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Abstract
The space mission MICROSCOPE dedicated to the test of the equivalence
principle (EP) operated from April 25, 2016 until the deactivation of the satel-
lite on October 16, 2018. In this analysis we compare the free-fall accel-
erations (aA and aB) of two test masses in terms of the Eötvös parameter
η(A,B) = 2 aA−aB

aA+aB
. No EP violation has been detected for two test masses, made

from platinum and titanium alloys, in a sequence of 19 segments lasting from
13 to 198 h down to the limit of the statistical error which is smaller than
10−14 for η(Ti, Pt). Accumulating data from all segments leads to η(Ti, Pt) =
[−1.5 ± 2.3(stat) ± 1.5(syst)] × 10−15 showing no EP violation at the level of
2.7 × 10−15 if we combine stochastic and systematic errors quadratically. This
represents an improvement of almost two orders of magnitude with respect to
the previous best such test performed by the Eöt-Wash group. The reliability
of this limit has been verified by comparing the free falls of two test masses
of the same composition (platinum) leading to a null Eötvös parameter with a
statistical uncertainty of 1.1 × 10−15.

Keywords: MICROSCOPE, general relativity, experimental gravitation,
equivalence principle, space mission, space accelerometers, Eötvös parameter

(Some figures may appear in colour only in the online journal)

1. Introduction

The equivalence principle (EP) is the foundation stone on which Einstein built his new the-
ory of gravitation, general relativity (GR) [1, 2]. GR has become an essential element in our
description of the macroscopic Universe, from the big bang to black holes and gravitational
waves. GR has passed with flying colours many stringent experimental tests (for reviews, see,
e.g., [3] and chapter 21 in [4]).

However, fundamental physics is facing several conundrums which suggest the need to
extend our present theoretical framework. On the gravity side, the missing mass problem
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[5, 6], and the acceleration of the cosmic expansion [7, 8] have motivated the search for modifi-
cations of GR. On the particle-physics side, the peculiar structure of the Standard Model (SM),
the hierarchy of particle masses, the observed preponderance of matter over antimatter, the
presence of several different gauge symmetries with a curious symmetry breaking pattern, are
some of the puzzles that motivate the search for extensions of the SM (notably supersymmetric
ones [9]).

Most of the attempts to go beyond GR or beyond the SM, including the attempts to unify
all interactions, have suggested the existence of new particles and of new interactions. In many
cases, these new interactions give rise to apparent violations of the EP by predicting addi-
tional long-range feeble forces that do not couple, as Einsteinian gravity does, to the total
mass–energy of a body. For instance, many theories including those with extra dimensions,
from the Kaluza–Klein model [10, 11] up to string theories [12], suggest the existence of a
light spin-0, dilaton-like, particle. Such a light scalar field can be made compatible with current
Solar System tests if some screening mechanism is at work [13–21]. The coupling to matter
of a dilaton-like particle is expected to violate the EP at a small level (see, e.g., references
[14, 17, 22, 23]). Another possibility is the existence of a very light spin-1 U boson, related to
an extension of the SM gauge group, mediating a new EP-violating force [24, 25].

The EP, or more precisely the weak equivalence principle (WEP) states that two bodies of
different compositions and/or masses fall at the same rate in the same gravitational field (univer-
sality of free fall-UFF); equivalently, it states the equivalence of the ‘inertial’ and ‘gravitational’
masses. Since its use by Einstein in 1907 as a starting point of GR, it has been experimentally
tested with higher and higher precision. Tests of the WEP are usually presented in terms of the
Eötvös ratio η [26], defined as the normalised difference of accelerations (or equivalently, as
the normalised difference of gravitational-to-inertial mass ratios) of two test bodies in same
gravitational field [3]:

η(2, 1) = 2
a2 − a1

a2 + a1
= 2

mG2/mI2 − mG1/mI1

mG2/mI2 + mG1/mI1
(1)

where a j is the acceleration of the jth test-body, and mG j and mI j are its gravitational and inertial
masses. Since previous experiments have shown that mG/mI does not differ from 1 by more
than about 10−13, the quantity which we directly measure,

δ(2, 1) =
mG2

mI2
− mG1

mI1
, (2)

differs from the Eötvös parameter η(2, 1) only by terms of order [η(2, 1)]2, and may in practice
be identified with it.

Tests of the UFF have a long history, starting with Galileo Galilei (1638) and Newton (1687),
and continuing to the end of the 20th century after Fischbach et al [27] revived the interest in
experimental searches for new, WEP-violating interactions. The state-of-the-art experiments
have measured |η| < a few 10−13 (see reference [3] for a historical account of tests of the
WEP): (i) the Eöt-Wash group used a high-precision torsion pendulum in the Earth and Sun
gravitational fields [28, 29], and (ii) Lunar laser ranging has been used to monitor the motions
of the Moon and the Earth around the Sun [30, 31], leading to a slightly better accuracy; but
in this case η tests combination of effects due to composition differences between Earth and
Moon (related to the WEP), and effects due to the self-gravity of each body (related to the
strong EP).

Concepts for an EP test in space were first developed in Stanford (STEP project) to cope
with ground experiments limitations [32, 33]. MICROSCOPE was the first space experiment
to test the WEP and hence also UFF. Test masses in orbit follow quasi-infinite and purer free
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falls in a quieter environment free of seismic disturbances and anthropogenic electromagnetic
perturbations. The satellite was launched into a low-Earth, 710 km sun-synchronous orbit by
a Soyuz rocket from Kourou on April 25, 2016. It delivered data for more than two years.

The satellite carries the twin space accelerometers for gravitation experiment (T-SAGE)
payload (figure 1). T-SAGE is composed of two sensor units (SUs) called sensor unit for ref-
erence (SUREF) and sensor unit for the equivalence principle test (SUEP). Each SU includes
two inertial sensors (or accelerometers), each one controlling one test mass. The test masses are
concentric, co-axial hollow cylinders. Choosing cylindrical shapes for the test masses allows
(i) to nest them with their centres of mass at the same position, (ii) to approximate their ten-
sor of inertia to that of a sphere with appropriate choice of dimensions22, and (iii) to optimise
the capacitive sensing along the cylinders’ common axis [34]. SUREF’s test-masses are made
of the same material (PtRh10), while SUEP’s are made of different material (PtRh10) for the
inner mass, Ti alloy for the outer mass [35]). The PtRh10 platinum–rhodium alloy contains
90% by mass of Pt (A = 195.1, Z = 78) and 10% of Rh (A = 102.9, Z = 45). The isotopic
composition of Pt has been measured by PTB on a sample of flight material [35]. SUEP’s outer
test-mass is made of 90% titanium (A = 47.9, Z = 22), 6% of aluminium (A = 27.0, Z = 13)
and 4% of vanadium (A = 50.9, Z = 23). The choice of the materials is a trade-off between
machining laboratory know-how and theoretical motivation [36]. Titanium and platinum differ
mainly from the neutron excess over the atomic mass (N − Z)/A and, to a smaller extent, in the
nuclear-electrostatic-energy parameter Z(Z − 1)/(N + Z)1/3. The instrument works by mea-
suring the electrostatic force required to equilibrate all other ‘natural’ forces in order to keep
the test masses motionless with respect to electrodes fixed to the satellite [34]. The measured
electrostatic force divided by the known mass is commonly called ‘measured acceleration’
(this is the opposite of the acceleration which would be undergone by the test mass in the
absence of electrostatic force) and this terminology will be used in this paper. The driving idea
of the experiment is to compare the measured accelerations of the two test mass pairs within
each sensor to verify if they have the same free-falls. Along the X axis, parallel to the cylinder
axis (figure 1, right panel and figure 2, right panel), capacitance changes are caused by the vari-
ation of the overlap between the test mass and its surrounding electrodes fixed to the satellite.
Along the Y and Z axes the capacitance changes through variation of the gap. This allows for
better sensitivity, removes electrostatic instability, and gives complete linearity along X. This
is why the X-axis will be used in our analyses.

The MICROSCOPE satellite was designed to provide an environment as stable as possi-
ble. It was finely controlled along its six degrees of freedom with a drag-free and attitude
control system (DFACS) described in [37]. The DFACS allows several modes of operation:
inertial pointing or spin mode with the choice between several rotation rates. In all cases
the instrument’s X-axis is kept parallel to the orbital plane (figure 2, left panel). In inertial
pointing mode the axes of the spacecraft and instrument are maintained pointing in a fixed
direction and hence the direction of the Earth gravity field projected onto the X-axis varies at
the orbital frequency and hence fEP = forb. In the spin mode the satellite is rotated about the
instrument Y-axis, which is orthogonal to the orbital plane, at a frequency f spin, and in this case
fEP = forb + f spin. The measurements analysed in this paper were obtained with two different
spin rates referred to as fspin2

and fspin3
. The values of the frequencies of interest in this paper

are given in table 1 according to [38]. The higher frequency, fspin3
, is a trade-off between min-

imisation of instrument noise, which would favour a higher frequency, and the capabilities of

22 But unlike a sphere, the momenta of order >2 are not null.
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Figure 1. The MICROSCOPE satellite (left panel) and the T-SAGE instrument with its
two cylindrical SUs (right panel).

Figure 2. Left: the 4 test-masses orbiting around the Earth (credits CNES/Virtual-IT
2017). Right: reference frames for the satellite and for one pair of masses. The (Xsat,
Ysat, Zsat) triad defines the satellite frame; the reference frames (Xk, Yk, Zk, k = 1, 2) are
attached to the test-masses (black for the inner mass k = 1, red for the outer mass k = 2);
the Xk axes are the test-mass cylinders’ longitudinal axis and define the direction of WEP
test measurement; the Yk axes are normal to the orbital plane, and define the rotation axis
when the satellite spins; the Zk axes complete the triads. The 7 μm gold wires connecting
the test-masses to the common Invar sole plate are shown as yellow lines. �Δ represents
the test-masses offcentring. The centers of mass have been approximately identified with
the origins of the corresponding sensor-cage-attached reference frames.
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Table 1. Main frequencies of interest.

