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Abstract
The increasing growth of electric vehicles (EVs) may arise as a challenge of increasing the load. There-
fore, energy management in microgrids, including renewable energy resources such as PV systems,
would be essential. Moreover, providing a smart charging pattern can optimize the overall cost of en-
ergy in a microgrid. In this paper, a genetic algorithm-based optimized fuzzy technique is developed,
which has simple implementation such as rule-based methods and provides the optimal operation. The
proposed scheme is simulated in MATLAB/Simulink environment for a case study. Results show the
effectiveness of the proposed approach in comparison to conventional models.

Introduction
Concerning environmental issues and the tendency to reduce fossil fuel consumption, the number of
electric vehicles (EVs) is growing significantly [1]. Despite their advantages, it can lead to a challenge
by increasing the grid load, especially during peak hours [2, 3]. Therefore, managing and shifting them
to the light-load times would be not only effective but also essential. Since EVs are stayed at parking lots
for most of the time, a flexible bidirectional operation including vehicle to grid (V2G) and grid to vehicle
(G2V) modes can be considered to minimize the microgrid cost [4, 5, 6, 6]. Moreover, concerning
the variable market, charging planning has become very important and has been conducted in many
studies as an interesting topic called smart charging [7, 8, 9]. In addition, with the increasing penetration
of renewable energy resources, and the emergence of microgrids, the tendency to manage energy at
the micro-grid level has increased. One of the solutions proposed in previous studies is the formation
of microgrids including charging stations, local loads, and renewable resources such as wind and PV
[10, 11, 12].

There are a variety of strategies have been proposed for smart charging implementation. The use of
rule-based algorithms such as fuzzy systems [13, 14, 15], the use of optimization programming methods
[16, 17, 18, 19], and also predictive optimization methods [9, 20, 21, 22] to implement the smart charging
pattern have been presented in various studies. The efficiency of these methods can be compared based



on two criteria, including model complexity (cost of calculations) and model flexibility in the presence of
system uncertainties such as load, solar system power, and energy price. Rule-based methods, although
simple to implement and the rules can be used in different uncertainty conditions do not necessarily
create the optimal situation. While methods based on programming and predictive optimization, despite
providing optimal solutions, to manage system uncertainties, model calculations must be repeated over
consecutive periods to ensure an optimal solution. Therefore, these models have a high computational
load, and their implementation is problematic.

In this paper, we proposed a smart strategy based on an optimized fuzzy system that has both the benefits
of fuzzy systems simplicity and providing an optimal solution. In this method, Fuzzy system parameters
are obtained using genetic algorithm-based optimization. This method does not require repetitive calcu-
lations. Once in the beginning, the optimization is performed to find a suitable fuzzy system, and then the
control is performed in a rule-based manner. Furthermore, to ensure the requested state of charge (SOC)
at the time of departure, a supporting controller is provided to decide according to the time remaining
and the maximum rated power of the EV. The rest of the paper is organized as follows. In Section II,
the system model is described. Then, in Section III, the proposed model is presented. In Section IV, the
simulation results for a case study are shown. Finally, Section V is devoted to the conclusions.

System model
The studied system is shown in Fig 1. This grid-connected the system includes local loads, a charge sta-
tion, and a PV system. In this study, we followed the cost minimization of the microgrid by participating
EVs in the energy management process. Since EVs usually stay for a long time at the station, they can
experience not only the charging mode but also the discharging mode in a smart strategy to achieve the
maximum benefit.

Fig. 1: The studied microgrid.

The objective function is defined based on the total cost for exchanged power with the grid, which is
expressed in (1).

