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In this paper, we investigate the stability of the linear wave equation where one part of the boundary, which is seen as a lower-dimensional Riemannian manifold, is governed by a coupled wave equation, while the other part is subject to a dissipative Robin velocity feedback. We prove that the closed-loop equations generate a semi-uniformly stable semigroup of linear contractions on a suitable energy space. Furthermore, under multiplier-related geometrical conditions, we establish a polynomial decay rate for strong solutions. This is achieved by estimating the growth of the resolvent operator on the imaginary axis.

1 Introduction and main results

Background

Let Ω be a bounded domain of R d , d ≥ 2, with smooth boundary Γ = Γ0 ∪ Γ1. We assume that Γ0 and Γ1 are relatively open non-empty subsets of Γ that satisfy Γ0 ∩ Γ1 = ∅. We consider the following feedback system:

∂ttu -∆u = 0 in Ω × (0, +∞), (1a) 
∂ttu -∆Γu = -∂νu on Γ0 × (0, +∞), (1b)

∂νu + u = -α∂tu on Γ1 × (0, +∞), ( 1c 
)
where α is a positive constant, ∆ is the Laplacian, ∂ν denotes the outward normal derivative, and ∆Γ is the Laplace-Beltrami operator on Γ for the metric inherited from R d (see Subsection 1.3 below).

The general context of this work is the analysis of evolution equations with dynamic (or kinetic) boundary conditions. Those arise in physical models where the momentum of the boundary cannot be neglected, hence the second-order (in time) dynamics. An early example of such equations is given by [START_REF] Liu | On the spectral properties and stabilization of acoustic flow[END_REF], where energy decay of a twodimensional (in space) acoustic flow is studied. In our case, the coupled wave equation (1b) may model boundary oscillations that propagate in the tangential directions and are caused by in-domain displacements governed by the pure wave equation (1a). A few variations around the coupled equations (1a)-(1b) have been investigated in the literature, with (1c) being typically replaced by a zero Dirichlet boundary condition. [START_REF] Vitillaro | On the wave equation with hyperbolic dynamical boundary conditions, interior and boundary damping and source[END_REF] deals with local and global well-posedness of (1a)-(1b) perturbated by nonlinear potentials and damping terms acting on the domain and the boundary. In [START_REF] Jameson | Analyticity and Gevrey class regularity for a strongly damped wave equation with hyperbolic dynamic boundary conditions[END_REF], (1a)-(1b) are supplied with boundary and/or in-domain Kelvin-Voigt damping, which adds heat-like regularizing effect to the flow. The present article is more control-oriented and tackles the problem of boundary stabilization of (1a)-(1b) by the mean of a velocity feedback acting on Γ1 only, as modeled by (1c). To the best of our knowledge, this problem has not been addressed. Overall, what differentiates our work from the related literature is the combination of the two following technical challenges.

1. In presence of the Laplace-Beltrami term, the boundary condition (1b) is a proper (hyperbolic) partial differential equation, as opposed to [START_REF] Liu | On the spectral properties and stabilization of acoustic flow[END_REF] or the recent article by [START_REF] Li | Asymptotics for wave equations with damping only on the dynamical boundary[END_REF] for instance, where no tangential derivatives appear in the dynamic boundary condition.

2. Only the anticollocated boundary Γ1 dissipates energy; in other words, from the point of view of the dynamic boundary Γ0, the damping is indirect and has to somehow propagate across Ω. This contrasts with all the aforementioned work, where damping acts in the interior and/or the boundary subject to the second-order dynamics.

Inspired by the literature on coupled second-order equations and in particular [LR07], we carry out the stability analysis of the feedback system (1) in the frequency domain: we investigate pure imaginary eigenvalues (or rather, the lack thereof) and then aim at estimating the growth of the resolvent operator on the imaginary axis. By doing so, we are able to prove semi-uniform stability of system (1) and, under additional geometrical conditions, polynomial energy decay for solutions with smooth initial data. This is detailed in the next subsection. Finally, let us also mention [START_REF] Alabau-Boussouira | Indirect boundary stabilization of weakly coupled hyperbolic systems[END_REF], where polynomial stability is established for a class of abstract coupled second-order equations; however, this result does not apply to (1) due to the unboundedness of the corresponding coupling operator. In particular, the compact perturbation argument, which is often employed to prove that weakly damped systems of waves are not uniformly stable, cannot be used, leaving the question of exponential stability open.