Label Frequency Comment

forb 0.168 18 × 10−3 Hz Mean orbital frequency

fspin2
9
2 f orb = 0.756 81 × 10−3 Hz Spin rate frequency 2 (V2 mode)

fspin3
35
2 f orb = 2.943 15 × 10−3 Hz Spin rate frequency 3 (V3 mode)

f EP2 0.924 99 × 10−3 Hz EP frequency in V2 mode

f EP3 3.111 33 × 10−3 Hz EP frequency in V3 mode

the micro-propulsion system; the smaller value, fspin2
, has the advantage of being farther from

the limits of the propulsion system, and saves on gas usage.
In [39], we used 7% of the available data to provide first results. No evidence for a violation

of the EP was found at the 1.3 × 10−14 level in terms of the Eötvös parameter, also providing
improved constraints on additional new long-range forces [40–42]. Since then, the use of all
data has allowed us to improve significantly the statistical error, and a thorough analysis of
systematic errors has been conducted [43] using additional calibration sessions. The present
paper describes these efforts and their result. In section 2, we review the available data at
our disposal, grouped into scientific sessions. In section 3, we explain the physical parametric
model used to analyse the measurements. In section 4 we show that perturbed behaviours of the
measured accelerations lasting one or several orbits requires the division of some sessions into
several disjointed segments. We list the characteristics of the segments analysed in this paper
and describe the glitch (short singular events) detection strategy. The analysis is performed
first on individual segments as shown in section 5, and then using the data from all segments
gathered for a single estimation as presented in section 6. We conclude in section 7.

MICROSCOPE is simple in its principle but each component of the mission has been pushed
to its limits given the external constraints (e.g. size of the satellite and global cost); for a more
detailed presentation of MICROSCOPE the reader is referred to other papers of this volume
(references [34, 37, 38, 43–48]).

2. Scientific sessions and available data

The MICROSCOPE observations are divided into different measurement sessions. A session
represents a time span during which the satellite and the instrument keep the same configuration
(spin, drag-free mode, etc). They are numbered by increasing integers and are described in the
mission scenario [45]. Some of these sessions (called ‘EP sessions’) are directly devoted to
the test of the EP while others (‘calibration sessions’) are used to calibrate or characterise the
experimental apparatus [46]. EP sessions are the longest, most of them spanning 120 orbital
periods (about 8 days), while calibration sessions typically span a few orbits. All sessions were
performed with SUEP as well as with SUREF. Sessions are characterised by:

• The SU used: as explained in [34], the payload is composed of 2 SUs, each SU enclosing
2 co-axial concentric test masses. SUREF has 2 test masses with the same composition
and is used as a null check of the experiment; SUEP aims at comparing the free falls of
a test mass in platinum and of a test mass in titanium. During most of the sessions only
one SU is on, with both operating simultaneously only during the EP sessions 430, 452
and 454.

• Which combination of the accelerometer outputs are used by the DFACS [37]: the DFACS
uses micro-thrusters servo-controlled by the outputs of one or several inertial sensors in

6
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Table 2. List of analysed sessions dedicated to the EP test with SUREF and their char-
acteristics. Column 3 gives the calendar date of the beginning of each session, whereas
columns 4 and 5 give the beginning and the end in terms of orbit number. The counting
starts on 2016-04-26T01:03:05 UTC (orbit 1) and the orbital period is 5946 s. Columns
7 and 8 give the minimal and maximal temperatures measured in the SU during the
session.

Session
number Spin

Beginning
(date)

Beginning
(orbit No.)

End
(orbit No.)

Duration
(orbits) Tmin (◦C) Tmax (◦C)

120 V2 2016-10-27 2681.5 2801.5 120.0 18.1 18.4
174 V2 2017-01-19 3952.8 4072.8 120.0 18.1 19.0
176 V2 2017-01-27 4074.4 4156.4 82.0 19.0 19.0
294 V3 2017-09-13 7397.6 7491.6 94.0 17.5 18.3
376 V2 2017-11-11 8258.0 8338.0 80.0 16.1 18.0
380 V3 2017-11-20 8382.6 8502.6 120.0 19.2 19.4
452 V2 2018-02-05 9507.7 9541.7 34.0 34.2 35.3
454 V2 2018-02-07 9542.6 9607.8 65.2 35.3 35.7
778 V2 2018-09-28 12 930.0 12 990.01 60.0 20.0 21.3

order to cancel their measured acceleration and to stabilise the rotation; it can be controlled
by the output of one of the two inertial sensors (labelled IS1 for the inner mass and IS2 for
the outer mass) within the SU in operation. A common mode use of both accelerometers is
also possible. In practice almost all sessions used IS2 except sessions 358 and 406 which
used the common mode. When both the SUs are working, the DFACS is controlled by the
accelerometers within only one of the SUs: SUEP for session 430 and SUREF for sessions
452 and 454.

• The spin rate of the satellite: either V2 corresponding to the frequency fspin2
= (9/2) forb �

7.57 × 10−4 Hz or V3 corresponding to fspin3
= (35/2) forb � 2.94 × 10−3 Hz.

• The session duration: sessions were planned to last as long as possible, subject to oper-
ational constraints [45]: (i) periodic pointing updates required to remain in specification
due to possible onboard clock drift; this limited the maximum duration to 120 orbits, each
of duration Torb = 5946; (ii) roughly once a month the star trackers pointed towards the
bright moon and the fine attitude control had to be interrupted so that some sessions had
to be shortened. In addition a few sessions were interrupted due to technical problems.

The first EP session after the commissioning is session 120, performed with SUREF. Note,
the first calibration sessions revealed significant non-linearities in SUEP, which were solved by
modifying the parameters of the proportional–integral–derivative controller in the servo-loop
of SUEP, and its behaviour was nominal from session 210 onwards. None of the prior sessions
are used in our analysis. Session 430 was interrupted by an anomaly and was discarded. Finally
we are left with 9 EP sessions performed with SUREF (table 2) and 18 with SUEP (table 3).

Tables 2 and 3 list also the sensors’ minimum and maximum temperatures. The typical
temperature of the SUEP was about 10 ◦C while it was about 19 ◦C for the SUREF. The
higher temperature in SUREF was due to two defective capacitors used for house-keeping
data [34]. Note also the higher temperatures during sessions 452 and 454 when the two SUs
ran simultaneously.

All sessions come with the following data used directly to estimate the Eötvös parameter
[47]:

7
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Table 3. Same as table 2 for sessions performed with SUEP.

Session
number Spin

Beginning
(date)

Beginning
(orbit No.)

End
(orbit No.)

Duration
(orbits) Tmin (◦C) Tmax (◦C)

210 V3 2017-02-14 4336.5 4386.5 50.0 9.7 10.4
212 V3 2017-02-18 4388.0 4464.1 76.1 10.4 10.4
218 V3 2017-02-28 4535.1 4655.1 120.0 9.1 10.3
234 V3 2017-03-15 4751.1 4843.1 92.0 9.3 10.3
236 V3 2017-03-21 4844.6 4964.6 120.0 10.3 10.4
238 V3 2017-03-29 4966.1 5086.1 120.0 10.4 10.6
252 V3 2017-04-13 5176.7 5282.7 106.0 9.2 10.7
254 V3 2017-04-20 5284.3 5404.3 120.0 10.7 10.8
256 V3 2017-04-29 5405.8 5525.8 120.0 10.8 10.8
326 V3 2017-09-27 7600.5 7702.5 102.0 10.1 12.9
358 V3 2017-10-14 7857.3 7950.1 92.8 9.4 9.9
402 V2 2017-12-06 8614.7 8634.7 20.0 10.0 10.3
404 V3 2017-12-07 8637.8 8757.8 120.0 10.3 11.7
406 V3 2017-12-16 8759.3 8779.3 20.0 11.7 11.7
438 V2 2018-01-16 9215.2 9255.2 40.0 9.8 10.7
442 V2 2018-01-22 9298.3 9338.3 40.0 11.2 11.4
748 V2 2018-09-03 12 562.3 12 586.3 24.0 9.3 9.7
750 V3 2018-09-05 12 589.3 12 597.3 8.0 9.7 9.8

• The measured accelerations (with the meaning explained in section 1) for each test mass
of the operating SU at a sampling rate of 4 Hz with the associated time stamping. The
difference of acceleration Γ(d)

x between the 2 test masses along the most sensitive axis X
(see [34, 38] for the description of the axis), which was analysed in this work, is directly
computed from these data.

• The attitude, angular velocity and angular acceleration of the satellite with respect to the
inertial reference frame J2000 [37]. These data are given at exactly the same time stamps
as the accelerometer measurements.

• The position and velocity of the centre of mass of the satellite in the J2000 frame sampled
every minute.

Additionally, housekeeping data (sampled at 1 Hz) are used to monitor the behaviour of the
experiment and to estimate systematic errors [43, 46]:

• The variation of position of each test-mass as measured by the capacitive sensors; the
residual displacements are very small (less than 10−12 m at fEP) and the corresponding
acceleration is negligible compared to our needs (section 5.5.4).

• The temperature which is measured by several probes inside the mechanical and electrical
subsystems of each SU [34]. The corresponding systematic effects are estimated in [43].

3. The measurement model

A detailed explanation of the measurement model is given in [38]. Here we only summarise its
main aspects. As explained in the introduction, we look for a difference of free fall between two
co-axial concentric test masses of the same SU (SUREF or SUEP) by analysing the difference

8



Class. Quantum Grav. 39 (2022) 204009 P Touboul et al

of their measured accelerations
−→
Γ (d) =

−→
Γ (1) − −→

Γ (2). In a perfect experiment, this would cor-
respond exactly to the applied differential acceleration −→γ (d) = −→γ (1) −−→γ (2). Additional terms
must be considered to account for the real experiment:

• A mapping matrix
[
Ã(c)

]
23 between the applied and the measured acceleration;

[
Ã(c)

]
is

close to the identity matrix and takes into account scale factors and coupling between axes
as well as a rotation reflecting the fact that our model for −→γ (d) is not exactly expressed in
the instrument frame which is imperfectly known: −→γ (d) →

[
Ã(c)

]−→γ (d);

• A residual projection of the measured common mode acceleration 2
[
Ã(d)

]−→̃
Γ (c) where

−→̃
Γ (c) =

(−→̃
Γ (1) +

−→̃
Γ (2)

)
/2 and ||

[
Ã(d)

]
|| � 1; formally,

−→̃
Γ (i) are the noise-free measured

accelerations but in practice, we approximate them with
−→
Γ (i);

• A coupling with the angular acceleration
−̇→
Ω (because the sensors measure both linear and

angular accelerations): 2
[
C′(d)

]−̇→
Ω ;

• A measurement bias
−→
B0

(d);
• A noise −→n (d).

