
HAL Id: hal-03781178
https://hal.science/hal-03781178v1

Submitted on 20 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

A stochastic dual dynamic integer programming based
approach for remanufacturing planning under

uncertainty
Franco Quezada, Céline Gicquel, Safia Kedad-Sidhoum

To cite this version:
Franco Quezada, Céline Gicquel, Safia Kedad-Sidhoum. A stochastic dual dynamic integer program-
ming based approach for remanufacturing planning under uncertainty. International Journal of Pro-
duction Research, 2023, 61 (17), pp.5992-6012. �10.1080/00207543.2022.2120924�. �hal-03781178�

https://hal.science/hal-03781178v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

A stochastic dual dynamic integer programming based approach for
remanufacturing planning under uncertainty

Franco Quezadaa,b, Céline Gicquelc and Safia Kedad-Sidhoumd

aUniversity of Santiago of Chile (USACH), Faculty of Engineering, Industrial Engineering
Department, Chile;
bUniversity of Santiago of Chile (USACH), Faculty of Engineering, Program for the
Development of Sustainable Production Systems (PDSPS), Chile;
cUniversité Paris Saclay, LISN, 91190 Gif-sur-Yvette, France;
dCNAM, CEDRIC, 75003 Paris, France.

ARTICLE HISTORY
Compiled September 20, 2022

Abstract
We seek to optimize the production planning of a three-echelon remanufacturing
system under uncertain input data. We consider a multi-stage stochastic integer
programming approach and use scenario trees to represent the uncertain informa-
tion structure. We introduce a new dynamic programming formulation that relies on
a partial nested decomposition of the scenario tree. We then propose a new approx-
imate stochastic dual dynamic integer programming algorithm based on this partial
decomposition. Our numerical results show that the proposed solution approach
is able to provide near-optimal solutions for large-size instances with a reasonable
computational effort.

KEYWORDS
Production planning ; Lot-sizing ; Remanufacturing ; Multi-stage stochastic
integer programming; Stochastic dual dynamic programming.

1. Introduction

Nowadays, linear open-ended production systems (i.e., produce, consume, dispose) are
facing significant challenges in terms of design, operation, and resource management.
This is mainly due to the advent of environmental regulations around the world, which
force industrial companies to become more environmentally responsible and to mitigate
the environmental impact of their products (Suzanne, Absi, and Borodin 2020). In
contrast, circular closed-loop production systems aim at achieving more sustainability
in industrial operations through, e.g., reuse of products in a sufficiently good working
condition, remanufacturing of end-of-life products and recycling of raw materials.

This work considers one aspect of closed-loop production systems: the remanufac-
turing of end-of-life products. Remanufacturing is defined as a set of processes trans-
forming end-of-life products (also called used products or returns) into like-new fin-
ished products, once again usable by customers, mainly by rehabilitating damaged

*Corresponding author. Email: franco.quezada@usach.cl
*Preliminary results were published in Quezada, Gicquel, and Kedad-Sidhoum (2021b).

components (Lund 1984). Remanufacturing makes it possible to reuse the components
embedded in used products without fully dismantling them into basic raw materials.
It thus prevents pollution emissions and natural resource consumption and saves the
energy and resources needed to transform basic raw materials into components. The
fact that remanufacturing is of particular interest for a wide range of industries can be
seen through the numerous case studies reported in the academic literature. Industrial
systems aimed at remanufacturing cars (Saavedra et al. 2013; Xiang and Ming 2011),
photocopiers (Kerr and Ryan 2001), mobile handsets (Rathore, Kota, and Chakrabarti
2011), electrical and electronic equipment (Hatcher, Ijomah, and Windmill 2013) or
office furniture (Krystofik et al. 2018) were thus recently studied.

We focus here on an optimization problem related to the operational management
of remanufacturing systems, namely short-term production planning and lot-sizing. In
general, short-term production planning involves determining the production level (i.e.,
which products and how much of them should be made), the timing (i.e., when the
products should be made) and the resources to be used over a multi-period horizon.
Within the remanufacturing context investigated here, production planning includes
making decisions on how much and when used products should be disassembled, refur-
bished or reassembled. The goal is to meet the customers’ demand for remanufactured
products in the most cost-effective way. In many cases, the costs to be taken into ac-
count when planning production involve setup costs. This situation occurs when setup
operations such as tool changes or machine calibration must be undergone on the pro-
duction resources before starting the production of a new type of product. Setup costs
are usually fixed costs, i.e., costs whose value does not depend on the amount of product
produced after the setup. In this case, one may wish to plan production using large lot
sizes to benefit from economies of scale. But this leads to a desynchronization between
the production plan and the demand for the finished products, and consequently to
high levels of costly inventory. Lot-sizing models aim at building production plans in
which the trade-off between fixed setup costs and inventory holding costs is optimized,
and the customers’ demand is satisfied as best as possible. In their recent state of
the art on discrete-time tactical production planning models for the circular economy,
Suzanne, Absi, and Borodin (2020) found that lot-sizing models for remanufacturing
systems involving both disassembly and reassembly operations have not been fully in-
vestigated, although such systems are frequently encountered in practice. This work
may be seen as a way of partially closing this gap. We thus seek to optimize short-term
production planning and lot-sizing for a production system comprising three produc-
tion echelons: the disassembly of used products brought back by customers into parts,
the refurbishing of the recovered parts, and the reassembly of refurbished parts into
like-new finished products.

Furthermore, the fact that production planning is more complex in remanufacturing
systems than in classical manufacturing systems is now well established in the literature
(see, e.g., Guide, Jayaraman, and Srivastava (1999) and Guide (2000)). This difficulty
comes partly from the fact that the remanufacturer has a lower control on the input
flows of used products returned by customers, both in terms of quantity and quality,
than the one a manufacturer has on the input flows of raw materials and components
ordered from its suppliers. This means that the input data needed to make planning
decisions are subject to a higher level of uncertainty in remanufacturing systems than
in classical manufacturing systems. Neglecting these uncertainties while planning pro-
duction may result in production plans displaying a poor performance in practice. We
thus investigate a production planning and lot-sizing model in which the uncertainties
related to the quantity and quality of returned products, the customers’ demand, and

2

the costs are explicitly taken into account. However, we assume that even if these input
parameters are subject to uncertainties, some knowledge about their potential value is
available under the form of probability distributions. Moreover, production planning
is most often a multi-stage decision-making process. Namely, part of the production
decisions must be made ‘here and now’, i.e., right at the beginning of the planning
horizon, but others may be postponed until more information on the stochastic input
parameters becomes available using a ‘wait-and-see’ strategy. In order to explicitly
consider this multi-stage aspect, we use a multi-stage stochastic integer programming
(MSSiP) model in which the time evolution of the uncertain parameters is described
through a discrete scenario tree.