Notation. The norm of a given normed vector space E is denoted by • E . The duality bracket φ, x E is used to write φ(x) for any vector x in E and continuous linear form φ in E ′ . If E is a Hilbert space, then (•, •)E denotes the scalar product of E. If E1 and E2 are two Banach spaces, L(E1, E2) denotes the set of bounded linear operators from E1 to E2, which is a Banach space as well if equipped with the operator norm. Given a real number s, we denote by H s (Ω) the (complex) Sobolev space of order s on Ω. The notation dx indicates the Lebesgue measure on R d ; and dσ denotes the induced surface measure on Γ. Finally, C ∞ c (Ω) is the space of compactly supported and infinitely differentiable complex-valued functions on Ω. In the proofs, K, K ′ , etc., stand for generic constants that do not depend on the variables of interest.

Main statements

We start by introducing the natural energy space H associated with the feedback system (1). Let

H L 2 (Ω) × L 2 (Γ0) (2) 
endowed with its product Hilbertian structure, and

V {(u, θ) ∈ H 1 (Ω) × H 1 (Γ0) : u |Γ 0 = θ} (3) 
equipped with a scalar product (•, •)V explicitly defined below in (11) and equivalent to that of H 1 (Ω) × H 1 (Γ0). The set V is a Hilbert space as well (see Subsection 1.3 below). Then, we define the product Hilbert space 

H V × H. (4) 
lim t→+∞ St(A + id) -1 L(H) = 0. (5) 
The proof of Theorem 1 is given in Section 2. We digress for a moment to comment on the notion of semi-uniform stability, which has been introduced in [START_REF] Batty | Non-uniform stability for bounded semi-groups on Banach spaces[END_REF]. As the name suggests, it is a property that is intermediate between strong and uniform stability. Indeed, (5) implies that {St} is strongly stable and that the decay of strong solutions to (1) can be quantified as follows:

St[u0, v0] H ≤ K St(A + id) -1 L(H) [u0, v0] D(A) (6) 
for any initial data [u0, v0] in D(A) equipped with the graph norm. For more details, the reader is referred to the survey article by [START_REF] Chill | Semi-uniform stability of operator semigroups and energy decay of damped waves[END_REF]. As an example, semi-uniform stability of a wave equation with spatially varying coefficients is investigated using spectral methods in [START_REF] Jacob | Stability of the multidimensional wave equation in port-Hamiltonian modelling[END_REF]. Coming back to our contributions, under certain geometrical conditions, we are able to replace (6) with an explicit polynomial decay rate.

Theorem 2. Assume there exists a real vector field h in C 2 (Ω) that satisfies the following conditions:

(a) Denoting the Jacobian matrix of h by

J h [∂jhi]ij , there exists ρ > 0 such that Re Ω [J h f ] • f dx ≥ ρ f 2 L 2 (Ω) d (7) for all f in L 2 (Ω) d ; (b) On Γ0, h is parallel to the unit outward normal ν, i.e., h = (h • ν)ν; also, h • ν ≤ 0; (c) On Γ1, (h • ν) ≥ m for some m > 0.
Then, the semigroup {St} enjoys the following polynomial decay property: there exists C > 0 such that for any [u0, v0] in D(A), for all t ≥ 0,

St[u0, v0] H ≤ Ct -1/2 [u0, v0] D(A) . ( 8 
)
Theorem 2 is proved in Section 3. Most of its geometrical requirements are standard when it comes to differential multiplier analysis; we point out however that Item (b) is a stronger than usual assumption in that we use a vector field that is perpendicular to the boundary on Γ0. Nevertheless, examples of such domains include "donut-shaped" sets Ω of the form Ω = {x ∈ R d : k0 < f (x) < k1} where f : R d → R is a smooth strictly convex function, and k0 and k1 are real numbers such that k0 < k1 with k0 > inf x∈R d f (x). In that case, Γ0 and Γ1 are the inverse image by f of {k0} and {k1} respectively, and one can check the hypotheses of Theorem 2 by letting h = ∇f .

Preliminaries and operator model

In this subsection, we introduce additional definitions and notation that are needed in our analysis of system (1).