The origin of these terms is related both to detailed instrumental characteristics [34] and to
the implementation of the instrument in its environment [38]. We end up with the model

−→
Γ (d) =

−→
B0

(d) +
[
Ã(c)

]−→γ (d) + 2
[
Ã(d)

]−→̃
Γ (c) + 2

[
C′(d)

]−̇→
Ω +−→n (d). (3)

Note that this equation is fully similar to equation (19) of reference [38] but we have used the
notation shortcut

[
Ã(d)

]
=

[
A(d)

][
A(c)

]−1
. The derivation of this model and in particular how

we get a mixing between the applied differential acceleration and the measured common mode
acceleration is detailed in [38]. Note also that other potential disturbing effects (non-linearity,
thermal effects, stiffnesses and others) are not included in this model but are characterised in
[43, 46] and contribute to the assessment of the systematic effects [43].

The difference of accelerations applied to the test masses derives directly from simple
dynamics. First, each mass experiences Earth gravity; the gravitational force applied to each
mass is slightly different because of (i) a gravity gradient due to their small difference of posi-
tions

−→
Δ (called offcentring in the following, right panel of figure 2), and (ii) of a possible

intrinsic difference of free fall parametrised by the Eötvös parameter. Second, since the accel-
eration is expressed in the instrument frame co-rotating with the satellite at an angular velocity
matrix [Ω], the corresponding inertial acceleration must be taken into account. Third, addi-
tional small perturbations on the test masses (local gravity, magnetic effects, radiation pressure,
radiometric effect and others) are gathered in the physical bias

−→
b1

(d). The detailed derivation
[38] yields

−→γ (d) = δ(2, 1)−→g (Osat) + ([T] − [In])
−→
Δ +

−→
b1

(d), (4)

where

• δ(2, 1) = mG2/mI2 − mG1/mI1 � η(2, 1) = −η(1, 2) (note that equation (4) involves
δ(2, 1) instead of δ(1, 2) because the measured differential acceleration is opposite to the
difference of gravity accelerations),

23 In the whole paper the notation [M] designates a matrix.

9
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• −→g (Osat) is the gravity acceleration computed at the centre of the satellite,
• [T] is the gravity gradient tensor computed at the centre of the satellite,
• [In] = [Ω]2 + [Ω̇], is the gradient of inertia matrix.

In this analysis, we will use only the measurement along the X-axis which is an order of
magnitude more sensitive than those along Y and Z. This leads to

Γ(d)
x ≈ B(d)

0x + ãc11b(d)
1x + ãc12b(d)

1y + ãc13b(d)
1z + ãc11δgx + ãc12δgy + ãc13δgz

+ (Txx − Inxx)ãc11Δx +
(
Txy − Inxy

)
ãc11Δy + (Txz − Inxz)ãc11Δz

+
(
Tyx − Inyx

)
ãc12Δx +

(
Tyy − Inyy

)
ãc12Δy +

(
Tyz − Inyz

)
ãc12Δz

+ (Tzx − Inzx)ãc13Δx +
(
Tzy − Inzy

)
ãc13Δy + (Tzz − Inzz)ãc13Δz

+ 2
(
ãd11Γ

(c)
x + ãd12Γ

(c)
y + ãd13Γ

(c)
z

)
+ 2

(
c′d11Ω̇x + c′d12Ω̇y + c′d13Ω̇z

)

+ n(d)
x − 2

(
ãd11n(c)

x + ãd12n(c)
y + ãd13n(c)

z

)
, (5)

where ãci j, ãdi j, c′di j are the elements of
[
Ã(c)

]
,
[
Ã(d)

]
and

[
C′(d)

]
.

As explained in [47], some terms have been demonstrated to be negligible and others are
corrected. Finally, after calibration and correction [47] (and see also section 5.1 for a summary),
we get the fundamental equation which will be used for our analysis [47]:

Γ(d)
x,corr = b̃′(d)

x + δxgx + δzgz +Δ′
xSxx +Δ′

zSxz + n(d)
x , (6)

where

• b̃
′(d)
x is a bias which is almost constant but may slowly drift over time due to thermal effects;

• [S] is the symmetric part of the [T] − [In] matrix;
• δx = ãc11δ � δ is very close to the Eötvös parameter since |ãc11 − 1| < 2 × 10−2 whereas

the potential contribution of the Eötvös parameter to δz = ãc13δ should be much smaller
because |ãc13| < 2.6 × 10−3 rad from manufacturing;

• Δ′
x and Δ′

z are effective combinations of the components of the offcentrings between the
2 test masses [47].

The structure of this equation is very simple:

• gx, gz, Sxx and Sxz are time-varying deterministic signals which can be computed accurately
[47] knowing the position and the pointing of the satellite as well as its angular velocity
and acceleration which are all delivered by CNES [38] with an accuracy better than the
requirements [37];

• b̃
′(d)
x is taken into account by estimating a polynomial trend;

• The parameters δx , δz, Δ
′
x and Δ′

z are estimated.

These quantities are computed in the instrument frame, in which the varying signals of
equation (4) have very different frequency patterns [36]:

• gx and gz are essentially periodic signals of frequency fEP and are in phase quadrature,
• Sxx and Sxz have dominant components at DC and 2 fEP and the variations of Sxx and Sxz

at 2 fEP are in phase quadrature,
• b̃

′(d)
x is at very low frequency.

As a consequence, these signals are almost uncorrelated.
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Figure 3. Differential acceleration for session 380. The first graph (top left) shows raw
data in blue and filtered (using a running average over 60 s) data in red. The red curve
reveals leaps which are not clearly visible on raw data: this appears more clearly by
zooming in the ordinate axis as shown on the second graph (top right). Finally the third
graph (bottom) which zooms in on the first leap shows that this is not a simple step
but that there are disturbed measurements in the neighbourhood. Consequently, in the
actual analysis, we use only data belonging to the two segments represented in the top
right panel.

The bias, which encompasses the low frequency trend, is modelled with a degree 3 polyno-
mial: b̃

′(d)
x (t) =

∑3
j=0α j(t − t0) j. Substituting it in equation (6), we finally get

Γ(d)
x,corr =

3∑
j=0

α j(t − t0) j + δxgx + δzgz +Δ′
xSxx +Δ′

zSxz + n(d)
x . (7)

4. Handling of singular events

4.1. Segmentation

During some EP sessions, sudden changes in the local mean of the measured acceleration can
be noted (figure 3). The typical macroscopic manifestation in the raw data (first panel of the
figure) is a leap in the values of the measurements. These leaps are observed on the SUREF
instrument only. They are not well understood as they are unpredictable, rare and not correlated
to other observable events. Applying a lowpass filter and then zooming on the leap (third panel)
shows that it does not consist of a simple Heaviside step function but is a complex mixing of
erratic oscillations. We are faced with at least a few hundred seconds of unusable data. More
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Table 4. Characteristics of the segments selected for our analysis of the SUREF data.
The segment number corresponds to the session number extended by an index when there
are more than one segment in the session. The duration is given as a multiple of orbital
periods, remembering that this period is about 5946 s. The position of the segment in the
session is indicated by the first and the last orbit which are included in the segment. The
fourth column indicates the percentage of data eliminated from each segment during the
pre-processing (see section 4.2.2).

Percentage of data eliminated
Segment number Duration (orbits) Position in the session (orbits) (glitches)

120-1 22 23 to 44 4
120-2 64 57 to 120 15
174 86 34 to 119 25
176 62 1 to 62 40
294 76 18 to 93 17
376-1 36 8 to 43 14
376-2 28 52 to 79 11
380-1 46 24 to 69 7
380-2 34 75 to 108 5
452 32 1 to 32 20
454 56 1 to 56 22
778-1 38 1 to 38 0
778-2 18 41 to 58 6

rarely some sessions have been stopped after the detection of technical problems (for example
an instability in the drag-free loop) and there was a delay between the occurrence of the problem
and the interruption. The data associated with the occurrence of such problems were discarded.

Thus, some sessions cannot be analysed in full, but only in parts referred to as ‘segments’
in the following. There can be a single segment if only the end of the session is corrupted or if
the other potential useable parts are too short to bring a significant contribution; of course if no
problem is detected in a session, the segment corresponds to the whole session. We can also
extract several segments in one session as is the case for session 380 (figure 3). The driving
principle is to end up with segments as long as possible including an even number of orbital
periods: T = 2n forb. Since fspin has been chosen such that f spin = (q/2) forb (q odd integer),
all potential signals at frequencies f i = ki forb + pi f spin (with ki and pi any integers) combining
the orbital frequency forb and the spin frequency fspin are such that

f i = ki f orb + pi f spin =

(
ki +

1
2

piq

)
f orb = (2ki + piq)n

1
T
. (8)

This means that f i corresponds to a sampling frequency of the discrete Fourier transform (DFT)
and the correlation between two signals at frequencies f i and f j respecting the above property
is null in theory and very low in practice. Tables 4 and 5 show the segments selected for our
analysis. This comprises 13 segments totalling 598 orbits for SUREF and 19 segments totalling
1362 orbits for SUEP.

4.2. Glitches

4.2.1. General characteristics of glitches. When looking closely at the temporal evolution
of the measured accelerations on several test-masses, we can see short (a few seconds) and
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Table 5. Same as table 5 but for SUEP.