Le suivi des modifications est activé A stochastic dual dynamic integer programming
based approach for remanufacturing planning under uncertainty Franco Quezadaa,b,
Céline Gicquelc and Safia Kedad-Sidhoumd aUniversity of Santiago of Chile (USACH),
Faculty of Engineering, Industrial Engineering Department, Chile; bUniversity of San-
tiago of Chile (USACH), Faculty of Engineering, Program for the Development of Sus-
tainable Production Systems (PDSPS), Chile; cUniversité Paris Saclay, LISN, 91190
Gif-sur-Yvette, France; dCNAM, CEDRIC, 75003 Paris, France. ARTICLE HISTORY
Compiled September 20, 2022 Abstract We seek to optimize the production planning
of a three-echelon remanufacturing system under uncertain input data. We consider a
multi-stage stochastic integer programming approach and use scenario trees to repre-
sent the uncertain informa- tion structure. We introduce a new dynamic programming
formulation that relies on a partial nested decomposition of the scenario tree. We then
propose a new approx- imate stochastic dual dynamic integer programming algorithm
based on this partial decomposition. Our numerical results show that the proposed so-
lution approach is able to provide near-optimal solutions for large-size instances with a
reasonable computational effort. KEYWORDS Production planning ; Lot-sizing ; Re-
manufacturing ; Multi-stage stochastic integer programming; Stochastic dual dynamic
programming. 1. Introduction Nowadays, linear open-ended production systems (i.e.,
produce, consume, dispose) are facing significant challenges in terms of design, oper-
ation, and resource management. This is mainly due to the advent of environmental
regulations around the world, which force industrial companies to become more envi-
ronmentally responsible and to mitigate the environmental impact of their products
(Suzanne, Absi, and Borodin 2020). In contrast, circular closed-loop production sys-
tems aim at achieving more sustainability in industrial operations through, e.g., reuse of
products in a sufficiently good working condition, remanufacturing of end-of-life prod-
ucts and recycling of raw materials. This work considers one aspect of closed-loop pro-
duction systems: the remanufac- turing of end-of-life products. Remanufacturing is de-
fined as a set of processes trans- forming end-of-life products (also called used products
or returns) into like-new fin- ished products, once again usable by customers, mainly by
rehabilitating damaged *Corresponding author. Email: franco.quezada@usach.cl *Pre-
liminary results were published in Quezada, Gicquel, and Kedad-Sidhoum (2021b).
components (Lund 1984). Remanufacturing makes it possible to reuse the components
embedded in used products without fully dismantling them into basic raw materials.
It thus prevents pollution emissions and natural resource consumption and saves the
energy and resources needed to transform basic raw materials into components. The
fact that remanufacturing is of particular interest for a wide range of industries can be
seen through the numerous case studies reported in the academic literature. Industrial
systems aimed at remanufacturing cars (Saavedra et al. 2013; Xiang and Ming 2011),
photocopiers (Kerr and Ryan 2001), mobile handsets (Rathore, Kota, and Chakrabarti
2011), electrical and electronic equipment (Hatcher, Ijomah, and Windmill 2013) or

3

office furniture (Krystofik et al. 2018) were thus recently studied. We focus here on
an optimization problem related to the operational management of remanufacturing
systems, namely short-term production planning and lot-sizing. In general, short-term
production planning involves determining the production level (i.e., which products
and how much of them should be made), the timing (i.e., when the products should
be made) and the resources to be used over a multi-period horizon. Within the reman-
ufacturing context investigated here, production planning includes making decisions
on how much and when used products should be disassembled, refur- bished or re-
assembled. The goal is to meet the customers’ demand for remanufactured products in
the most cost-effective way. In many cases, the costs to be taken into ac- count when
planning production involve setup costs. This situation occurs when setup operations
such as tool changes or machine calibration must be undergone on the pro- duction
resources before starting the production of a new type of product. Setup costs are
usually fixed costs, i.e., costs whose value does not depend on the amount of product
produced after the setup. In this case, one may wish to plan production using large lot
sizes to benefit from economies of scale. But this leads to a desynchronization between
the production plan and the demand for the finished products, and consequently to
high levels of costly inventory. Lot-sizing models aim at building production plans in
which the trade-off between fixed setup costs and inventory holding costs is optimized,
and the customers’ demand is satisfied as best as possible. In their recent state of
the art on discrete-time tactical production planning models for the circular economy,
Suzanne, Absi, and Borodin (2020) found that lot-sizing models for remanufacturing
systems involving both disassembly and reassembly operations have not been fully in-
vestigated, although such systems are frequently encountered in practice. This work
may be seen as a way of partially closing this gap. We thus seek to optimize short-term
production planning and lot-sizing for a production system comprising three produc-
tion echelons: the disassembly of used products brought back by customers into parts,
the refurbishing of the recovered parts, and the reassembly of refurbished parts into
like-new finished products. Furthermore, the fact that production planning is more
complex in remanufacturing systems than in classical manufacturing systems is now
well established in the literature (see, e.g., Guide, Jayaraman, and Srivastava (1999)
and Guide (2000)). This difficulty comes partly from the fact that the remanufac-
turer has a lower control on the input flows of used products returned by customers,
both in terms of quantity and quality, than the one a manufacturer has on the in-
put flows of raw materials and components ordered from its suppliers. This means
that the input data needed to make planning decisions are subject to a higher level
of uncertainty in remanufacturing systems than in classical manufacturing systems.
Neglecting these uncertainties while planning pro- duction may result in production
plans displaying a poor performance in practice. We thus investigate a production
planning and lot-sizing model in which the uncertainties related to the quantity and
quality of returned products, the customers’ demand, and 2 the costs are explicitly
taken into account. However, we assume that even if these input parameters are sub-
ject to uncertainties, some knowledge about their potential value is available under
the form of probability distributions. Moreover, production planning is most often a
multi-stage decision-making process. Namely, part of the production decisions must be
made ‘here and now’, i.e., right at the beginning of the planning horizon, but others
may be postponed until more information on the stochastic input parameters becomes
available using a ‘wait-and-see’ strategy. In order to explicitly consider this multi-stage
aspect, we use a multi-stage stochastic integer programming (MSSiP) model in which
the time evolution of the uncertain parameters is described through a discrete scenario

4

tree. The problem studied here, i.e., stochastic production planning and lot-sizing for
a three-echelon remanufacturing system, was previously investigated by Quezada, Gic-
quel, and Kedad-Sidhoum (2019a) and Quezada et al. (2020). Quezada et al. (2020)
formulated the problem as a large-size mixed-integer linear program (MILP) and pro-
posed a customized branch-and-cut algorithm based on new valid inequalities to solve
it. Quezada, Gicquel, and Kedad-Sidhoum (2019a) later investigated the use of the
Stochastic Dual Dynamic integer Programming (SDDiP) algorithm recently presented
by Zou, Ahmed, and Sun (2019) to solve the problem. This algorithm relies on a full
decomposition of the problem into a large number of small deterministic sub-problems.
Although the above-mentioned solution approaches successfully provided near-optimal
solutions for small to medium-size instances, some numerical difficulties were encoun-
tered to solve instances involving the large-size scenario trees which are often needed
in real applications. The present work thus discusses a new solution approach for this
problem. This one uses a partial decomposition of the problem into a small num-
ber of medium-size stochastic sub-problems. Note that this partial decomposition was
successfully imple- mented in an extended variant of the SDDiP algorithm to solve
a basic single-echelon single-resource single-product uncapacitated (SULS) lot-sizing
problem by Quezada, Gicquel, and Kedad-Sidhoum (2022). However, a direct imple-
mentation of this al- gorithm proved inefficient at solving the more realistic multi-
echelon multi-resource multi-product lot-sizing problem investigated here. The main
reason for this difficulty is that the sub-problems obtained through this partial decom-
position are medium- size MILPs whose resolution by a mathematical solver requires a
non-negligible time. We thus study in the present paper how the extended SDDiP algo-
rithm proposed by Quezada, Gicquel, and Kedad-Sidhoum (2022) for a basic lot-sizing
problem may be adapted to solve a more practical lot-sizing problem. This mainly
involves reducing the computational effort needed to solve the above-mentioned sub-
problems. Our ex- tensive computational results carried out on randomly generated
instances show that the proposed approach can efficiently solve real-size instances of
our remanufacturing planning problem. 1.1. Related literature A recent review of the
literature on planning problems in remanufacturing may be found, e.g., in Kazemi,
Modak, and Govindan (2019). Moreover, surveys on lot-sizing problems linked to re-
manufacturing were recently presented by Brahimi et al. (2017) and Suzanne, Absi, and
Borodin (2020). This subsection focuses on the works dealing with dynamic lot-sizing
for remanufacturing under uncertainty. We classify them according to three criteria:
the production system, the uncertain 3 parameters, and the mathematical optimiza-
tion approach used to handle the uncer- tainty in the production planning model. In
terms of the production system, the simplest setting corresponds to the single- echelon
single-product case. Such systems are investigated by Li et al. (2009), Kilic (2013),
Kilic, Tunc, and Tarim (2018), Naeem et al. (2013) and Attila et al. (2021). Ex- ten-
sions dealing with single-echelon multi-product systems are considered by Macedo et
al. (2016), Hilger, Sahling, and Tempelmeier (2016) and He et al. (2022). To the best
of our knowledge, there are four works dealing with multi-echelon multi-product sys-
tems: Wang and Huang (2013), Fang et al. (2017), Slama et al. (2022) and Frifita,
Afsar, and Hnaien (2022). Wang and Huang (2013) consider a three-echelon system:
acquisition of used products, disassembly of used products into parts and modules,
reprocessing of the recovered parts and modules through repairing, remanufacturing
or reusing. Fang et al. (2017) study a two-echelon system comprising a disassembly
process followed by a hybrid manufacturing/remanufacturing process, whereas Frifita,
Afsar, and Hnaien (2022) investigate a capacitated lot-sizing problem with disassem-
bly and refurbishing operations. Finally, Slama et al. (2022) study a production sys-