The boundary Γ of the domain Ω is a compact and smooth embedded submanifold of the ambient Euclidian space R d . Recalling [LM68, Chapitre 1, Section 7.3], the Sobolev spaces H s (Γ) are modeled after H s (R d-1 ) by the mean of partitions of unity subordinated to the covering of Γ by charts.

For each x in Γ, we denote by Tx(Γ) the tangent space at x, which we see as a (d -1)-dimensional subspace of R d . Given a smooth function ϕ : Γ → R , the total derivative of ϕ at x ∈ Γ, which is a linear form on Tx(Γ), is denoted by dϕ(x) -see for instance [GP10, Chapter 1]. As a submanifold, Γ can be equipped with the canonical Riemannian metric g inherited from R d : gx(γ1, γ2) = γ1 • γ2 for all γ1, γ2 ∈ Tx(Γ) and x ∈ Γ, where • denotes the usual Euclidian inner product. The Riemannian measure associated with g coincides with the induced hypersurface measure dσ. The Riemannian gradient ∇Γϕ of a smooth real-valued function ϕ is defined as follows: ∇Γϕ(x) is the unique element in Tx(Γ) such that dϕ(x)γ = (∇Γϕ•γ)Γ for all γ in Tx(Γ). Then, ∇Γϕ is a smooth vector field on Γ. This definition extends to complex-valued ϕ by linearity. Following [Tay11, Chapter 2], the Laplace-Beltrami operator ∆Γ is defined to be the second-order differential operator on Γ satisfying -Γ ∆Γϕ1ϕ2 dσ = Γ ∇Γϕ1 • ∇Γϕ2 dσ for all smooth and compactly supported ϕ1 and ϕ2. One can then define ∇Γθ and ∆Γθ in the sense of distributions for any θ in (say) L 2 (Γ). Then, H 1 (Γ) is the set of all θ in L 2 (Γ) such that ∇Γθ belongs to L 2 (Γ) d . (recall that here each Tx(Γ) is a subspace of R d ). Using the notation x 2 x • x for x in C d , the norm given by θ 2 H 1 (Γ) = Γ |θ| 2 + ∇Γθ 2 dσ is equivalent to those built upon local charts. Likewise, H 2 (Γ) is the space of all θ in L 2 (Γ) such that -∆Γθ belongs to L 2 (Γ). For more details, the reader is referred to [Tay11, Chapters 4 and 5].

From now on, we focus on the submanifold Γ0. It follows from the assumption Γ0 ∩ Γ1 = ∅ that Γ0 is connected and has no boundary. Thus, the spaces H 1 0 (Γ0) and H 1 (Γ0) coincide; and for any real s, -∆Γ extends as a bounded linear operator from H s (Γ0) to H s-2 (Γ0). Furthermore, we have the following Green formula on Γ0:

Γ 0 ∇Γθ1 • ∇Γθ2 dσ = - Γ 0 ∆Γθ1θ2 dσ, (9) 
for any θ1 in H 2 (Γ0) and θ2 in H 1 (Γ0). Finally, we recall that for sufficiently smooth u, say, u ∈ H 2 (Ω), the vector field given by the tangential derivatives of u on Γ0 coincides with the Riemannian gradient ∇Γu of the trace u |Γ 0 . This allows us to write

∇u 2 = |∂νu| 2 + ∇Γu 2 a.e. on Γ0. ( 10 
)
Let us return to the spaces H and V . One can prove that V is closed in H 1 (Ω) × H 1 (Γ0), which makes it a Hilbert space if equipped with the inherited scalar product. In the sequel, we will rather use the following one:

(u1, u2)V Ω ∇u1 • ∇u2 dx + Γ 0 ∇Γu1 • ∇Γu2 dσ + Γ 1 u1u2 dσ. ( 11 
)
Using a standard indirect compactness argument, we see that the norm associated with (11) is equivalent to that of H 1 (Ω) × H 1 (Γ0). Note that we will frequently identify V as a subspace of H 1 (Ω) and drop the tuple notation. We can finally define the operator

A: let W [H 2 (Ω) × H 2 (Γ0)] ∩ V , then D(A) {[u, v] ∈ W × V : ∂νu + u = -αv on Γ0}, (12a) 
A[u, v] [-v, (-∆u, -∆Γu + ∂νu)]. (12b) 
2 Well-posedness and semi-uniform stability

To prove Theorem 1, we first investigate properties of A.