Percentage of data eliminated
Segment number Duration (orbits) Position in the session (orbits) (glitches)

210 50 1 to 50 18
212 60 1 to 60 17
218 120 1 to 120 15
234 92 1 to 92 18
236 120 1 to 120 21
238 120 1 to 120 24
252 106 1 to 106 26
254 120 1 to 120 27
256 120 1 to 120 28
326-1 66 2 to 67 12
326-2 34 69 to 102 7
358 92 1 to 92 14
402 18 3 to 20 35
404 120 1 to 120 23
406 20 1 to 20 23
438 32 1 to 32 21
442 40 1 to 40 21
748 24 1 to 24 25
750 8 1 to 8 19

significant (1–10 nm s−2) variations which appear at the same time on both masses of the oper-
ating SU and even on the 4 masses when the 2 SUs are operating simultaneously (figure 4).
The simultaneous appearance of these features for all masses proves that these events have
the same common external source. This kind of event has been already observed in other
space missions carrying accelerometers [49] and are called ‘twangs’ or ‘glitches’. Glitches
in MICROSCOPE have been extensively studied in a dedicated paper [48]. Here, we recall
their main characteristics:

• As seen through the transfer functions of the drag-free and of the instrument, glitches
look like exponentially damped sines with a large first ramp in one direction followed by
a smoother oscillation in the opposite direction; their mean shape has been computed in
[48] and is shown in figure 5; even if the source events probably do not last more than a
few milliseconds, they affect the measured acceleration for a dozen seconds.

• The amplitude of the corresponding measured acceleration can reach up to a few
10−8 ms−2 but can be much smaller; there are probably also glitches which are masked by
the measurement noise.

• The number of detected glitches typically ranges from 0.02 to 0.06 s−1.
• Although they can occur at any time, their probability of occurrence is affected by two

periodicities: the orbital period of the satellite and its spin period.

Their most likely origins are crackling of the MLI (multi-layer insulation) of the satellite
and more rarely clangs of the gas tanks used for the micro-propulsion. Predicting the exact
occurrence, form and amplitudes of the glitches seems out of reach. Moreover, although very
similar, the responses of the different test masses to these sudden events are not perfectly iden-
tical and the corresponding signal is not fully cancelled in the differential acceleration [48].
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Figure 4. Example of superposition of measured acceleration (after removing of a low
frequency trend) by the 4 test-masses at the same time. The large peaks appear on all
masses but with slightly different amplitudes.

Figure 5. Mean shape of observed glitches [48].

Thus, due to the time distribution of the glitches, they could generate a tiny signal at the fEP

frequency. Consequently, the chosen strategy is to detect and eliminate them.

4.2.2. Detection and elimination of the glitches. Glitches are detected in a double two steps
procedure [45, 47, 48]: (i) we use a standard recursive σ-clipping technique (e.g. reference
[50]) to extract outliers (4.5σ) from the measured differential accelerations on the three axes
(X, Y, Z) simultaneously before (ii) flagging data points in the second preceding the outliers and
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the 15 s following it (typically, a single glitch builds from the noise within 0.5 s and dies off
within 5–10 s from its peak, depending on its signal-to-noise ratio). Thence we define a first
mask M1 made of zeros in segments characterised as glitches and ones elsewhere. The same
two steps are then performed on the high-frequency-filtered differential acceleration (using a
2nd order Butterworth filter of critical frequency 0.01 Hz), which allows us to detect low signal-
to-noise glitches and define a second mask M2 (a 3σ threshold is used during these steps). The
final mask is the logical sum of both masks, M = M1 × M2. The percentage of masked data
for each session is indicated in tables 4 and 5. These are typically 20% but with less than 10%
for some sessions and 40% for session 176.

5. Separated analysis of each segment

As explained in section 4.1 we have 13 segments for SUREF and 19 segments for SUEP. A first
important objective is to analyse these segments separately since, as discussed in references
[35, 39] the analysis of a single segment already resulted in an accuracy of estimation of the
Eötvös parameter 10 times better than the previous experiments. Moreover this analysis will
provide some insights into the data before a global analysis of all segments.

5.1. Main steps of the analysis

The analysis of individual segments is performed in the following steps:

(a) Calibration correction: thanks to dedicated calibration sessions, it was possible to esti-
mate the values of the instrumental parameters Δ′

y, ad11, ad12 and ad13 throughout the

mission [43]; using the values of Si j and Ω̇i precisely computed for each measurement
date and of the common mode measured acceleration Γ̃(c)

i , Γ(d)
x is corrected from the terms

Δ′
y

(
Sxy + Ω̇z

)
and 2

(
ad11Γ̃

(c)
x + ad12Γ̃

(c)
y + ad13Γ̃

(c)
z

)
[47].

(b) Detection of the glitches: we detect glitches and define a corresponding mask according to
the algorithm described in section 4.2.2. The union of this mask with the mask generated
by the few points (typically a dozen per session) tagged directly on board is used during
the analysis (see section 5.2) to discard the corresponding points. Note that this detection
is performed only for EP sessions since we have checked that this operation has no impact
on the parameters estimated using the calibration sessions.

(c) The parameters α j, δx, δz, Δ′
x and Δ′

z are estimated by fitting the corrected measured
differential acceleration to the model (7).

Since the measurement noise in MICROSCOPE is coloured (figure 6 and [35]), the optimal
estimation of the parameters requires use of the characteristics of the noise. However, masking
introduces gaps into the data, which are not regularly sampled any more. In this case, straight-
forward techniques (periodograms) to compute the power spectral density (PSD) are no longer
effective: a significant leakage of the signal power from high to low frequency bands, leads to
a substantial overestimation of the standard deviation of the estimated parameters [51, 52]. To
solve this problem, we performed our estimation with two very different techniques described
below: a method of maximisation of the likelihood in the time domain called modified expecta-
tion conditional maximisation (M-ECM) and a weighted least-squares regression in the Fourier
domain named accelerometric data analysis for MICROSCOPE (ADAM).
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Figure 6. Amplitude spectral density of the sensor differential acceleration along the
X-axis for SUREF during session 176 (upper panel) and for SUEP during session 236
(lower panel). Note the peak at frequency 2 fEP coming from the Earth’s gravity gradient
due to the offcentring of the two test masses.

5.2. Estimation of the parameters in the time domain using the M-ECM analysis

M-ECM [52] is an inference algorithm designed to perform linear regression of gapped data.
Although M-ECM may find applications in many areas, it was developed by the MICRO-
SCOPE team during the mission design for the purpose of processing the mission data.
Assuming a linear model for the signal and a stationary Gaussian distribution for the noise,
it maximises the likelihood by iterating the following two steps. The first one is the conditional
expectation step, which computes the expected likelihood (or rather, its logarithm lY(θ)) condi-
tionally to the observed data. This process amounts to estimating missing data within gaps. The
second one is the maximisation step, which maximises the expected likelihood over the regres-
sion parameters θ. This step amounts to computing the generalised least-squares estimate of
the parameters. It also includes estimating the noise PSD (the inclusion of this step motivates
the qualification ‘modified’ to the algorithm’s name, as it is not present in standard ECM algo-
rithms [53, 54]). The use of the M-ECM algorithm allows one to avoid spectral leakage effects
due to data gaps by restoring the statistics of the noise in the frequency domain.

In the case of complete data, and under the stationary assumption, we can write the logarithm
of the likelihood as

lY (θ) ≈ −1
2

{
log(det[γ]) +

(
Ŷ −

[
Â
]
θ
)†

[γ]−1
(

Ŷ −
[
Â
]
θ
)}

, (9)

where Ŷ is the vector of N Fourier-transformed measurements, θ is the vector of parameters
to estimate and [Â] is the matrix of derivatives of the model with respect to these parameters.
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The matrix [γ] denotes the covariance of the noise in the Fourier domain. It is approximately
diagonal (see e.g. figure 1 of reference [47]) and its diagonal elements are equal to the noise
PSD. If all measurements are available, we solve the estimation problem by maximising the
likelihood with respect to θ.

When data points are missing, directly maximising equation (9) can be computationally
cumbersome because we cannot approximate [γ] as a diagonal matrix. Instead, the estimation
is broken down in two steps. In the first step, we compute the expectation of the log-likelihood
given the observed data Yo and the value of the parameters at the present iteration:

E step: QY (θ,γ) = E
[
lY (θ)|Yo, θ,γ

]
. (10)

This computation is called the expectation step (E). It requires computing the expectation of the
full data vector conditionally on the observed data E[Ŷ|Yo, θ,γ], along with its second-order
moment E[ŶŶ†|Yo, θ,γ]. We can compute these quantities by using the conditional mean and
covariance formulas for Gaussian processes (see [52] for more details).

The second step is similar to the maximisation one would do for complete data, except that
now we maximise the expected likelihood:

M step:θ = argmax
θ

QY(θ,γ). (11)

This step is the maximisation (M) step. Note that solving for θ is done for a given noise
PSD γ. In the M-ECM algorithm, we assume that γ is unknown and that it depends on some
noise parameters β. Hence, we also fit for the PSD by performing a pseudo maximisation
conditionally on θ, so that

β = argmax
β

QY (θ,γ(β)). (12)

Finally, we iterate E and M steps until θ converges. The final solution is the value that max-
imises the likelihood with respect to observed data lYo (θ). As a result, M-ECM first computes
the expectation of the likelihood through data reconstruction and then maximises it over the
parameters. Hence, the maximisation takes advantage of the fast Fourier transform applied to
the regularly sampled reconstructed time series, which is computationally more efficient than
the direct maximisation of the gapped data likelihood. Values drawn from the missing data
conditional distribution (also called reconstructed data in the following) is a useful by-product
of M-ECM.

The resulting algorithm is unbiased after several iterations because it converges to the same
solution as the one obtained with a direct (but costly) maximisation of the gapped, time-domain
data likelihood. M-ECM is also approximately optimal in the statistical sense, as it yields
the solution with nearly minimal variance, provided that the PSD estimation is sufficiently
accurate [52].

5.3. Estimation of the parameters in the Fourier domain using the ADAM software

ADAM was developed by the MICROSCOPE team during the mission preparation for the
purpose of processing the data of the experiment. For the estimation with ADAM, we use
both original data remaining after the masking operation and data reconstructed by M-ECM as
described in the previous section. This means that we have now data without gaps, i.e. regularly
sampled. This allows us to apply a DFT converting the whole system of measurement equation
in the frequency domain: whereas in the time domain each equation is associated to a time ti,
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Table 6. Values of the Eötvös parameter δx with their associated standard deviation esti-
mated from SUREF measurements over individual segments. The table reports also the
value of the component δz in phase quadrature. The values followed by (M) result from
the M-ECM analysis while the values followed by (A) come from ADAM. Segments
marked by an asterisk ∗ correspond to sessions in spin V3 and the others to sessions in
spin V2.