5

tem that includes the disassembly and assembly operations of returned products, where
lost sales are allowed with a penalty cost. We may also classify the papers according
to the nature of the stochastic parame- ters. Wang and Huang (2013) and Fang et
al. (2017) assume that the only stochastic parameter in the problem is the demand
for remanufactured products. On the other hand, He et al. (2022) consider uncertain
demand and components yield ratios, whereas Frifita, Afsar, and Hnaien (2022) only
consider the case of the stochastic yield of the disassembly process. The case of stochas-
tic demand and returns quantity is investigated by Li et al. (2009), Kilic (2013), Kilic,
Tunc, and Tarim (2018), Naeem et al. (2013), Hilger, Sahling, and Tempelmeier (2016)
and Attila et al. (2021). Macedo et al. (2016) extend these works by considering a
stochastic demand, returns quantity and setup cost. Finally, the recent work of Slama
et al. (2022) investigates the case of stochastic refurbishing lead times. Finally, various
approaches may be used to handle the uncertainty in the mathemati- cal optimization
model. Li et al. (2009) and Naeem et al. (2013) use stochastic dynamic programming
approaches to minimize the total expected cost. These approaches rely on a set of
discrete random variables, each one defined on a support comprising only three pos-
sible outcomes, to represent the uncertainties on the demand and returns quantity.
Attila et al. (2021) and Frifita, Afsar, and Hnaien (2022) develop a robust optimiza-
tion approach in which uncertainty is handled through uncertainty sets de- fined as
budgeted polytopes. Two-stage stochastic integer programming approaches in which
uncertainty is modeled through a set of sampled scenarios are investigated by Macedo
et al. (2016), Hilger, Sahling, and Tempelmeier (2016), Wang and Huang (2013), He
et al. (2022) and Slama et al. (2022). Multi-stage stochastic integer pro- gramming
approaches are developed by Kilic (2013), Kilic, Tunc, and Tarim (2018) and Fang et
al. (2017). The models developed by Kilic (2013) and Kilic, Tunc, and Tarim (2018)
are based on the assumption that the decision process comprises several stages, each
one corresponding to a planning period. At the first stage, i.e. at the be- ginning of
the planning horizon, the periods of the planning horizon in which setups for manu-
facturing and/or remanufacturing may occur are determined. The following decision
stages correspond to the beginning of each planning period. At the beginning of each
period, the realization of the uncertain parameters up to that period is observed and,
if a manufacturing/remanufacturing setup was scheduled for this period at the first
decision stage, manufacturing/remanufacturing quantities are determined. Both 4 pa-
rameters is collected. More precisely, we consider a set of S = 1, . . . , decision stages.
A decision stage may correspond to one or several planning periods: let T be the set
of time periods belonging to stage . At the beginning of a decision stage, we assume
that the information about the realization of the stochastic parameters is available up
to (and including) that stage. Based on this information, we determine the setups and
production quantities on each process for each planning period in T . 1 2 3 4 7 5 8 6
9 10 13 16 19 11 14 17 20 12 15 18 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
37 38 39 40 41 42 43 44 45 1 2 3 4 t = = 1 2 3 4 5 6 7 8 9 10 11 12 T = 12, =
4 V = 1, ..., 45 T 2 = 4, 5, 6 V6 = 6, 9 a6 = 5 t6 = 6 6 = 2 C(6) = 10, 13 V(6)
= 6, 10, ..., 15, 22, ..., 33 Figure 2. Scenario tree structure Moreover, we assume that
the evolution of the uncertain parameters can be repre- sented by a discrete scenario
tree V. Each node n V belongs to a single period tn and a single stage n. Let Vt
be the set of nodes related to period t. Each node n has a unique predecessor node
denoted by an and represents the state of the system that can be distinguished by the
information unfolded up to stage n. At any non-terminal node of the tree, there are
one or several branches to indicate possible future outcomes of the random variables
from the current node. Let C(n) be the set of children of node n and V(n) be the