Proposition 1. The unbounded operator A is maximal monotone. Furthermore, for any λ > 0, the resolvent (A + λ id) -1 is a compact operator on H.

Proof. The proof is split into several steps.

Step 1: Monotonicity.

Let X = [u, v] ∈ D(A)
. By performing a few integration by parts, we obtain the following formula:

(AX, X)H = α Γ 1 |v| 2 dσ + 2i Im(u, v)V . ( 13 
)
Taking the real part of (13) yields Re(AX, X)H ≥ 0.

Step 2: Variational equations. Let λ > 0. Our goal is to prove that A + λ id is surjective. We will simultaneously prove that (A+λ id) -1 is well-defined and compact. Let [f, g] ∈ H with g = (g1, g2) ∈ H. We need to find X = [u, v] ∈ D(A) such that AX + X = [f, g], i.e., -v + λu = f and

-∆u + λv = g1 in Ω, (14a) 
-∆Γu + ∂νu + λv = g2 on Γ0. ( 14b 
)
We infer from (14a)-(14b) that any solution [u, v] must satisfy the following variational problem:

Ω ∇u • ∇w dx + Γ 0 ∇Γu • ∇Γw dσ + Γ 1 [u + αv]w dx + λ(v, w)H = (g, w)H for all w ∈ V. ( 15 
)
As usual for that kind of problem (see for instance [LR07, Proof of Proposition 2.1]), the existence of [u, v] ∈ H satisfying both -v + λu = f and (15) is proved by obtaining a variational equation in the v-variable only, and then using Lax-Milgram theorem to find an appropriate v ∈ V , which in turn uniquely determines u. It remains to prove that [u, v] belongs to D(A) and that (14a)-(14b) are satisfied in a L 2 -sense. By evaluating (15) for test functions w in C ∞ c (Ω), we obtain that the distribution ∆u is in fact a function in L 2 (Ω), with (14a) satisfied a.e. in Ω. Recall that ∂νu is then uniquely defined in H -1/2 (Γ) by the formula

∂νu, θ H 1/2 (Γ) = Ω ∇u • ∇w dx - Ω ∆uw dx (16) 
for all θ ∈ H 1/2 (Γ), where w is any element in H 1 (Ω) such that w |Γ = θ. Furthermore,

∂ν u H -1/2 (Γ) ≤ K{ ∆u L 2 (Ω) + u H 1 (Ω) }. (17) 
Plugging (14a) and ( 16) into (15) leads to another variational equation, from which we shall recover the boundary conditions satisfied by u:

-∆Γu,

w |Γ 0 H 1 (Γ 0 ) + ∂νu, w |Γ H 1/2 (Γ) - Γ 1 [u + αv]w dσ = Γ 0
g2w dσ for all w ∈ V. (18)

Step 3: "Decoupling" the boundary conditions. Since Γ0 ∩ Γ1 = ∅, the indicator functions 1Γ 0 and 1Γ 1 are smooth. As a notable consequence, for any real s ≥ 0, the extension map θ → 1Γ i θ belongs to L(H s (Γi), H s (Γ)), i ∈ {0, 1}. In particular, given an arbitrary θ ∈ H 1 (Γ0), 1Γ 0 θ is in H 1/2 (Γ), so that taking any continuous right-inverse of the trace provides an element w ∈ V satisfying w |Γ 0 = θ and w |Γ 1 = 0. Evaluating (18) for such w yields

-∆Γu, θ H 1 (Γ 0 ) + ∂νu, 1Γ 0 θ H 1/2 (Γ) = Γ 0 [g2 -λv]θ dσ (19) 
holding for arbitrary θ ∈ H 1 (Γ0). Again, the map θ → 1Γ 0 θ is in L(H 1/2 (Γ0), H 1/2 (Γ)); hence, it follows from (19) that -∆Γu, which is a priori defined in H -1 (Γ0), belongs in fact to H -1/2 (Γ0). Then, elliptic regularity for the Laplace-Beltrami operator -see, e.g., [START_REF] Michael | Partial differential equations I. Basic theory[END_REF] -yields u |Γ 0 ∈ H 3/2 (Γ0) and