Segment
number δx (M) ×1015 δx (A) ×1015 δz (M) ×1015 δz (A) ×1015 δx/σ (M) δx/σ (A)

120-1 −3.1 ± 16.7 −4.2 ± 15.9 13.5 ± 16.7 10.3 ± 15.9 −0.2 −0.3
120-2 −16.8 ± 8.5 −15.1 ± 8.3 −7.6 ± 8.5 −7.5 ± 8.3 −2.0 −1.8
174 7.8 ± 4.9 8.0 ± 4.2 −13.5 ± 4.9 −14.0 ± 4.2 1.6 1.9
176 1.7 ± 5.5 1.8 ± 4.5 7.9 ± 5.5 8.4 ± 4.5 0.3 0.4
294∗ −8.0 ± 2.6 −7.7 ± 2.1 −2.8 ± 2.6 −2.3 ± 2.1 −3.1 −3.6
376-1 −3.4 ± 7.2 −4.1 ± 6.5 −8.5 ± 7.2 −7.9 ± 6.5 −0.5 −0.6
376-2 −5.7 ± 6.1 −6.4 ± 5.8 14.5 ± 6.1 16.1 ± 5.8 −0.9 −1.1
380-1∗ 7.6 ± 3.0 7.4 ± 2.4 −10.1 ± 3.0 −10.2 ± 2.4 2.5 3.1
380-2∗ 9.3 ± 3.1 8.9 ± 2.8 −9.1 ± 3.1 −9.2 ± 2.8 3.0 3.2
452 −4.3 ± 4.0 −4.8 ± 4.1 14.6 ± 4.0 16.1 ± 4.1 −1.1 −1.2
454 −3.1 ± 2.9 −3.7 ± 2.8 19.9 ± 2.9 19.8 ± 2.8 −1.1 −1.3
778-1 −8.1 ± 4.5 −8.1 ± 4.7 22.8 ± 4.5 22.6 ± 4.7 −1.8 −1.7
778-2 −2.3 ± 6.0 −3.2 ± 5.5 20.0 ± 6.0 18.6 ± 5.5 −0.4 −0.6

each equation of the transformed system is associated to a frequency f j. This leads to several
interesting properties and in particular:

• In case of periodic signals, their energy is concentrated in a small number of frequen-
cies, corresponding to a small number of equations in the frequency domain; this is
the case of the gravity acceleration and of the gravity gradient; moreover thanks to our
choice to impose f spin = k forb/2 and to perform the analysis over 2nTorb (k and n inte-
gers), the frequencies forb, fspin and fEP correspond precisely to a frequency of the DFT:
fq = q/Tanalysis = q forb/(2n) with qorb = 2n, qspin = kn and qEP = (k + 2)n.

• With long enough data streams, the covariance is approximately diagonal, with a squared
error inversely proportional to the data size [55]. In our application, the deviation is below
the percent level. Thus a diagonal weighting matrix composed of the elements w( fk) =

1√
γ( fk)

where γ( fk) is the PSD of the noise at the frequency fk [47], is almost optimal.

Details of the procedure are described in [47] and we recall here the main steps:

(a) The series Γ(d)
x,corr(ti), (ti − t0) j, gi(ti), gz(ti), Sxx(ti) and Sxz(ti) are transformed in the fre-

quency domain by application of a DFT: the N observation equations in the time domain
(corresponding to equation (7) at N different times) are transformed into N observation
equations in the frequency domain.

(b) Potentially, we select only a subset of equations in the frequency domain, which is equiv-
alent to selecting frequency bands. For the standard analysis, the frequency band around
fEP is selected to estimate δx and δz, and the frequency band around 2 fEP is selected to
estimate Δ′

x and Δ′
z. We choose a bandwidth large enough to encompass all the relevant

signals (gravity acceleration and gravity gradient with their significant harmonics as well
as the rotational terms): 8 × 10−4 Hz for sessions in spin V2 and 2 × 10−3 Hz for ses-
sions in spin V3. The whole spectrum is used only to estimate the parameters of the low
frequency trend described above.
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Table 7. Same as table 6 but for SUEP.

Segment
number δx (M) ×1015 δx (A) ×1015 δz (M) ×1015 δz (A) ×1015 δx/σ (M) δx/σ (A)

210∗ −30.1 ± 14.5 −29.2 ± 13.1 −25.1 ± 14.5 −25.3 ± 13.1 −2.1 −2.2
212∗ 10.4 ± 13.9 9.5 ± 11.9 1.0 ± 13.9 1.3 ± 11.9 0.7 0.8
218∗ 3.6 ± 8.7 6.7 ± 8.1 8.2 ± 8.7 7.5 ± 8.1 0.4 0.8
234∗ 5.6 ± 9.3 5.9 ± 8.3 −4.2 ± 9.3 −4.6 ± 8.3 0.6 0.7
236∗ 2.7 ± 7.4 2.6 ± 6.6 16.7 ± 7.4 16.8 ± 6.6 0.4 0.4
238∗ 6.1 ± 7.8 5.8 ± 6.4 −3.9 ± 7.8 −3.7 ± 6.4 0.8 0.9
252∗ −14.7 ± 8.7 −14.9 ± 7.3 1.8 ± 8.7 2.4 ± 7.3 −1.7 −2.0
254∗ −14.2 ± 8.4 −14.1 ± 7.0 −24.9 ± 8.4 −25.8 ± 7.0 −1.7 −2.0
256∗ −4.7 ± 8.6 −5.3 ± 7.4 14.1 ± 8.6 13.3 ± 7.4 −0.5 −0.7
326-1∗ −10.1 ± 11.1 −16.3 ± 9.6 3.7 ± 11.1 2.3 ± 9.6 −0.9 −1.7
326-2∗ −11.1 ± 15.4 −10.4 ± 13.5 5.5 ± 15.4 5.3 ± 13.5 −0.7 −0.8
358∗ 15.4 ± 11.9 15.8 ± 10.9 −2.0 ± 11.9 −1.9 ± 10.9 1.3 1.4
402 27.3 ± 35.1 28.4 ± 43.6 19.1 ± 35.1 28.7 ± 43.6 0.8 0.7
404∗ 6.3 ± 7.9 4.7 ± 6.7 −5.9 ± 7.9 −5.0 ± 6.7 0.8 0.7
406∗ 6.0 ± 18.6 5.9 ± 14.9 44.0 ± 18.6 44.1 ± 14.9 0.3 0.4
438 −12.5 ± 29.6 −23.4 ± 24.6 62.9 ± 29.6 54.5 ± 24.6 −0.4 −0.9
442 −10.7 ± 19.0 −1.5 ± 19.1 −5.2 ± 19.0 −6.3 ± 19.1 −0.6 −0.1
748 −17.5 ± 59.6 −23.4 ± 24.6 0.5 ± 59.6 54.5 ± 24.6 −0.3 −0.9
750∗ 66.6 ± 42.4 66.9 ± 38.4 23.6 ± 42.4 23.5 ± 38.4 1.6 1.7

(c) These observation equations are used to estimate the parameters of equation (7) and the
associated statistical errors using a weighted least-squares inversion.

Fundamentally, no new information is expected from the ADAM analysis that performs the
parameters estimation in the Fourier domain using the reconstructed data provided by M-ECM.
However, it is interesting to cross-check results from different methods. Moreover, ADAM is
much faster than M-ECM: for a segment of 120 orbits M-ECM needs about 12 h while ADAM
takes only a few minutes. This is because in the E-step, M-ECM has to solve a large linear
system where the system matrix is the covariance of the observed data in the time domain. The
preconditioning is also memory-expensive. Although these disadvantages are not critical for
a single run, they become a serious problem for the numerous tests required to strengthen the
quality and the robustness of the estimation analysis.

5.4. Results

The estimates of the parameters δx and of δz and their standard deviations are listed in tables 6
and 7. As noted in section 3, δz = ãc13δ is almost three orders of magnitude smaller than δ, i.e.
far below what is detectable; thus the estimated values of δz and of its standard deviation are
indicators of statistical or systematic effects. Figures 7 and 8 give an overview of the estimates
of the Eötvös parameter with their time distribution. The values of the estimated offcentring
are reported and commented in [43].

Several comments are in order.

(a) Although being very different algorithms, M-ECM and ADAM provide very similar
results both for the values of δx and σ. The only appreciable difference is for δz estimated
for segment 748 which is a SUEP session in spin V2 lasting 24 orbits; but this difference
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Figure 7. Eötvös parameter estimates for each SUREF segment and their 68% confi-
dence error bars. Blue circles show M-ECM’s estimates and orange ones Adam’s.

Figure 8. Same as figure 7 but for SUEP.

is statistically insignificant since it is smaller than the standard deviation computed by
M-ECM.
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(b) As expected given the frequency dependence of the noise visible on figure 6, the standard
deviation is smaller in spin V3. Furthermore it logically depends on the duration of the
analysis segment: it is shown in [46], that when normalised to the same duration (or equiv-
alently, expressed in terms of PSD) all sessions with the same SU and the same spin have
quite similar noise.

(c) As expected before the launch, SUREF provided more accurate data than SUEP, mainly
thanks to its heavier outer test-mass. Indeed the ratio area over mass is a driving factor of
the error budget.

In terms of the Eötvös parameter, these results are statistically compatible with a null value:
all absolute values are smaller than 2σ except for sessions 294 and 380 where they exceed 3σ
but remain below 5σ. Accounting for systematic errors (see table 10) further downplays the
significance of these values. The value of σ depends on the segment and in particular of its
length but is typically 10−14 or smaller for the longest segments of 120 orbits.

5.5. Robustness tests

We conducted a series of complementary analyses to test the robustness of our results and
quantify how they are impacted by the settings of the analysis and by some terms considered
as negligible according to the specifications. For reason of CPU time, all these tests have been
performed using the ADAM software.

