariate Gaussian Processes
	LMC for Gaussian Process classification

	Large Scale Multivariate Gaussian Process Classification
	Model approximation
	Posterior approximation by Variational Inference
	Variational Inference for multi-class GP classification

	Model description
	Mean function
	Covariance function
	Inducing points (IP)
	Model complexity

	Data set
	SITS Sentinel-2
	Reference data
	Eco-climatic regions

	Experimental setup
	Data generation
	Classification data set
	Boundary data set

	Pre-processing
	Competitive methods

	Results
	Performance results in the Southfrance area
	Quantitative results
	Qualitative results

	Continuity analysis in boundary zones
	Quantitative results
	Qualitative results


	Discussion
	Posterior predictive distribution
	Interpretation of the learned parameters
	Spatial location of IP
	Weighting matrix of latent Gaussian Processes


	Conclusions and perspectives
	References
	Biographies
	Valentine Bellet
	Mathieu Fauvel
	Jordi Inglada

	Appendix A: Symbols and notations
	Appendix B: Number of pixels in classification and boundary data sets.
	Appendix C: Quantitative results: classification data set
	Appendix D: Quantitative results: boundary data set
	Appendix E: Interpretation of the learned parameters: influence of the spatial information