u |Γ 0 H 3/2 (Γ 0 ) ≤ K{ ∂ν u H -1/2 (Γ) + g2 -λv L 2 (Γ 0 ) } ≤ K ′ { ∆u L 2 (Ω) + u H 1 (Ω) + g2 -λv L 2 (Γ 0 ) } ≤ K ′ { g1 -λv L 2 (Ω) + u H 1 (Ω) + g2 -λv L 2 (Γ 0 ) }. ( 20 
)
To prove that u ∈ H 2 (Ω), we start by picking a function ρ ∈ C 2 (Ω) such that ρ = 1 (resp. ρ = 0) in some open neighborhood Γ ε 0 of Γ0 (resp. Γ ε 1 of Γ1). We let u 0 ρu and u 1

(1ρ)u, so that u = u 0 + u 1 . Then, u 0 belongs to H 1 (Ω) and ∆u

0 = ρ∆u + u∆ρ + 2∇u • ∇ρ ∈ L 2 (Ω). First, we have u 1 |Γ = 1Γ 0 u |Γ ∈ H 3/2 (Γ0).
Then, applying elliptic theory ([LM68, Tay11]), we get that u 1 ∈ H 2 (Ω) together with the estimate

u 0 H 2 (Ω) ≤ K{ ∆u 0 L 2 (Ω) + u |Γ 0 H 3/2 (Γ 0 ) } ≤ K ′ { g1 -λv L 2 (Ω) + u H 1 (Ω) + g2 -λv L 2 (Γ 0 ) }. (21)
Next, we look at u 1 . Again, ∆u 1 ∈ L 2 (Ω), and ∂νu 1 is well-defined in H -1/2 (Γ) as well. We claim that the (distributional) normal derivative ∂νu 1 satisfies, for any

θ ∈ H 1/2 (Γ), ∂νu 1 , θ H 1/2 (Γ) = ∂νu, 1Γ 1 θ H 1/2 (Γ)
. This can be deduced from ( 16) by constructing, given θ ∈ H 1/2 (Γ), a function w ∈ H 1 (Ω) satisfying w |Γ = 1Γ 1 θ and whose support is contained in Γ ε 1 ( where u and u 1 coincide). On the other hand, using the same argument as for Γ0, we can particularize (18) to elements w ∈ V satisfying w |Γ = 1Γ 1 θ for any given arbitrary θ ∈ H 1/2 (Γ). This leads to

∂νu, 1Γ 1 θ H 1/2 (Γ) + Γ 1 [u + αv]θ dσ = 0, ( 22 
)
which means that ∂νu 1 is in H 1/2 (Γ), with

∂νu 1 = 1Γ 1 [-u -αv]. Combined with ∆u 1 ∈ L 2 (Ω), elliptic theory yields that u 1 ∈ H 2 (Ω), with u 1 H 2 (Ω) ≤ K{ g1 -λv L 2 (Ω) + u H 1 (Ω) + v H 1 (Ω) }. ( 23 
)
Then, u = u 0 + u 1 ∈ H 2 (Ω), ∂ν + u = -αv on Γ1. Going back to (19), we see that ∆Γu ∈ L 2 (Γ0) and thus

u |Γ 0 ∈ H 2 (Γ0). It is now proved that [u, v] ∈ D(A).
Step 4: Compactness. The following argument is standard: by substituting the identity -v + λu = g1 in order to rewrite the variational problem (15) in terms of u only and letting w = u in the resulting equation, one can obtain an estimate of the form

[u, v] H ≤ K [f, g] H .
From there, we combine (20), (21), and (23) to obtain

u H 2 (Ω)×H 3/2 (Γ 0 ) + v V ≤ K [f, g] H. ( 24 
) Since H 2 (Ω) × H 3/2 (Γ0) is compactly embedded into H 1 (Ω) × H 1 (Γ0)
, and V is compactly embedded into H, (24) proves that (A + λ id) -1 is a compact operator.

The next proposition is motivated by the spectral criterion for semi-uniform stability.

Proposition 2. We have sp(A) ∩ iR = ∅.