6

sub-tree of V rooted in n. The probability associated with the state represented by
node n is denoted by n. A scenario is a path in the tree from the root node to a leaf
node and represents a possible outcome of the stochastic input param- eters over the
whole planning horizon. Figure 2 illustrates these notations on a small scenario tree.
Each node n V corresponds to a realization of the stochastic input parameters. Let
rn be the quantity of collected used products, dn the demand for the remanufactured
products and n i the proportion of recoverable parts i Ir obtained by disassembling
one unit of returned product at node n V. As for the costs, we have the setup cost f n
p for process p J , the unit inventory holding cost hn i for part i I, the unit lost-sales
penalty cost ln, the unit cost qn i for discarding item i Ir 0. Finally, gn represents
the cost of discarding the unrecoverable parts obtained while disassembly one unit of
used products. As mentioned above, we assume that at each decision stage, 8 W n i 0
i Ir 0, n V (12) Xn p 0, Y n p 0, 1 p J , n V (13) The objective function (1) aims
at minimizing the expected total cost, over all nodes of the scenario tree. The total
cost at node n is the sum of the setup, inventory holding, lost sales and disposal costs.
Constraints (2)-(5) represent the inventory balance con- straints for every node n V
and every item i I. More specifically, Constraints (2) compute the physical inventory
level of the used product i = 0 at each node n as the sum of the physical inventory level
P San at the parent node of n and of the returns quantity rn minus the quantities, Xn
0 and W n 0 , of disassembled and discarded used products at node n. Constraints (3)
state that the echelon inventory of each recover- able item i Ir is equal to the echelon
inventory level ESan i at the parent node of n plus the number of items i recovered
after the disassembly process, n i iXn 0 , minus the echelon demand for i to be actually
satisfied, i(dn Ln) and the discarded quantity W n i . The same applies for the echelon
inventory of the serviceable items i Is and the remanufactured product i = 2I +1
(Constraints (4)-(5)). Without loss of generality, we assume that the initial inventory,
i.e. the entering inventory at the root node n = 1, is set to 0 of all items: see Con-
straints (6)-(7). Constraints (8)-(9) ensure consistency be- tween the echelon inventory
at consecutive levels of the bill-of-materials and guarantee that the physical inventory
of each product remains non-negative. Constraints (10) link the production quantity
variables to the setup variables. Finally, Constraints (11)-(13) provide the domain of
the decision variables. For the sake of readability, we will use in what follows the vector
Sn = (Sn 0 , Sn 1 , · · · , Sn 2I+1) to describe the leaving inventory at node n: Sn 0 = P
Sn 0 repre- sents the physical inventory of item 0, Sn i = ESn i represents the echelon
stock of item i I 0. Moreover, F n(Xn, Y n, Sn, W n, Ln) = pJ f n p Y n p + hn 0
Sn 0 + iIr hn i Sn i + iIs (hn i hn iI)Sn i + (hn 2I+1 iIr ihn i)Sn 2I+1 + lnLn +
iIr 0 qn i W n i + gnXn 0 denotes the setup, inventory holding, lost sales and disposal
cost at node n. Finally, Fn denotes the subset of constraints (8)-(13) related to node n.
Note that small instances of Problem (1)-(13) can be directly solved by the standard
branch-and-cut algorithm embedded in MILP solvers. Quezada et al. (2020) exploit the
fact that, thanks to the use of echelon inventory variables, Problem (1)-(13) can be de-
composed into a series of single-echelon lot-sizing sub-problems linked together by cou-
pling constraints (8)-(9). They develop efficient customized branch-and-cut algorithms
based on the use of problem-specific valid inequalities to strengthen the formulation
of each single-echelon sub-problem and solve medium-size instances. Nonetheless, the
size of the formulation grows exponentially fast with the number of nodes |V| in the
scenario tree, leading to prohibitive computation times in practice for solving instances
using large-size scenario trees. 2.4. Dynamic programming formulation In order to par-
tially overcome this difficulty, we will investigate in Section 3 a new solution approach
based on a partial nested decomposition of the original stochastic problem into a series

7

of smaller stochastic sub-problems. This solution approach uses as a starting point a
dynamic programming reformulation of Problem (1)-(13) presented in this section. The
proposed approach relies on a partial decomposition of the scenario tree V into a series
of smaller sub-trees. This decomposition is obtained by first partitioning the 10

The problem studied here, i.e., stochastic production planning and lot-sizing for a
three-echelon remanufacturing system, was previously investigated by Quezada, Gic-
quel, and Kedad-Sidhoum (2019a) and Quezada et al. (2020). Quezada et al. (2020)
formulated the problem as a large-size mixed-integer linear program (MILP) and pro-
posed a customized branch-and-cut algorithm based on new valid inequalities to solve
it. Quezada, Gicquel, and Kedad-Sidhoum (2019a) later investigated the use of the
Stochastic Dual Dynamic integer Programming (SDDiP) algorithm recently presented
by Zou, Ahmed, and Sun (2019) to solve the problem. This algorithm relies on a full
decomposition of the problem into a large number of small deterministic sub-problems.
Although the above-mentioned solution approaches successfully provided near-optimal
solutions for small to medium-size instances, some numerical difficulties were encoun-
tered to solve instances involving the large-size scenario trees which are often needed
in real applications.

The present work thus discusses a new solution approach for this problem. This
one uses a partial decomposition of the problem into a small number of medium-size
stochastic sub-problems. Note that this partial decomposition was successfully imple-
mented in an extended variant of the SDDiP algorithm to solve a basic single-echelon
single-resource single-product uncapacitated (SULS) lot-sizing problem by Quezada,
Gicquel, and Kedad-Sidhoum (2022). However, a direct implementation of this al-
gorithm proved inefficient at solving the more realistic multi-echelon multi-resource
multi-product lot-sizing problem investigated here. The main reason for this difficulty
is that the sub-problems obtained through this partial decomposition are medium-
size MILPs whose resolution by a mathematical solver requires a non-negligible time.
We thus study in the present paper how the extended SDDiP algorithm proposed
by Quezada, Gicquel, and Kedad-Sidhoum (2022) for a basic lot-sizing problem may
be adapted to solve a more practical lot-sizing problem. This mainly involves reducing
the computational effort needed to solve the above-mentioned sub-problems. Our ex-
tensive computational results carried out on randomly generated instances show that
the proposed approach can efficiently solve real-size instances of our remanufacturing
planning problem.

1.1. Related literature

A recent review of the literature on planning problems in remanufacturing may be
found, e.g., in Kazemi, Modak, and Govindan (2019). Moreover, surveys on lot-sizing
problems linked to remanufacturing were recently presented by Brahimi et al. (2017)
and Suzanne, Absi, and Borodin (2020). This subsection focuses on the works dealing
with dynamic lot-sizing for remanufacturing under uncertainty.

We classify them according to three criteria: the production system, the uncertain
parameters, and the mathematical optimization approach used to handle the uncer-
tainty in the production planning model.

In terms of the production system, the simplest setting corresponds to the single-
echelon single-product case. Such systems are investigated by Li et al. (2009), Kilic
(2013), Kilic, Tunc, and Tarim (2018), Naeem et al. (2013) and Attila et al. (2021). Ex-
tensions dealing with single-echelon multi-product systems are considered by Macedo

8

et al. (2016), Hilger, Sahling, and Tempelmeier (2016) and He et al. (2022). To the
best of our knowledge, there are four works dealing with multi-echelon multi-product
systems: Wang and Huang (2013), Fang et al. (2017), Slama et al. (2022) and Frifita,
Afsar, and Hnaien (2022). Wang and Huang (2013) consider a three-echelon system:
acquisition of used products, disassembly of used products into parts and modules,
reprocessing of the recovered parts and modules through repairing, remanufacturing
or reusing. Fang et al. (2017) study a two-echelon system comprising a disassembly
process followed by a hybrid manufacturing/remanufacturing process, whereas Frifita,
Afsar, and Hnaien (2022) investigate a capacitated lot-sizing problem with disassem-
bly and refurbishing operations. Finally, Slama et al. (2022) study a production system
that includes the disassembly and assembly operations of returned products, where lost
sales are allowed with a penalty cost.

We may also classify the papers according to the nature of the stochastic parame-
ters. Wang and Huang (2013) and Fang et al. (2017) assume that the only stochastic
parameter in the problem is the demand for remanufactured products. On the other
hand, He et al. (2022) consider uncertain demand and components yield ratios, whereas
Frifita, Afsar, and Hnaien (2022) only consider the case of the stochastic yield of the
disassembly process. The case of stochastic demand and returns quantity is investigated
by Li et al. (2009), Kilic (2013), Kilic, Tunc, and Tarim (2018), Naeem et al. (2013),
Hilger, Sahling, and Tempelmeier (2016) and Attila et al. (2021). Macedo et al. (2016)
extend these works by considering a stochastic demand, returns quantity and setup
cost. Finally, the recent work of Slama et al. (2022) investigates the case of stochastic
refurbishing lead times.