5.5.1. Impact of the frequency bandwidth. As explained above and in [47], we select a fre-
quency band around fEP and 2 fEP to compute the parameters of the model using a weighted
least-squares estimation in the frequency domain; we have checked that dividing the used band-
width around these frequencies by a factor 4 does not change the values of the parameters by
more than a few percent (a few 10−16 for δx); however the associated standard deviation can
change by up to 10% which is understandable because if we reduce the number of data (in
the frequency domain) its estimation is less precise. In the same spirit, if we no longer use a
selected band of frequency but the whole domain, the parameters are not noticeably modified
and the estimated standard deviation generally increases from 10 to 20%; indeed, in this case,
we could have unmodeled high frequency effects which contribute to increasing the standard
deviation. This is also probably why σ estimated by M-ECM (which implicitly uses the whole
frequency domain) is generally slightly larger than the one obtained with ADAM.

5.5.2. Impact of the degree of the fitted polynomial. In the actual analysis, we estimate a
polynomial of degree 3 in order to absorb the low frequency trend due to temperature variations
[47]. We have also tested other degrees, from 1 to 5. While there is no significant modification
with degrees 2, 4 or 5 the standard deviation is slightly increased when using a degree 1.

We have also compared different strategies to estimate the coefficients of the polynomial:

(a) A prior estimation (without weighting) in the time domain,
(b) A prior estimation (with weighting according to the estimated PSD of the noise) in the

Fourier domain (using the whole spectrum),
(c) Estimation at the same time as the other parameters using the whole spectrum but the

frequency bands around fEP and 2 fEP.

The final results for the estimated Eötvös parameter and the associated standard deviation
are fully equivalent: the differences are much smaller than the error and than our ideal objective
of 10−15.
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5.5.3. Impact of the angular velocity and angular acceleration. Angular velocity (included in
the matrix [S]) and angular acceleration are used in the actual analysis to correct the measured
linear acceleration from gradient effects due to offcentring

−→
Δ . The stability of the attitude

of MICROSCOPE has been specified to limit the effect of this gradient at the fEP and 2 fEP

frequencies. To check that this is indeed the case, we have analysed the data without these
corrections. Again, this resulted in negligible changes in the estimated values of the Eötvös
parameter, less than 5% of its standard deviation except for 3 segments for which this was
about 10%.

5.5.4. Impact of the residual variations of position of the test masses. Fundamentally, the full
dynamical equation of the test masses includes terms taking into account the motion of the

masses with respect to the satellite (see equation (1) in [38]): the kinematic acceleration �̈Δ and

the Coriolis acceleration 2�Ω× �̇Δ. Since the principle of the accelerometer is to nullify the dis-
placement of the test masses, these terms are not included in the actual analysis. Nevertheless
position measurements are available in the telemetry data. Due to the limited quantity of data
that can be transmitted on ground, they are sampled at 1 Hz. Thus, in order to compute the
previous terms and correct the electrostatic acceleration we have both interpolated the position
at 4 Hz and derived them numerically. The modification of the estimated δx amounts to a few
percents of its standard deviation.

5.6. Testing the whole process with a simulated EP signal

It is essential to check that the global analysis process, including the detection-elimination of
the glitches, is able to preserve and retrieve a potential EP-violation signal. To this aim we
added a fake signal to the real measurements before any preprocessing and applied our com-
plete chain of analysis going from the masking described in section 4.2.2 to the estimation of
the Eötvös parameter as explained above. More precisely, we conducted two series of tests with
two levels of added simulated signal: one corresponding to an Eötvös parameter of 3.4 × 10−14

(which is large compared to the objective of MICROSCOPE) and a second corresponding to
an Eötvös parameter of 3.4 × 10−15 (which is more or less the limit of detection for SUEP
as confirmed by equation (19)). We then performed the analysis of these data and subtracted
the Eötvös parameter estimated with the original data. Tables 8 and 9 show these differences
which can be compared to the simulated signal. The standard deviations corresponding to these
analyses are very close to those of the initial analysis (tables 6 and 7) and are not repeated here.
Tables 8 and 9 show also the bias (i.e. the difference quoted above minus the simulated value)
divided by the standard deviation of the Eötvös parameter. The absolute value of this ratio is
smaller than 2% for all segments of the SUEP and for most of the segments of the SUREF.
The worst case is for segment 778-1 (SUREF) with a relative error of 18% for a fake signal of
3.4 × 10−14; but even in this case the absolute error is smaller than 10−15.

5.7. Systematic errors

The evaluation of systematic errors is a major topic addressed during the preparation and
specification of the mission and also since the end of the mission in 2018 using the actual mea-
surements and characterisation of the experiment. Systematic errors are estimated in detail in
[43] (see table 15 therein for a summary). They can be divided into seven main contributors,
the maximum impact of each was estimated at the fEP frequency.

(a) Residual gravitational effects either due to imperfect knowledge of the Earth’s gravity field
and of the position and orientation of the instrument, or due to local effects coming from
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Table 8. Estimation of a simulated fake EP signal to test the robustness of the analysis
process for SUREF.

Fake Eötvös parameter 3.40 × 10−15 Fake Eötvös parameter 34.00 × 10−15

Segment number Estimated (×1015) Bias/σ Estimated (×1015) Bias/σ

120-1 3.41 0.00 34.01 0.00
120-2 3.45 0.01 34.00 0.00
174 3.40 0.00 33.99 0.00
176 3.44 0.01 34.04 0.01
294∗ 3.34 −0.03 33.97 −0.01
376-1 3.46 0.01 33.93 −0.01
376-2 3.31 −0.02 33.96 −0.01
380-1∗ 3.41 0.00 34.07 0.03
380-2∗ 3.23 −0.06 33.81 −0.07
452 3.43 0.01 34.04 0.01
454 3.37 −0.01 33.98 −0.01
778-1 3.39 0.00 33.18 −0.18
778-2 3.44 0.01 34.09 0.02

Table 9. Estimation of a simulated fake EP signal to test the robustness of the analysis
process for SUEP.

Fake Eötvös parameter 3.40 × 10−15 Fake Eötvös parameter 34.00 × 10−15

Segment number Estimated (×1015) Error/σ Estimated (×1015) Error/σ

210∗ 3.22 −0.01 34.14 0.01
212∗ 3.36 0.00 33.95 0.00
218∗ 3.51 0.01 34.13 0.02
234∗ 3.39 0.00 33.85 −0.02
236∗ 3.41 0.00 33.99 0.00
238∗ 3.42 0.00 34.00 0.00
252∗ 3.37 0.00 33.97 0.00
254∗ 3.37 0.00 33.98 0.00
256∗ 3.51 0.01 33.88 −0.02
326-1∗ 3.42 0.00 34.23 0.02
326-2∗ 3.33 0.00 33.77 −0.02
358∗ 3.41 0.00 34.06 0.01
402 3.54 0.00 33.93 0.00
404∗ 3.38 0.00 34.01 0.00
406∗ 3.37 0.00 34.00 0.00
438 3.45 0.00 34.19 0.01
442 3.45 0.00 34.02 0.00
748 3.40 0.00 34.08 0.00
750∗ 3.95 0.01 34.66 0.02

the satellite or the instrument itself (first three rows of table 15 in [43]). Those residuals
are due either to errors in the correction of the Earth’s gravity gradients after calibration
of the offcentrings, or to errors in the estimation of local gravity fluctuations (performed
with finite element analysis before the launch).
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(b) Clock errors: the most stringent requirement in terms of time stamping comes from the
need to compute the gravity gradient tensor with the correct position and orientation of
the satellite, in order to correct the effects of the gravity gradient. Since the dominant
contributions of the gravity gradient are at DC and 2 fEP this contrains the absolute clock
errors at fEP and 3 fEP

24; they have been specified to be smaller than 1 ms, leading to an
error smaller than 2 × 10−16 ms−2 on the gravity gradient effect. The maximum effec-
tive errors were 2.1 μs and 0.7 μs respectively at fEP and 3 fEP in inertial pointing and
even smaller in spin mode. The maximum total error (including bias, harmonic errors and
drift) with respect to UTC was specified to be smaller than 50 ms and was always smaller
than 41.3 ms. In order to limit the effect of the drift, the on-board clock was regularly
synchronized (outside the scientific sessions).

(c) Uncorrected inertial effects due to imperfect estimation of angular velocity and angular
acceleration. This contribution is computed via the estimated performance of the DFACS
[37, 45], which allows estimation of the angular error contribution at fEP for each session.

(d) Time variation of the instrument parameters (satellite pointing, common mode test-mass
alignment and angular-to-linear acceleration couplings). These variations are not due to
temperature variation at fEP (which are taken into account in the thermal effect below).
They are computed by combining the satellite alignment variation issued from the DFACS
control with the residual continuous differential acceleration at the differential measure-
ment output.

(e) The drag-free control residuals. In complementarity with the previous item, instrument
parameters (estimated from calibration sessions) are assumed constant during a given ses-
sion. The DFACS-related systematic error is computed from the residual accelerations at
fEP issued from the DFACS performance report.

(f ) Magnetic effects. They are computed with a finite element model partially adjusted to
measurements made on the instrument magnetic shielding and based on the knowledge of
all electronics units characteristics.

(g) Thermal effects induced by the tiny variations of temperature at the fEP frequency. These
are the major contributors to the systematic error budget. Their estimation results from
a detailed analysis of the instrument and of the satellite thermal behaviours. It should be
noted that the temperature variations at fEP in the SU were reduced to a fraction of μK
in the worst case and helped to strongly reduce the thermal contributor compared to that
of [39].

(h) Non-linearities, described by a quadratic term in the measurement equation. Note that
equation (5) ignores this term because it is not used in the data process but only in a
posteriori analysis of errors [43].

According to [43], the last two terms are dozens of times larger than the others for SUEP. In
the case of SUREF, non-linear effects are smaller and thermal effects dominate all the others.
These various effects are unlikely to be correlated and are quadratically added at the end.