Proof. First, due to the compactness of (A + λ id) -1 for λ > 0, sp(A) consists of only eigenvalues. That being said, we now prove the result by contradiction. Suppose there exists λ = iω ∈ iR such that for some non-zero X = [u, v] ∈ D(A), AX = iωX. We start with the case ω = 0. Then, A[u, v] = 0, which means that v = 0 and u solves the following boundary-value problem:

-∆u = 0 in Ω, (25a) 
-∆Γu = -∂νu on Γ0, (25b)

∂νu + u = 0 on Γ1. ( 25c 
)
We multiply (25a) by u, integrate over Ω, and use (25b)-(25c) along with Green formulas on Ω and Γ0 to obtain u 2 V = 0; thus, X = 0. Now, in the case where ω is non-zero, we can write

X 2 H = 1 iω (AX, X)H. (26) 
Recalling the identity (13), we have

X 2 H = α iω Γ 1 |v| 2 dσ - 2 ω Im(u, v)V . (27) 
Taking the imaginary part of (27) yields v = 0 a.e. on Γ1. On the other hand, u = -iωv and because

[u, v] ∈ D(A), -∆u -ω 2 u = 0 in Ω, (28a) 
u = 0 on Γ1, (28b) 
∂νu = 0 on Γ1. (28c) 
Furthermore, the differential operator -∆ω 2 id is elliptic and has real analytic coefficients. Thus, we can apply John-Holmgrem theorem on unique continuation across non-characteristic hypersurfaces to obtain that u = 0 in Ω, which completes the proof.

We now conclude the section.

Proof of Theorem 1. As a maximal dissipative operator, -A generates a strongly continuous semigroup of linear contractions on H by virtue of Lumer-Phillips theorem. Furthermore, because sp(A) ∩ iR = ∅, we can apply [BD08, Theorem 1] to obtain the desired semi-uniform stability property (5).

Resolvent estimate and polynomial decay rate

The main technical contribution of our paper is the following resolvent estimate.

Proposition 3. Under the geometrical conditions of Theorem 2, we have

sup ω∈R,|ω|≥1 1 ω 2 (A + iωid) -1 L(H) < +∞. ( 29 
)
Assume for a moment that Proposition 3 is established.

Proof of Theorem 2. We recall that {St} is a bounded semigroup with generator -A that satisfies sp(A) ∩ iR = ∅. Thus, we can apply [BT10, Theorem 2.4] to deduce from (29) that for some C > 0,

St(A + id) -1 L(H) ≤ Ct -1/2 . ( 30 
)
The operator (A + id) -1 is an isomorphism between H and D(A) endowed with the graph norm, hence (8).

We now give the proof of the desired resolvent estimate.

Proof of Proposition 3. We proceed by contradiction. Assume there exist sequences of real numbers ωn with |ωn| → +∞ and vectors Xn = [un, vn] ∈ D(A) with Xn H = 1 such that

ω 2 n AXn + iωnXn H → 0, (31) 
By taking a subsequence for which all ωn are either positive or all negative and replacing all Xn by -Xn if needed, we may assume that all ωn are positive. We shall obtain a contradiction by proving that Xn H → 0 as n goes to +∞. The proof is split into several steps as it involves some back and forths between estimates on Ω, Γ0, and Γ1.

Step 1: Obtaining Helmhotz-like equations. We start by detailing (31):

ω 2 n (-vn + iωnun) → 0 in H 1 (Ω), (32a) 
ω 2 n (-vn + iωnun) → 0 in H 1 (Γ0), (32b) 
ω 2 n (-∆un + iωnvn) → 0 in L 2 (Ω), (32c) 
ω 2 n (-∆Γun + ∂νun + iωnvn) → 0 in L 2 (Γ0). (32d) 
Plugging (32a) into (32c) and (32b) into (32d) yields

ωn(-∆un -ω 2 n un) → 0 in L 2 (Ω), (33a) ωn 
(-∆Γun -ω 2 n un + ∂νun) → 0 in L 2 (Γ0). ( 33b 
)
Let us reformulate (33) as follows: there exist sequences {fn} ⊂ L 2 (Ω) and {gn} ⊂ L 2 (Γ0) such that

-∆un -ω 2 n un = fn in Ω, (34a) 
-∆Γunω 2 n un = -∂νun + gn on Γ0, (34b)

with, using Landau notation,

fn L 2 (Ω) = o(ω -1 n ) and gn L 2 (Γ 0 ) = o(ω -1 n ). ( 35 
)
Step 2: Estimate of the feedback term. Coming back to (31), we have