Finally, various approaches may be used to handle the uncertainty in the mathemati-
cal optimization model. Li et al. (2009) and Naeem et al. (2013) use stochastic dynamic
programming approaches to minimize the total expected cost. These approaches rely
on a set of discrete random variables, each one defined on a support comprising only
three possible outcomes, to represent the uncertainties on the demand and returns
quantity. Attila et al. (2021) and Frifita, Afsar, and Hnaien (2022) develop a robust
optimization approach in which uncertainty is handled through uncertainty sets de-
fined as budgeted polytopes. Two-stage stochastic integer programming approaches
in which uncertainty is modeled through a set of sampled scenarios are investigated
by Macedo et al. (2016), Hilger, Sahling, and Tempelmeier (2016), Wang and Huang
(2013), He et al. (2022) and Slama et al. (2022). Multi-stage stochastic integer pro-
gramming approaches are developed by Kilic (2013), Kilic, Tunc, and Tarim (2018)
and Fang et al. (2017). The models developed by Kilic (2013) and Kilic, Tunc, and
Tarim (2018) are based on the assumption that the decision process comprises several
stages, each one corresponding to a planning period. At the first stage, i.e. at the be-
ginning of the planning horizon, the periods of the planning horizon in which setups
for manufacturing and/or remanufacturing may occur are determined. The following
decision stages correspond to the beginning of each planning period. At the beginning
of each period, the realization of the uncertain parameters up to that period is observed
and, if a manufacturing/remanufacturing setup was scheduled for this period at the
first decision stage, manufacturing/remanufacturing quantities are determined. Both
papers use random variables with a continuous probability distribution to represent
the uncertainty on the demand and returns quantity. Fang et al. (2017) also consider
a multi-stage decision process in which each decision stage corresponds to a planning
period. However, their model differs from the ones of Kilic (2013) and Kilic, Tunc, and
Tarim (2018) with respect to the decisions made at each stage. Fang et al. (2017) do
not fix the setups for the whole planning horizon at the first stage but rather consider

9

that the decisions to be made at the beginning of each stage correspond to determining
the disassembly/manufacturing/remanufacturing setups and production quantities for
the corresponding planning period. Their model relies on a discrete scenario tree to
represent the time evolution of the uncertain parameters.

In the present work, similar to what was done in Quezada, Gicquel, and Kedad-
Sidhoum (2019a) and Quezada et al. (2020), we investigate production planning under
uncertainty for a multi-echelon multi-product system involving disassembly, refurbish-
ing and reassembly operations. We propose to handle this problem through a MSSiP
approach in which the decisions to be made at each stage correspond to determining
the setup and production quantities for the planning periods belonging to this stage.
Our work is thus closely related to the one of Fang et al. (2017) who investigate a
similar MSSiP approach for a multi-echelon multi-product remanufacturing system.
However, Fang et al. (2017) only consider a stochastic demand, whereas we allow the
demand, returns quantity, disassembly yield, and costs to be uncertain. Moreover, Fang
et al. (2017) propose to solve the resulting MILP by a Lagrangian-based heuristic ap-
proach and solve instances with medium-size scenario trees involving 128 scenarios.
In contrast, we investigate a decomposition method relying on a dynamic program-
ming formulation of this stochastic problem and seek to solve instances with large-size
scenario trees involving up to 3.2 million scenarios.

1.2. Contributions

In the present work, we study a multi-echelon multi-item multi-resource lot-sizing
problem in order to plan production for a remanufacturing system. We simultaneously
consider uncertainties on several input parameters: the demand for the remanufactured
products, the returns quantity, the disassembly yield and the cost, the latter being
induced by the uncertainties on the quality of the returns. Similar to Quezada, Gicquel,
and Kedad-Sidhoum (2019a) and Quezada et al. (2020), we use a MSSiP approach
to handle this stochastic combinatorial optimization problem. However, we seek to
develop an algorithm capable of solving instances in which the evolution of the input
parameters over time is represented by a very large-size scenario tree.

To this aim, we investigate how the extSDDiP algorithm introduced by Quezada,
Gicquel, and Kedad-Sidhoum (2022) for solving the much simpler stochastic SULS
problem may be adapted to solve the more realistic production planning problem con-
sidered here. Basically, the extSDDiP algorithm is an extension of the SDDiP algorithm
introduced by Zou, Ahmed, and Sun (2019). It relies on a partial decomposition of the
stochastic problem into a series of medium-size stochastic sub-problems linked together
by expected cost-to-go functions. The algorithm provides near-optimal solutions of the
initial problem by solving a sequence of stochastic sub-problems and iteratively build-
ing a piece-wise linear under-approximation of each expected cost-to-go function. This
algorithm has a finite and optimal theoretical convergence and proves numerically effi-
cient at solving the SULS problem. However, its direct implementation on the problem
under study here leads to significant numerical difficulties. The main reason is that the
stochastic sub-problems obtained when solving our remanufacturing planning problem
with the extSDDiP algorithm are much larger than the ones obtained when solving
the SULS problem so that the time needed to carry out one iteration of the extSDDiP
algorithm becomes prohibitively long.

The main contribution of this paper thus consists in proposing an adaptation of the
extSDDiP algorithm capable of solving a more realistic lot-sizing problem involving

10

multiple production echelons, multiple items and multiple resources. In a nutshell, the
proposed algorithm relies on three main components which will be described in more
detail in the remainder of the paper: a partial (rather than a full) decomposition of the
problem into stochastic sub-problems, the use of continuous (rather than binary) state
variables, and the generation of ε-optimal strengthened Benders’ cuts to iteratively
build piece-wise linear approximations of the expected cost-to-go functions.

Due to these last two components, the resulting algorithm will not be theoretically
guaranteed to have a finite and optimal convergence. However, our numerical results
show that, in practice, this approximate SDDiP algorithm leads to solutions of better
quality and reduced computation time than the original SDDiP algorithm.

The remaining part of this paper is organized as follows. Section 2 describes the prob-
lem under study and introduces two mathematical formulations: an extensive MILP
formulation and a nested dynamic programming formulation. The proposed approx-
imate SDDiP algorithm is then presented in Section 3. Two further algorithmic en-
hancements, in particular the generation of ε-optimal strengthened Benders’ cuts, are
presented in Section 4. Computational experiments are reported in Section 5. Finally,
conclusions and directions for further works are discussed in Section 7.

2. Problem description and modeling

2.1. Remanufacturing system

The production system comprises three production echelons (see Figure 1): disassem-
bly of used products into recoverable parts, refurbishing of the recoverable parts into
serviceable parts, and reassembly of serviceable parts into as-good-as-new remanufac-
tured products. We aim at building a production-inventory plan for this system over
a multi-period horizon consisting of a discrete set T = {1, .., T} of time periods.

The following assumptions are made on the remanufacturing system:

- A single type of used product, denoted as product 0, is returned in a limited
quantity by customers in each time period t ∈ T .

- The used products are disassembled into I types of parts. Let Ir = {1, ..., I} be
the set of recoverable parts obtained by disassembly. The gozinto factor, i.e. the
number of parts of type i embedded in a returned product, is denoted by ϖi.

- Each type of recoverable parts is refurbished on a dedicated resource to obtain
serviceable parts. Let I + 1 denote the type of serviceable part obtained by
refurbishing recoverable parts of type i. Is = {I + 1, ..., 2I} is thus the set of
serviceable parts.

- The serviceable parts are reassembled into a single type of remanufactured prod-
uct, indexed by 2I + 1, which is similar to the used product, i.e., which has the
same bill-of-materials as the used product.

- The demand for the remanufactured product is dynamic, i.e., time-varying.
- Due to the usage state of the used products, some of the parts obtained during

disassembly are not recoverable and have to be disposed of. The yield of the
disassembly process, i.e., the proportion of parts that will be recoverable, is part-
dependent, time-dependent, and smaller than 1.

- The yield of all other (refurbishing or reassembly) processes is constant and equal
to 1.