Cost =
N

∑
k=1

[∆T ∗ (
Pgrid(k)+ |Pgrid(k)|

2
)∗Pricepos(k)

− (
Pgrid(k)−|Pgrid(k)|

2
)∗Priceneg(k)]

(1)

In which, Pgrid(k) is the exchanged power with the grid at the instant k, ∆T is the duration of each
interval, N is the number of intervals during the stopping in a parking lot. Also, the prices of positive and
negative exchanged powers with the grid (Pricepos,Priceneg)are considered different. The constraints
of the problem includes the rated power of EVs, the state of charge (SOC) of EV’s batteries, and the



microgrid power balance as bellow:

sub ject to

Pload +PPV +PEV = Pgrid

PEV ≤ PEV,n

SOCmin ≤ SOC ≤ SOCmax

(2)

The uncertainty in the load and PV power profiles and using the forecasted profiles is the main challenge
for this problem where the optimization result will be affected by the prediction error. Although using
some methods such as the predictive method can be useful to reduce the effect of prediction error, they
need to be performed during subsequent intervals which leads to a high computational burden. The fuzzy
inference system (FIS) method can deal well with the uncertainty so that it makes a decision based on
the current information rather than forecasting data. A FIS system including membership functions and
rules is designed based on the knowledge of the system. In addition to the knowledge, parameters of
member functions and rules can affect the results of a FIS. Therefore, it is needed to optimize the FIS
system based on the objective function. In this paper, we proposed an optimized FIS which is discussed
in the next section.

Proposed smart charging strategy
The system given in Fig.1 is studied. In this paper, we consider one EV which can be extended to several
EVs. An optimized fuzzy system is developed to perform the smart charging algorithm in this paper.
First, the fuzzy system design is described and then the optimized fuzzy approach is presented.

Fuzzy system

The fuzzy system is used to obtain the power of EVs based on the status of the microgrid in terms
of the energy price, the SOC of EVs, and the power of PV. Therefore a fuzzy system including three
input variables and one output variable is designed. A Mamdani fuzzy inference system with triangular
membership functions is used. Furthermore, rules are defined based on an overall view of the desired
operation to achieve more benefit. According to these rules, the EV is charged during times with low
energy price and high PV power and it is discharged vice versa. The intensity of charge/discharge power
is determined through the fuzzy system. The membership functions for input and outputs are shown in
Fig.2, and rules are given in Table I.

Optimized FIS

As mentioned the fuzzy system is designed based on an overall view and selection of parameters for
membership functions are intuitive. In this paper, an optimized fuzzy system is presented and parameters
are obtained based on minimizing the microgrid cost function as below:

min{Cost(x,u)}
S.t. g(x,u) = 0

f (x,u)≤ 0

(3)

In which, u is the set of decision variables including three parameters for input membership functions
and three ones for the output membership function, x is the set of independent variables, g and f are
equality and inequality constraints mentioned in eq(2).

Due to the nonlinear and complex relationship between the cost function and the parameters of fuzzy
variables, we use the Genetic algorithm (GA) optimization technique.

Obtaining the final SOC

To ensure the required SOC at the departure time, a support controller is provided which does not allow
the SOC to be lower than the allowable level at any time. The allowable level at any time is determined
based on the time remaining until the exit and the maximum rated power of the EV. It is defined in Eq(4).



Fig. 2: Membership functions for normal-fuzzy system.

Table I: Fuzzy system rules.

SOC PPV Price EV SOC PPV Price EV
L L L HC M L L HC
L L M LC M L M Z
L L H Z M L H HDC
L M L VHC M M L VHC
L L M HC M M M LC
L M H MC M M H MDC
L H L VHC M H L VHC
L H M HC M H M MCH
L H H MC M H H MDC
H L L LC L:Low, M:Medium, H:High, Z:Zero
H L M LDC LC:Low Charging
H L H VHDC MC:Medium Charging
H M L LC HC:High Charging
H M M LDC VHC:Very-High Charging
H M H VHDC LDC:Low Discharging
H H L LC MDC:Medium Discharging
H H M MDC HDC:High Discharging
H H H VHDC VHDC:Very-High Discharging

SOC−Line =

{
SOCmin +m∗ (t− t0), if t ≥ t0
SOCmin, otherwise.

m =
(SOC f −SOCmin)

∆T
∆T = ((SOC f −SOCmin)∗Er/Pmax)∗3600

t0 = tout −∆T

(4)

where, SOC f is the final SOC, Er is the rated energy capacity, Pmax is the maximum (rated) power of EV,



and tout is the departure time. Whenever the SOC level reaches the support line, the EV power is set to
the maximum value.