AXn + iωnXn = Fn, (36) 
where {Fn} ⊂ H is such that Fn H = o(ω -2 n ). Take the real part of the scalar product of (36) with Xn to obtain Re(AXn, Xn)H = Re(Fn,

Xn)H = o(ω -2 n ). (37) 
Recalling the identity (13), it follows from (37) that

Γ 1 |vn| 2 dσ = o(ω -2 n ). (38) 
Equation (38) together with (32a) and continuity of the trace operator from H 1 (Ω) to L 2 (Γ1) yields Γ 1 |un| 2 dσ = o(ω -4 n ). Furthermore, since each Xn is in D(A), ∂νun + un = -αvn on Γ1, and thus

Γ 1 |∂νun| 2 dσ = o(ω -2 n ). ( 39 
)
Step 3: Estimate of the coupling term. It is assumed that Γ0 ∩ Γ1 = ∅. As a consequence, there exists a vector field h ∈ C 2 (Ω) d such that h = ν on Γ0 and h = 0 on Γ1. Multiplying (34a) by 2 h • ∇un and integrating over Ω leads to the following classical trace identity:

Γ 0 ω 2 n |un| 2 -∇un 2 dσ = 2 Re Ω [Jh∇un] • ∇un dx -Re Γ 0 ∂νun[2 h • ∇un] dσ -Re Ω fn[2 h • ∇un] dx + Ω {ω 2 n |un| 2 -∇un 2 } div h dx, ( 40 
)
where Jh = [∂j hi]ij is the Jacobian matrix of h. For the construction of h or computations leading to (40), the reader is referred to [Kom94, Lemmas 2.1 and 2.3]. Furthermore, since h = ν on Γ0 and ν • ∇un = ∂νun,

Re Γ 0 ∂ν un[2 h • ∇un] dσ = 2 Γ 0 |∂νun| 2 dσ. (41) 
Now, recall that Xn H = 1. In particular, un and vn are bounded in V and H respectively, which implies:

• ∇un and ∇Γun are bounded in L 2 (Ω) d and L 2 (Γ0) d-1 respectively;

• By (32a)-(32b), ωnun is bounded in L 2 (Ω) and ωnu n|Γ 0 is bounded in L 2 (Γ0). Therefore, it follows from (10), ( 40) and (41) that

Γ 0 |∂ν un| 2 dσ = O(1). (42) 
Step 4: Multiplier identity. Let ε > 0 to be fixed later on and define Mun 2h • ∇un + (div hε)un, where the vector field h is defined in the hypotheses of Theorem 2 and div stands for the divergence. The multiplier identity 2 Re

Ω [J h ∇un] • ∇un dx + ǫ Ω ω 2 n |un| 2 -∇un 2 dx = (1 -ε) Re Γ ∂νunun div h dσ + Re Γ ∂νun[2h • ∇un] dσ + Γ (h • ν){ω 2 n |un| 2 -∇un 2 } dσ + Re Ω fnMun dx. ( 43 
)
is standardly obtained by multiplying (34a) by Mun, integrating over Ω, and performing a series of integrations by parts -see, e.g., the proof of [LT92, Theorem 4.1] for similar computations. Recalling Item (a) in the hypotheses, we choose ε < 2ρ to obtain

0 ≤ (2ρ -ε) Ω ∇un 2 dx + ε Ω ω 2 n |un| 2 dx ≤ Right-hand side of (43). (44) 
In what follows, η denotes an arbitrary number taken in (0, 1). Since ωnun H = O(1), we have

un H = o(ω η-1 n ). ( 45 
)
Step 5: Estimates on the boundary. We start with the integrals on Γ0. First, h • ν is smooth, so that (h • ν)un belongs to H 1 (Γ0) with ∇Γ[(h • ν)un] = (h • ν)∇Γun + un∇Γ[h • ν]. Thus, multiplying (34b) by (h • ν)un, integrating over Γ0, and using the Green formula (9) leads to

Γ 0 (h • ν){ ∇Γun 2 -ω 2 n |un| 2 } dσ = Γ 0 (h • ν)gnun dσ - Γ 0 (∇Γun • ∇Γ[h • ν])un dσ - Γ 0 (h • ν)∂νunun dσ. ( 46 
)
Using a series of Cauchy-Schwarz inequalities, we deduce from (35), ( 42), (45), and (46) that