- All production processes are uncapacitated.
- In case the demand for the remanufactured product cannot be satisfied on time

11

returns

used

products

0

DISASSEMBLY

discarded

products

1
...

i

...

I
recoverable

parts

REFURBISHING

discarded

parts

I + 1

...

I + i

...

2I
serviceable

parts

REASSEMBLY

2I + 1

remanufactured

products

demands

Figure 1. Illustration of studied remanufacturing system

(e.g., because we did not receive enough used products), the unmet demand is
lost, and a high penalty cost is incurred to take into account the loss of customer
goodwill.

- Returned products and recoverable parts can be discarded. This may be useful
to avoid an unnecessary accumulation of inventory when more used products are
returned than what is needed to satisfy the demand for remanufactured products
and when the part-dependent disassembly yields are strongly unbalanced.

The remanufacturing system thus comprises a set J = {0, ..., I+1} of processes: p =
0 corresponds to the disassembly process, p = i to the process refurbishing recoverable
parts of type i = 1, · · · , I into serviceable parts of type I + i and p = I + 1 to the
reassembly process.

The goal is to find an optimal production plan, i.e., a production plan that minimizes
the total production cost and satisfies all the practical limitations of the remanufac-
turing system. The total production cost comprises the fixed setup costs incurred each
time a production takes place on a process, the inventory holding costs for all the items
involved in the system, the lost-sales costs penalizing the unsatisfied demand, and the
disposal costs for the discarded used products and parts.

Note that this production planning problem was previously investigated by Quezada
et al. (2020). We thus refer the reader to this paper for more details.

2.2. Uncertainty representation and management

We consider the situation in which the input data needed to optimize the production
plan for this system, in particular the demand, returns quantity, disassembly yield
and costs, are subject to uncertainty. We propose to handle the resulting stochastic
production planning problem using a MSSiP approach.

In this approach, production planning is seen as a multi-stage decision process in
which some decisions have to be made at the beginning of the planning horizon, but
others may be postponed until more information on the actual value of the input
parameters is collected. More precisely, we consider a set of S = {1, . . . ,Σ} decision
stages. A decision stage σ may correspond to one or several planning periods: let T σ

be the set of time periods belonging to stage σ. At the beginning of a decision stage,
we assume that the information about the realization of the stochastic parameters is
available up to (and including) that stage. Based on this information, we determine
the setups and production quantities on each process for each planning period in T σ.

12

1 2 3

4

7

5

8

6

9

10

13

16

19

11

14

17

20

12

15

18

21

22 23 24

25 26 27

28 29 30

31 32 33

34 35 36

37 38 39

40 41 42

43 44 45

1 2 3 4

t =

σ =

1 2 3 4 5 6 7 8 9 10 11 12

T = 12,Σ = 4

V = {1, ..., 45}

T 2 = {4, 5, 6}

V6 = {6, 9}

a6 = 5

t6 = 6

σ6 = 2

C(6) = {10, 13}

V(6) = {6, 10, ..., 15, 22, ..., 33}

Figure 2. Scenario tree structure

Moreover, we assume that the evolution of the uncertain parameters can be repre-
sented by a discrete scenario tree V. Each node n ∈ V belongs to a single period tn

and a single stage σn. Let Vt be the set of nodes related to period t. Each node n has
a unique predecessor node denoted by an and represents the state of the system that
can be distinguished by the information unfolded up to stage σn. At any non-terminal
node of the tree, there are one or several branches to indicate possible future outcomes
of the random variables from the current node. Let C(n) be the set of children of node
n and V(n) be the sub-tree of V rooted in n. The probability associated with the state
represented by node n is denoted by ρn. A scenario is a path in the tree from the root
node to a leaf node and represents a possible outcome of the stochastic input param-
eters over the whole planning horizon. Figure 2 illustrates these notations on a small
scenario tree.

Each node n ∈ V corresponds to a realization of the stochastic input parameters. Let
rn be the quantity of collected used products, dn the demand for the remanufactured
products and δni the proportion of recoverable parts i ∈ Ir obtained by disassembling
one unit of returned product at node n ∈ V. As for the costs, we have the setup cost
fnp for process p ∈ J , the unit inventory holding cost hni for part i ∈ I, the unit
lost-sales penalty cost ln, the unit cost qni for discarding item i ∈ Ir ∪ {0}. Finally, gn
represents the cost of discarding the unrecoverable parts obtained while disassembly
one unit of used products. As mentioned above, we assume that at each decision stage,
the realization of the random parameters up to that stage is known before we have to
make planning decisions for this stage. We thus assume that the values of rn, dn, δni ,
ln, fnp , hnp , qni and gn are known for all nodes n ∈ ∪t∈T σVt before we have to decide on
the production plan for stage σ. We also assume that ln ≫ gn for all n ∈ V.

13

2.3. Mixed-integer linear programming formulation

Based on the uncertainty representation described above, the stochastic problem can
be formulated as a deterministic equivalent problem taking the form of a MILP. This
formulation uses the concept of echelon stock. The echelon stock of a product in a
multi-echelon production system corresponds to the total quantity of the product held
in inventory, either as such or as a component within its successors in the bill-of-
materials. In what follows, we will thus use the echelon stock to follow the total quantity
of a product held in inventory for all products in I except product 0. Namely, due to
the presence of stochastic and part-dependent disassembly yields, it is not possible to
define an echelon stock for the used product i = 0. The reader is referred to Pochet
and Wolsey (2006) for a general introduction on this concept and to Quezada et al.
(2020) for a detailed description on how it can be used for the remanufacturing system
under study.

We thus introduce the following decision variables for each node n ∈ V:

• Xn
p : quantity of parts processed on process p ∈ J ,

• Y n
p ∈ {0, 1}: setup variable for process p ∈ J ,

• ESn
i : echelon inventory of item i ∈ I \ {0},

• PSn
0 : physical inventory of used product i = 0,

• Wn
i : quantity of item i ∈ Ir ∪ {0} discarded,

• Ln: lost sales of remanufactured products.

This leads to the following MILP formulation.

min
∑
n∈V

ρn
(∑

p∈J
fnp Y

n
p + hn0PS

n
0 +

∑
i∈Ir

hni ES
n
i +

∑
i∈Is

(hni − hni−I)ES
n
i

+ (hn2I+1 −
∑
i∈Ir

ϖih
n
i)ES

n
2I+1 + lnLn +

∑
i∈Ir∪{0}

qni W
n
i + gnXn

0

)
(1)

PSn
0 = PSan

0 + rn −Xn
0 −Wn

0 ∀n ∈ V (2)

ESn
i = ESan

i + δni ϖiX
n
0 −ϖi(d

n − Ln)−Wn
i ∀i ∈ Ir, ∀n ∈ V (3)

ESn
i = ESan

i +Xn
i−P −ϖi(d

n − Ln) ∀i ∈ Is, ∀n ∈ V (4)

ESn
2I+1 = ESan

2I+1 +Xn
P+1 − dn + Ln ∀n ∈ V (5)

PSa1

0 = 0 (6)

ESa1

i = 0 ∀i ∈ I \ {0} (7)
ESn

i − ESn
I+i ≥ 0 ∀i ∈ Ir, ∀n ∈ V (8)

ESn
i −ϖiES

n
2I+1 ≥ 0 ∀i ∈ Is, ∀n ∈ V (9)

Xn
p ≤Mn

p Y
n
p ∀p ∈ J , ∀n ∈ V (10)

ESn
2I+1, L

n ≥ 0 ∀n ∈ V (11)
Wn

i ≥ 0 ∀i ∈ Ir ∪ {0}, ∀n ∈ V (12)
Xn

p ≥ 0, Y n
p ∈ {0, 1} ∀p ∈ J , ∀n ∈ V (13)