Case study
The simulation result for one EV is given in this section to verify the proposed method. The characteris-
tics of the microgrid are shown in Table II.

Table II: Microgrid characteristics.

Rated power of PV Array (PPV ) 10kW
Rated power of load (PPV ) 6kW
Rated power of EV (PEV ) 15kW

Rated energy capacity of EC (EEV ) 50kWh
SOCmin and SOCmax 0.2 - 0.95

The load, PV power ,and energy price profiles are shown in Fig. 3 and Fig. 4 for 24 hours. The same
profiles are also considered for the next day in the simulation.

Fig. 3: Load and PV power profiles for 24 hours.

Fig. 4: Energy price profile for24 hours.

The studied scenario is defined as follows:

”The Ev is assumed to arrive at the parking lot at 4 p.m with the 60% of initial SOC and stays there until
8 a.m next day. The requested SOC at the time of departure is 90%.”

The support line for this scenario is shown in Fig. 5.

The simulation has been done in three cases. In the first case, there is no smart charging, and the EV
just is charged to get the final SOC. In the two other cases, the smart charging is followed with normal
fuzzy system and optimized fuzzy system. The fuzzy system is optimized using the GA technique in
MATLAB, the new membership functions for the optimized fuzzy system are shown in Fig. 6. As can
be seen, they are different than the normal system (Fig. 1).



Fig. 5: Protective SOC Line.

Fig. 6: Membership functions for optimized fuzzy system.



The simulation results including the power and SOC of EV and the cost of microgrid for three cases are
shown in Figures 7, 8, 9.

Fig. 7: Results for Normal-Charging mode; EV power, SOC, and microgrid cost.

Fig. 8: Results for Smart-Charging mode, Normal-Fuzzy; EV power, SOC, and microgrid cost.

In the first case, the EV does not participate in the energy management and is charged with the nominal
power to get to the final SOC. The final cost, in this case is 4.78$ which is much more than other cases.
While the fuzzy controller has a significant effect in case II. The final cost is significantly decreased to
3.96$, which is 18% less than that of case I. Furthermore, the optimized fuzzy controller has much more
effect in case III. In this case, the final cost is just 2.55$ which the final cost has been reduced to 50%. A
comparison is given in Table III. As mentioned earlier, optimization in this method is done only once at
the beginning of the EV entering the parking lot, so the implementation of this algorithm is much faster
than other methods that require online optimization.



Fig. 9: Results for Smart-Charging mode, Optimized-Fuzzy; EV power, SOC, and microgrid cost.

Table III: Comparing the results.

Case I Case II Case III
Normal-Charging Fuzzy Optimized Fuzzy

Energy Cost ($) 4.78 3.96 2.25
Reduction percent (%) 0 18 53

Conclusions
The involvement of electric vehicles in the energy management of microgrids, including renewable and
intermittent energy resources, can significantly reduce energy costs. In this process, charging of EVs
is postponed to times when we have renewable production and energy price is low. In addition, when
the energy price is high, they can discharge to provide some of the energy of local loads. Therefore,
an algorithm is needed that can determine the power profile of EVs by considering the stopping time
in the parking lot and their requested SOC at the departure. This paper presents an intelligent charging
algorithm using an optimized fuzzy system that is both easy to implement and ensures an optimal re-
sponse. In this method, the parameters of the fuzzy system membership functions are obtained based on
the optimization of the cost function and using a genetic algorithm. The advantage of this method is that
the optimization operation is performed only once when the EV enters the parking lot, and then, like the
fuzzy method, it operates on a rule-based basis. Therefore, there is no need for optimization calculations
during successive intervals. The next step in this strategy is to implement the algorithm in the presence
of other vehicles, which will be examined in future studies.
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