Γ 0 (h • ν){ ∇Γun 2 -ω 2 n |un| 2 } dσ = o(ω η-1 n ). (47) 
In view of (43), we also note that because h = (h•ν)ν on Γ0 (Item (b) in the hypotheses of Theorem 2), we have Re

Γ 0 ∂νun[2h • ∇un] dσ = 2 Γ 0 (h • ν)|∂νun| 2 dσ. ( 48 
)
Now we deal with the integrals on Γ1 that appear in (43). By using that (h • ν) ≥ m > 0 on Γ1 (Item (c)) together with Cauchy-Schwarz and Young inequalities, we get

Γ 1 (h • ν){ω 2 n |un| 2 -∇un 2 } dσ + Re Γ 1 ∂νun[2h • ∇un] dσ ≤ Γ 1 (h • ν)ω 2 n |un| 2 + 1 2m Γ 1 |∂ν un| 2 dσ. ( 49 
)
Step 6: Estimate of the interior energy. Bearing in mind the sign conditions prescribed for (h • ν) on each part of Γ, we combine (43), ( 44 ).

(51)

Step 7: Refined estimate of the coupling term. We can now use (51) to improve our prior estimate (42). We come back to (40) and (41): ).

(54)

Step 8: Conclusion. Conversely, we can now use (54) to refine the estimate (51) of the interior energy. More precisely, using Cauchy-Schwarz inequality, we infer from (45) and (54) that Re Γ 0 ∂ν unun div h = o(ω 3(η-1)/2 n ) (55)

for any η ∈ (0, 1). We let η = 1/3; then, by plugging (55) into (50) we finally obtain (compare with (51))

Ω ∇un 2 + ω 2 n |un| 2 dx = o(ω -1 n ). ( 56 
)
We are now in position to conclude. We recall that the trace operator is continuous from H 1/2 (Ω) into L 2 (Γ0) and use linear interpolation between Sobolev spaces:

Γ 0 ω 2 n |un| 2 dσ ≤ Kω 2 n un 2 H 1/2 (Ω)
≤ K ′ ωn un H 1 (Ω) ωnun L 2 (Ω) .

(57) By (56), we have

un H 1 (Ω) = o(ω -1/2 n ), ωnun L 2 (Ω) = o(ω -1/2 n ). (58) 
Therefore, (57) yields

Γ 0 ω 2 n |un| 2 dσ = o(1) (59) 
In sum, after multiplying (34b) by un, we finally obtain

Ω ω 2 n |un| 2 + ∇un 2 dx + Γ 0 ω 2 n |un| 2 + ∇Γun 2 dσ + Γ 1 |un| 2 dσ = o(1), (60) 
which contradicts Xn H = 1.

  |un| 2 -∇Γun 2 + |∂νun| 2 dσ = Ω {ω 2 n |un| 2 -∇un 2 } div h dx -Re Ω fn[2 h • ∇un] dx + 2 Re Ω [Jh∇un] • ∇un dx. (52)As in Step 5, we obtain another expression of the integral over Γ0 of ω 2 n |un| 2 -∇Γun 2 by multiplying (34b) by un and integrating over Γ0. Then, (52) yieldsΓ 0 |∂ν un| 2 dσ = Ω {ω 2 n |un| 2 -∇un 2 } div h dx -Re Ω fn[2 h • ∇un] (35), (45), (51), and (53) that Γ 0 |∂νun| 2 dσ = o(ω η-1 n

  ), (48), and (49) to obtain (2ρε)

	∇un 2 dx + ε	ω 2 n |un| 2 dx ≤ (1 -ε) Re	∂νunun div h dσ
	Ω	Ω			Γ
	+ Re	fnMun dx +	(h • ν){ω 2 n |un| 2 -∇un 2 } dσ
	Ω		Γ 0		
			+	Γ 1	(h • ν)ω 2 n |un| 2 +	1 2m Γ 1	|∂ν un| 2 dσ. (50)
	Next, we deduce from (50) combined with (35), (42), (45), and (47) that

Ω ∇un 2 + ω 2 n |un| 2 dx = o(ω η-1 n
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