The objective function (1) aims at minimizing the expected total cost, over all nodes
of the scenario tree. The total cost at node n is the sum of the setup, inventory holding,
lost sales and disposal costs. Constraints (2)-(5) represent the inventory balance con-

14

straints for every node n ∈ V and every item i ∈ I. More specifically, Constraints (2)
compute the physical inventory level of the used product i = 0 at each node n as the
sum of the physical inventory level PSan at the parent node of n and of the returns
quantity rn minus the quantities, Xn

0 and Wn
0 , of disassembled and discarded used

products at node n. Constraints (3) state that the echelon inventory of each recover-
able item i ∈ Ir is equal to the echelon inventory level ESan

i at the parent node of n
plus the number of items i recovered after the disassembly process, δni ϖiX

n
0 , minus the

echelon demand for i to be actually satisfied, ϖi(d
n − Ln) and the discarded quantity

Wn
i . The same applies for the echelon inventory of the serviceable items i ∈ Is and the

remanufactured product i = 2I+1 (Constraints (4)-(5)). Without loss of generality, we
assume that the initial inventory, i.e. the entering inventory at the root node n = 1, is
set to 0 of all items: see Constraints (6)-(7). Constraints (8)-(9) ensure consistency be-
tween the echelon inventory at consecutive levels of the bill-of-materials and guarantee
that the physical inventory of each product remains non-negative. Constraints (10) link
the production quantity variables to the setup variables. Finally, Constraints (11)-(13)
provide the domain of the decision variables.

For the sake of readability, we will use in what follows the vector Sn =
(Sn

0 , S
n
1 , · · · , Sn

2I+1) to describe the leaving inventory at node n: Sn
0 = PSn

0 repre-
sents the physical inventory of item 0, Sn

i = ESn
i represents the echelon stock of item

i ∈ I \{0}. Moreover, Fn(Xn, Y n, Sn,Wn, Ln) =
∑

p∈J f
n
p Y

n
p +hn0S

n
0 +

∑
i∈Ir

hni S
n
i +∑

i∈Is
(hni − hni−I)S

n
i + (hn2I+1 −

∑
i∈Ir

ϖih
n
i)S

n
2I+1 + lnLn +

∑
i∈Ir∪{0} q

n
i W

n
i + gnXn

0

denotes the setup, inventory holding, lost sales and disposal cost at node n. Finally,
Fn denotes the subset of constraints (8)-(13) related to node n.

Note that small instances of Problem (1)-(13) can be directly solved by the standard
branch-and-cut algorithm embedded in MILP solvers. Quezada et al. (2020) exploit the
fact that, thanks to the use of echelon inventory variables, Problem (1)-(13) can be de-
composed into a series of single-echelon lot-sizing sub-problems linked together by cou-
pling constraints (8)-(9). They develop efficient customized branch-and-cut algorithms
based on the use of problem-specific valid inequalities to strengthen the formulation
of each single-echelon sub-problem and solve medium-size instances. Nonetheless, the
size of the formulation grows exponentially fast with the number of nodes |V| in the
scenario tree, leading to prohibitive computation times in practice for solving instances
using large-size scenario trees.

2.4. Dynamic programming formulation

In order to partially overcome this difficulty, we will investigate in Section 3 a new
solution approach based on a partial nested decomposition of the original stochastic
problem into a series of smaller stochastic sub-problems. This solution approach uses as
a starting point a dynamic programming reformulation of Problem (1)-(13) presented
in this section.

The proposed approach relies on a partial decomposition of the scenario tree V into
a series of smaller sub-trees. This decomposition is obtained by first partitioning the
set of decision stages S = {1, . . . ,Σ} into a series of macro-stages G = {1, . . . ,Γ},
where each macro-stage γ ∈ G contains a number of consecutive stages denoted by
S(γ). We let t(γ) (resp. t′(γ)) represent the first (resp. the last) time period belonging
to macro-stage γ. For a given macro-stage γ, each node η belonging to the first time
period in γ, i.e. each node η ∈ Vt(γ), is the root node of a sub-tree defined by the set
of nodes Wη = ∪t=t(γ),...,t′(γ)Vt ∩ V(η). Wη is thus the restriction of V(η) to the nodes

15

belonging to macro-stage γ. Let L(η) =Wη ∩Vt′(γ) be the set of leaf nodes of sub-tree
Wη. Finally, we denote by ℧ = ∪γ∈GVt(γ) the set of sub-tree root nodes induced by G.

These notations may be illustrated using the scenario tree depicted in Figure 2.
Assume that the set of stages S is partitioned into Γ = 2 macro-stages with S(1) =
{1, 2} and S(2) = {3, 4}. The first time period of macro-stage γ = 1 is t(1) = 1,
its last time period is t′(1) = 6. Similarly, we have t(2) = 7 and t′(2) = 12. In this
case, the set of sub-tree root nodes is ℧ = {1, 10, 13, 16, 19}. With this partition,
node η = 1 is the root node of the subtree W1 = {1, 2, 3, 4, 5, 6, 7, 8, 9} involving the
set of leaf nodes L(1) = {6, 9}. Node η = 10 is the root node of sub-tree W10 =
{10, 11, 12, 22, 23, 24, 25, 26, 27} involving the set of leaf nodes L(10) = {24, 27}. Sub-
trees W13, W16 and W19 are defined in the same way as sub-tree W10.

The sub-problem Pη related to node η ∈ ℧ focuses on defining the production plan
for the nodes belonging to sub-tree Wη based on the entering stock level Saη imposed
by its parent node aη in the scenario tree. Pη can be formulated as follows.

Qη(Saη

) = min
∑

n∈Wη

ρnFn(Xn, Y n, Sn,Wn, Ln) +
∑

ℓ∈L(η)

∑
m∈C(ℓ)

Qm(Sℓ) (14)

Sn
0 = San

0 + rn −Xn
0 −Wn

0 ∀n ∈ Wη (15)

Sn
i = San

i + δni ϖiX
n
0 −ϖid

n +ϖiL
n −Wn

i ∀i ∈ Ir,∀n ∈ Wη (16)

Sn
i = San

i +Xn
i−I −ϖid

n +ϖiL
n ∀i ∈ Is,∀n ∈ Wη (17)

Sn
2I+1 = San

2I+1 +Xn
I+1 − dn + Ln ∀n ∈ Wη (18)

(Xn, Y n, Sn,Wn, Ln) ∈ Fn ∀n ∈ Wη (19)

The objective function (14) comprises two terms: a term related to the expected
production costs over sub-tree Wη and a term representing the future expected pro-
duction costs incurred by the decisions made over sub-treeWη. More precisely, in (14),
Qη(Saη

) denotes the optimal value of sub-problem Pη as a function of the entering
stock level Saη and Qm(Sℓ) the optimal value of sub-problem Pm as a function of the
entering stock level Sℓ. The expected cost-to-go function at node ℓ ∈ L(η) is defined
as the expected value of Qm(·) over all the children of ℓ in the initial scenario tree V,
i.e. over all m ∈ C(ℓ), which gives Qℓ(·) =

∑
m∈C(ℓ)Q

m(·). The expected future costs
of the decisions made in Wη are thus computed as the sum, over all nodes ℓ ∈ L(η),
of Qℓ(Sℓ). Note that for all leaf nodes, i.e. for all ℓ ∈ VT , Qℓ(·) ≡ 0.