The main systematics (in terms of Eötvös parameter) as well as their total contribution
Sl for each segment l are summarised in tables 10 and 11. Following [43], Sl is computed

according to Sl =
1
g

√∑
k

(
Γ(d)

k,l

)2
where Γ(d)

k,l are the maximum systematic errors of accelera-

tion corresponding to each source k, and g � 7.9 × 10−15 ms−2 is the gravity acceleration for
MICROSCOPE. The standard deviation issued from the least-squares regression with ADAM

24 The combinations fEP with DC, fEP with 2 fEP and 3 fEP with 2 fEP can all produce effects at fEP.
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Table 10. Main systematic effects for SUREF sessions: thermal effects and non-linear
(quadratic) effects which are dominant and total computed as the quadratic sum of all
effects detailed in [43]. The last column repeats, for comparison, the stochastic error
obtained with ADAM presented in table 6. All values are given in equivalent of 10−15

for the Eötvös parameter (for example systematic errors in ms−2 have been divided by
10−15 g � 7.9 × 10−15 ms−2). Segments marked by an asterisk ∗ correspond to sessions
with spin V3 and the others to sessions with spin V2.

Segment
number

Thermal
effect

Quadratic
effect

Total
systematics

Stochastic
error

120-1 5.4 0.1 5.4 15.9
120-2 5.4 0.1 5.4 8.3
174 4.0 0.4 4.0 4.2
176 4.7 0.4 4.7 4.5
294∗ 2.0 0.4 2.0 2.1
376-1 3.7 0.4 3.7 6.5
376-2 3.7 0.4 3.7 5.8
380-1∗ 0.7 0.4 0.8 2.4
380-2∗ 0.7 0.4 0.8 2.8
452 2.1 0.5 2.1 4.1
454 2.7 0.4 2.7 2.8
778-1 3.0 0.3 3.0 4.7
778-2 3.0 0.3 3.0 5.5

Table 11. Same as table 10 but for SUEP.

Segment
number

Thermal
effect

Quadratic
effect

Total
systematics

Stochastic
error

210∗ 1.7 0.8 1.8 13.1
212∗ 0.6 0.9 1.0 11.9
218∗ 0.8 0.7 1.1 8.1
234∗ 0.8 0.7 1.0 8.3
236∗ 1.0 0.7 1.2 6.6
238∗ 1.0 0.7 1.2 6.4
252∗ 0.8 0.7 1.1 7.3
254∗ 1.3 0.8 1.5 7.0
256∗ 0.8 0.7 1.1 7.4
326-1∗ 0.8 1.3 1.6 9.6
326-2∗ 0.8 1.3 1.6 13.5
358∗ 0.8 0.7 1.1 10.9
402 7.3 0.7 7.3 43.6
404∗ 0.7 0.7 1.0 6.7
406∗ 3.1 0.8 3.2 14.9
438 5.4 0.6 5.5 24.6
442 7.2 0.6 7.3 19.1
748 7.2 0.6 7.3 24.6
750∗ 7.2 0.7 7.3 38.4

presented in section 5.4 is also recalled for comparison. This shows that stochastic errors are
clearly dominant for SUEP and marginally dominant for SUREF.
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6. Estimation of the Eötvös parameter using the combination of sessions

The results from the analysis of the individual segments show that stochastic errors are larger
than systematic errors. In order to improve the signal to noise ratio we have gathered, in a
global analysis, all segments included in tables 6 and 7. The polynomial coefficients α j and
the offcentring Δ′

x and Δ′
z are specific to each segment, but the parameters δx and δz are com-

mon. This has been achieved in the Fourier domain (with the ADAM software) as described
in [47] and recalled in appendix A. Due to excessively large gaps between segments, we can
not simply cumulate the corresponding measurements without being overwhelmed by leakage
effects, even when applying dedicated algorithms like M-ECM. Instead, we apply a DFT to
each segment and cumulate the transformed equations in the Fourier domain as detailed in
appendix A.

As a result we get for SUREF

δx = (0.0 ± 1.1) × 10−15, (13)

and for SUEP

δx = (−1.5 ± 2.3) × 10−15, (14)

where the errors given above are statistical errors at 1 σ. As was to be expected from the results
of individual segments, SUEP suffers from a larger statistical error than SUREF despite the
larger number of segments used in the combined solution.

In the same spirit, we have analysed the cumulated segments containing fake signals as
described in section 5.6. For the SUREF the estimated increment on the Eötvös ratio is
3.38 × 10−15 when 3.40 × 10−15 was simulated and 34.01 × 10−15 when 34.00 × 10−15 was
simulated. For the SUEP the results are respectively 3.37 × 10−15 and 33.99 × 10−15.

Figure 9 shows the histograms of the weighted residual accelerations in the frequency
band around fEP after estimation of the parameters and subtraction of the model (7). We have
checked that they are compatible with a Gaussian statistics. Note that if instead of gathering all
measurements to provide the global solution, we compute the weighted mean of the solutions
for individual segments l as

δx,M =

∑
l

δx,l
σ2

l∑
l

1
σ2

l

, (15)

and the associated variance

σ2
M =

1∑
l

1
σ2

l

, (16)

we get the very similar results δx,M = (−0.4 ± 1.1) × 10−15 for SUREF and δx,M = (−1.8 ±
2.2) × 10−15 for SUEP. This is expected if the observations of the different segments are suf-
ficiently independent. The same weighting is used to combine systematic errors Sl associated
to individual segments (given in column 4 of tables 10 and 11) in order to get the systematic
error SM associated to the global solution [43]:

SM =

∑
l

S
l

σ2
l∑

l
1
σ2

l

, (17)
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Figure 9. Histograms of the residuals, in the frequency band around fEP, of the measured
acceleration after fitting of the model (7) in the Fourier domain for SUREF (left panel)
and SUEP (right).

which leads to the systematicsSM = 2.3 × 10−15 for SUREF andSM = 1.5 × 10−15 for SUEP.
Putting all together, and remembering that the conventional Eötvös parameter η can be prac-

tically identified to the parameter δx measured in this experiment, we end up for SUREF with

η(Pt,Pt) � δ(Pt,Pt) = [0.0 ± 1.1(stat) ± 2.3(syst)] × 10−15 at 1σ. (18)

As a null Eötvös parameter is expected in this case, this result gives a good indication that there
is no important anomaly in the whole chain going from the measurements to the analysis and
including the modelling.

We finally get for SUEP

η(Ti,Pt) � δ(Ti,Pt) = [−1.5 ± 2.3(stat) ± 1.5(syst)] × 10−15 at 1σ. (19)

This final result indicates that there is no visible violation of the WEP in the full data of the
MICROSCOPE mission.

7. Conclusion

We have analysed the measurements provided by the payload T-SAGE flown on the MICRO-
SCOPE satellite: these are the differences of accelerations of two test-masses made of the
same material (PtRh10) for the sensor SUREF and two test-masses made of different material
(PtRh10 for the inner mass, Ti alloys for the outer mass) for the sensor SUEP. This involves
13 segments (i.e. sequences of continuous measurements sampled at 4 Hz) totalling 598 orbits
for SUREF and 19 segments totalling 1362 orbits for SUEP. This represents accumulated free
falls in the Earth’s gravity field of about 41 days for SUREF and 94 days for SUEP. In the
data analysis we have compared the measurements to a model including many effects, in par-
ticular those of the gravity gradients and of the gradient of inertia due to the tiny difference of
positions of the test masses, together with a hypothetical signal of violation of the EP. Before
these computations we have corrected and calibrated the instrumental parameters estimated
during the dedicated calibration sessions. We have moreover detected and discarded the mea-
surements affected by glitches. As this process breaks the regularity of the sampling, we had
to use appropriate algorithms in order to prevent the effects of leakage.

In a first step the analysis has been performed separately on single segments using two
different methods: M-ECM operating in the time domain which has been designed for optimal
estimation using irregularly sampled data and is also able to reconstruct the most likely data
where they are missing, and ADAM operating in the frequency domain. The two methods give
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consistent estimates of the parameter δ = η +O
(
η2
)
. In particular, the values estimated with

the SUEP accelerometer on the different segments are consistent with 0 at less than 2σ for
most of them, 2.2σ for one of them. This distribution is compatible with Gaussian statistics.
The value of σ depends on the segment and in particular on its length but is typically 10−14 or
smaller for the longest segments of 120 orbits. The systematic errors, analysed in [43] for the
same segments, are significantly smaller.

In a final step we have gathered the data coming from all the segments for each SU in a
single analysis, with the aim of obtaining the best signal to noise ratio from our full set of data.
This led again to no detection of violation of the WEP since we obtained η(Ti, Pt) = [−1.5 ±
2.3(stat) ± 1.5(syst)] × 10−15 for the SUEP. The result obtained for the SUREF, η(Pt, Pt) =
[0.0 ± 1.1(stat) ± 2.3(syst)] × 10−15 confirmed the absence of bias in the whole analysis, a
null value being expected in this case. It is common [29, 56] to add quadratically the statistical
and systematic errors. Doing this we conclude that the MICROSCOPE experiment does not see
evidence for any difference of free fall between titanium and platinum test masses at a level of
sensitivity of 2.7 × 10−15. This represents an improvement of almost two orders of magnitude
with respect to the constraint before the launch of MICROSCOPE.

Although this new upper bound on the WEP allows for improved bounds on beyond-GR
models (see e.g. [40–42] for bounds obtained after the first MICROSCOPE results [35, 39]),
the challenges faced by fundamental physics remain as pressing as ever and call for still
more precise experiments. New tests in space could improve MICROSCOPE’s state-of-the
art measurement by two orders of magnitude in the next decades [57].
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Appendix A. Least-squares regression in the Fourier domain

We recall here the main steps of the procedure described in [47].
The set of measurement equation (7) applied at each time of measurement ti can be written

as a linear system

Y = [A]θ + n, (A.1)
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where Y is the vector of N measurements, θ is a vector of q unknown parameters to estimate
(i.e. α j, δx , δz, Δ′

x and Δ′
z), [A] is the design matrix and n is the noise vector. Since the model

is linear with respect to the estimated parameters, the columns of [A] simply correspond to the
signal associated to each parameter, sampled at the epochs of the measured acceleration.

The N measurements are assumed to be regularly sampled at a frequency fe over a dura-
tion T. In order to solve the problem in the Fourier domain, we take the Fourier transform
of equation (7). To this aim, we make use of the DFT operator [F]. The DFT operator being
unitary, the signal energy content is preserved by the transformation. The new system can be
simply written

Ŷ =
[
Â
]
θ + n̂. (A.2)

The original quantities being real, the new system can be reduced to N useful real equations.
These new equations can be grouped by pair (related to real and imaginary parts of the DFT),
corresponding to frequencies fk =

k
T , k = 1 · · · 
N−1

2 �.
Since each measurement projected in the Fourier domain can be associated to a discrete

frequency, the corresponding weight is

w( fk) =
1√
γ( fk)

, (A.3)

where γ( fk) is the PSD of the noise at the frequency fk.
As shown in reference [38], the MICROSCOPE mission was designed to concentrate useful

signal at specific frequencies (i.e., gravity acceleration peaks at fEP, the gravity gradient signal
at 2 fEP and calibration signals at fcal). This is so true in the real data that a very simple analysis
such as synchronous detection could lead to reasonable results. However, we use a more flexible
method: we limit our least-squares inversion to the bands of frequency containing the relevant
signals. In practice, this is equivalent to extracting a subsystem of equation (A.2) by selecting
the relevant equations to get the truncated system

[
Âr

]
θ + n̂ = Ŷr. (A.4)

One can cumulate the data from disjoint segments by just gathering the corresponding
matrices and vectors:

[
Â
]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

[
Â1

]
[
Â2

]
...[

Âm

]

⎤
⎥⎥⎥⎥⎥⎥⎦

, n̂ =

⎡
⎢⎢⎢⎣

n̂1

n̂2
...

n̂m

⎤
⎥⎥⎥⎦, Ŷ =

⎡
⎢⎢⎢⎣

Ŷ1

Ŷ2
...

Ŷm

⎤
⎥⎥⎥⎦ (A.5)

where m is the number of sessions considered. Then an appropriately weighted least-squares
technique can be used to solve for the concatenated system, the weight associated to each
frequency for each segment being chosen according to (A.3).

In the simplest cases, all parameters are common to all segments. If some parameters are
specific to each segment (as could be the case for the polynomial coefficients or for the offcen-
tring), the corresponding column of the design matrix related to the other segments is simply
set to zero.
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List of acronyms and abbreviations

ADAM Accelerometric data analysis for MICROSCOPE
DC Direct continuous
DFACS Drag-free and attitude control system
DFT Discrete Fourier transform
EP Equivalence principle
IS Inertial sensor
M-ECM Modified expectation conditional maximisation
MLI Multi-layer insulation
PSD Power spectrum density
SU Sensor unit
SUEP Sensor unit for the equivalence principle test
SUREF Sensor unit for reference
T-SAGE Twin space accelerometer for gravity experiment is the name of the payload
UTC Universal time coordinated
WEP Weak equivalence principle
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Joel Bergé https://orcid.org/0000-0002-7493-7504
Stefanie Bremer https://orcid.org/0000-0002-8091-0121
Meike List https://orcid.org/0000-0002-5268-5633
Sandrine Pires https://orcid.org/0000-0002-0249-2104
Timothy Sumner https://orcid.org/0000-0002-3572-600X

References

[1] Einstein A 1908 Über das Relativitätsprinzip und die aus demselben zogenen Folgerungen Jahrbuch
der Radioaktivität und Elektronik vol 4 (Leipzig: S. Hirzel)

[2] Einstein A 1916 Ann. Phys. 354 769–822
[3] Will C M 2014 Living Rev. Relativ. 17 4
[4] Zyla P A et al (Particle Data Group) 2020 Prog. Theor. Exp. Phys. 2020 083C01
[5] Zwicky F 1933 Die Rotverschiebung von extragalaktischen Nebeln Helv. Phys. Acta 6 110–27 This

DOI corresponds to an english transaltion of 2009
[6] Rubin V C and Ford W K J Jr 1970 Astrophys. J. 159 379
[7] Riess A G et al 1998 Astron. J. 116 1009–38
[8] Perlmutter S et al 1999 Astrophys. J. 517 565–86
[9] Fayet P 1977 Phys. Lett. B 69 489–94

[10] Kaluza T 1921 Zum Unitätsproblem in der Physik. Sitzungsberichte Preuss. Akad. Wiss. 1921
966–72 This DOI corresponds to an englisah translation of 2018

[11] Klein O 1926 Z. Phys. 37 895–906
[12] Scherk J and Schwarz J H 1974 Nucl. Phys. B 81 118–44
[13] Vainshtein A I 1972 Phys. Lett. B 39 393–4
[14] Damour T and Polyakov A M 1994 Nucl. Phys. B 423 532–58
[15] Damour T and Nordtvedt K 1993 Phys. Rev. Lett. 70 2217–9
[16] Khoury J and Weltman A 2004 Phys. Rev. D 69 044026

30

https://orcid.org/0000-0002-3851-3237
https://orcid.org/0000-0002-3851-3237
https://orcid.org/0000-0002-8573-8068
https://orcid.org/0000-0002-8573-8068
https://orcid.org/0000-0002-7493-7504
https://orcid.org/0000-0002-7493-7504
https://orcid.org/0000-0002-8091-0121
https://orcid.org/0000-0002-8091-0121
https://orcid.org/0000-0002-5268-5633
https://orcid.org/0000-0002-5268-5633
https://orcid.org/0000-0002-0249-2104
https://orcid.org/0000-0002-0249-2104
https://orcid.org/0000-0002-3572-600X
https://orcid.org/0000-0002-3572-600X
https://doi.org/10.1002/andp.19163540702
https://doi.org/10.1002/andp.19163540702
https://doi.org/10.1002/andp.19163540702
https://doi.org/10.1002/andp.19163540702
https://doi.org/10.12942/lrr-2014-4
https://doi.org/10.12942/lrr-2014-4
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1007/s10714-008-0707-4
https://doi.org/10.1007/s10714-008-0707-4
https://doi.org/10.1007/s10714-008-0707-4
https://doi.org/10.1007/s10714-008-0707-4
https://doi.org/10.1086/150317
https://doi.org/10.1086/150317
https://doi.org/10.1086/300499
https://doi.org/10.1086/300499
https://doi.org/10.1086/300499
https://doi.org/10.1086/300499
https://doi.org/10.1086/307221
https://doi.org/10.1086/307221
https://doi.org/10.1086/307221
https://doi.org/10.1086/307221
https://doi.org/10.1016/0370-2693(77)90852-8
https://doi.org/10.1016/0370-2693(77)90852-8
https://doi.org/10.1016/0370-2693(77)90852-8
https://doi.org/10.1016/0370-2693(77)90852-8
https://doi.org/10.1142/S0218271818700017
https://doi.org/10.1142/S0218271818700017
https://doi.org/10.1142/S0218271818700017
https://doi.org/10.1142/S0218271818700017
https://doi.org/10.1007/bf01397481
https://doi.org/10.1007/bf01397481
https://doi.org/10.1007/bf01397481
https://doi.org/10.1007/bf01397481
https://doi.org/10.1016/0550-3213(74)90010-8
https://doi.org/10.1016/0550-3213(74)90010-8
https://doi.org/10.1016/0550-3213(74)90010-8
https://doi.org/10.1016/0550-3213(74)90010-8
https://doi.org/10.1016/0370-2693(72)90147-5
https://doi.org/10.1016/0370-2693(72)90147-5
https://doi.org/10.1016/0370-2693(72)90147-5
https://doi.org/10.1016/0370-2693(72)90147-5
https://doi.org/10.1016/0550-3213(94)90143-0
https://doi.org/10.1016/0550-3213(94)90143-0
https://doi.org/10.1016/0550-3213(94)90143-0
https://doi.org/10.1016/0550-3213(94)90143-0
https://doi.org/10.1103/physrevlett.70.2217
https://doi.org/10.1103/physrevlett.70.2217
https://doi.org/10.1103/physrevlett.70.2217
https://doi.org/10.1103/physrevlett.70.2217
https://doi.org/10.1103/physrevd.69.044026
https://doi.org/10.1103/physrevd.69.044026


Class. Quantum Grav. 39 (2022) 204009 P Touboul et al

[17] Khoury J and Weltman A 2004 Phys. Rev. Lett. 93 171104
[18] Babichev E, Deffayet C and Ziour R 2009 Int. J. Mod. Phys. D 18 2147–54
[19] Hinterbichler K and Khoury J 2010 Phys. Rev. Lett. 104 231301
[20] Brax P, Burrage C and Davis A-C 2013 J. Cosmol. Astropart. Phys. JCAP01(2013)020
[21] Burrage C and Sakstein J 2018 Living Rev. Relativ. 21 1
[22] Damour T, Piazza F and Veneziano G 2002 Phys. Rev. Lett. 89 081601
[23] Damour T and Donoghue J F 2010 Phys. Rev. D 82 084033
[24] Fayet P 1990 Nucl. Phys. B 347 743–68
[25] Fayet P 2017 Eur. Phys. J. C 77 53
[26] Eötvös RV, Pekár D and Fekete E 1922 Beiträge zum Gesetze der Proportionalität von Trägheit und

Gravität Ann. Phys. 373 11–66
[27] Fischbach E, Sudarsky D, Szafer A, Talmadge C and Aronson S H 1986 Phys. Rev. Lett. 56 3–6
[28] Schlamminger S, Choi K Y, Wagner T A, Gundlach J H and Adelberger E G 2008 Phys. Rev. Lett.

100 041101
[29] Wagner T A, Schlamminger S, Gundlach J H and Adelberger E G 2012 Class. Quantum Grav. 29

184002
[30] Williams J G, Turyshev S G and Boggs D H 2012 Class. Quantum Grav. 29 184004
[31] Viswanathan V, Fienga A, Minazzoli O, Bernus L, Laskar J and Gastineau M 2018 Mon. Not. R.

Astron. Soc. 476 1877–88
[32] Chapman P K and Hanson A J 1970 Proc. Conf. on Experimental Tests of Gravitation Theories JPL

TM 33-499 ed R W Davies p 228
[33] Everitt C W F, Damour T, Nordtvedt K and Reinhard R 2003 Adv. Space Res. 32 1297–300
[34] Liorzou F et al 2022 Class. Quantum Grav. 39 204002
[35] Touboul P et al 2019 Class. Quantum Grav. 36 225006
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[47] Bergé J et al 2022 Class. Quantum Grav. 39 204007
[48] Bergé J, Baghi Q, Robert A, Rodrigues M, Foulon B, Hardy E, Métris G, Pires S and Touboul P
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