We note that when G ≡ S, i.e. when each macro-stage corresponds to a single
initial decision stage, each sub-tree Wη reduces to a set of nodes belonging to a single
deterministic scenario involving T ση periods. In this case, we obtain a decomposition
similar to the one proposed by Zou, Ahmed, and Sun (2019) for general multi-stage
stochastic integer programs and applied to the remanufacturing problem under study
here by Quezada, Gicquel, and Kedad-Sidhoum (2019a).

3. Approximate Stochastic Dual integer Programming algorithm

The dynamic programming formulation (14)-(19) of the problem presented in Subsec-
tion 2.4 enables us to develop a solution approach based on the Stochastic Dual in-
teger Programming (SDDiP) algorithm recently introduced by Zou, Ahmed, and Sun

16

(2019). Basically, this algorithm will solve Problem (1)-(13) by solving a sequence of
sub-problems (14)-(19) in which each expected cost-to-go function Qℓ(·) is iteratively
under-approximated by a piece-wise linear function.

The SDDiP algorithm is based on the stochastic dual dynamic programming (SDDP)
algorithm, which has proved its usefulness at solving large-size multi-stage stochastic
linear programs (Pereira and Pinto 1991). Note that for instance, the SDDP algorithm
was recently used by Thevenin, Adulyasak, and Cordeau (2020) to solve a stochastic
multi-echelon lot-sizing problem with component substitution. The authors assume
that the setup decisions are determined in a pre-optimization step and use the SDDP
algorithm to solve the resulting multi-stage stochastic linear program. The SDDiP
algorithm is an extension of the SDDP algorithm developed by Zou, Ahmed, and Sun
(2019) to solve multi-stage stochastic integer programs. Quezada, Gicquel, and Kedad-
Sidhoum (2022) recently investigated how the SDDiP algorithm may be extended to
efficiently solve large-size instances of the SULS problem. Preliminary attempts at
solving the remanufacturing planning problem studied here with the SDDiP algorithm
can be found in Quezada, Gicquel, and Kedad-Sidhoum (2019a) and Quezada, Gicquel,
and Kedad-Sidhoum (2021b).

Both the SDDP and SDDiP algorithms rely on the key assumption that the sce-
nario tree satisfies the stage-wise independence property Shapiro (2011). When a de-
cision stage comprises several planning periods, this property can be defined as fol-
lows. Any two nodes m and m′ belonging to the last period of stage σ − 1 (i.e. such
that tm = tm

′
= max{t, t ∈ T σ−1}) see the same potential evolutions of the uncer-

tain parameters at stage σ. This means that the sets of nodes ∪t∈T σVt ∩ V(m) and
∪t∈T σVt∩V(m′) are defined by identical data and conditional probabilities. Thanks to
this property, the number of expected cost-to-go functions for which a piece-wise linear
under-approximation must be built is significantly reduced. Namely, the expected cost-
to-go functions relative to all nodes m ∈ Vt′(γ) are equal, i.e. we have Qm(·) ≡ Qγ(·),
for all m ∈ Vt′(γ). This means that we only have to build one expected cost-to-go
function per macro-stage, rather than one expected cost-to-go function per node in
Vt′(γ).

Moreover, we denote by Rγ = {1, . . . , Rγ} the set of independent realizations of
the stochastic process at macro-stage γ. Each realization X γ,ζ , ζ ∈ Rγ , corresponds
to a sub-tree describing a possible evolution of the uncertain parameters over periods
t(γ), . . . , t′(γ). We denote by ξγ,ζ the root node of X γ,ζ and by L(γ, ζ) the set of its leaf
nodes. Consequently, we can define a single sub-problem Pγ per macro-stage. Namely,
for each sub-problem Pη, η ∈ ℧, introduced in Subsection 2.4, we may identify the
realisation X γη,ζ corresponding to sub-tree Wη and describe Pη as Pγη

(Saη

,X γη,ζ).
In what follows, we explain how the SDDiP algorithm proposed by Zou, Ahmed,

and Sun (2019) may be extended to take into account a partial (rather than a full)
decomposition of the problem into stochastic sub-problems. We also introduce two
adaptations enabling us to reduce to some extent the computational effort related to
the resolution of these sub-problems: the use of continuous (rather than binary) state
variables and the generation of a single (rather than three) type of cuts.

3.1. Sub-problem reformulation

The proposed approximate SDDiP algorithm requires the introduction in the formula-
tion of each problem Pγ(Sm,X γ,ζ), γ ∈ G, of a set of auxiliary variables S̃ξγ,ζ . These
variables can be seen as local copies of the variables Sm representing in Pγ(Sm,X γ,ζ)
the leaving inventory at the parent node m. This results in the following reformulation

17

of sub-problem Pγ(Sm,X γ,ζ):

Qγ,ζ(Sm) = min
∑

n∈Xγ,ζ

ρnFn(Xn, Y n, Sn,Wn, Ln) +
∑

ℓ∈L(γ,ζ)

Qγ(Sℓ) (20)

Sξγ,ζ

0 = S̃ξγ,ζ

i + rξ
γ,ζ

−Xξγ,ζ

0 −Qξγ,ζ

0 (21)

Sξγ,ζ

i = S̃ξγ,ζ

i + δξ
γ,ζ

i ϖiX
ξγ,ζ

0 −ϖid
ξγ,ζ

+ϖiL
ξγ,ζ

−Qξγ,ζ

i ∀i ∈ Ir (22)

Sξγ,ζ

i = S̃ξγ,ζ

i +Xξγ,ζ

i−I −ϖid
ξγ,ζ

+ϖiL
ξγ,ζ

∀i ∈ Is (23)

Sξγ,ζ

2I+1 = S̃ξγ,ζ

2I+1 +Xn
I+1 − dξ

γ,ζ

+ Lξγ,ζ

(24)

S̃ξγ,ζ

i = Sm
i ∀i ∈ I (25)

Sn
0 = San

0 + rn −Xn
0 −Qn

0 ∀n ∈ X γ,ζ \ {ξγ,ζ} (26)

Sn
i = San

i + δni ϖiX
n
0 −ϖid

n +ϖiL
n −Qn

i ∀i ∈ Ir,∀n ∈ X γ,ζ \ {ξγ,ζ} (27)

Sn
i = San

i +Xn
i−I −ϖid

n +ϖiL
n ∀i ∈ Is,∀n ∈ X γ,ζ \ {ξγ,ζ} (28)

Sn
2I+1 = San

2I+1 +Xn
I+1 − dn + Ln ∀n ∈ X γ,ζ \ {ξγ,ζ} (29)

(Xn, Y n, Sn,Wn, Ln) ∈ Fn ∀n ∈ X γ,ζ \ {ξγ,ζ} (30)

In Formulation (20)-(30), Constraints (25) can be seen as copy constraints ensuring
that each auxiliary variable is equal to the original variable it stands for. Moreover,
note how the inventory balance equations at the root node ξγ,ζ of sub-tree X γ,ζ involve
the auxiliary variables S̃ξγ,ζ instead of the original variable Sm.

As explained above, the approximate SDDiP algorithm iteratively builds an under-
approximation of each expected cost-to-go function Qγ(·) through a set of linear cuts.

Let ψ̃γ
υ(·) be the approximation of the expected cost-to-go function Qγ(·) available

at iteration υ for macro-stage γ. We have:

ψ̃γ
υ(S

ℓ) = min{θγℓ : θγℓ ≥
∑

ζ′∈Rγ+1

(ν̃γ+1,ζ′

u +
∑
i∈I

π̃γ+1,ζ′

u,i Sℓ
i) ∀u ∈ {1, ..., υ−1}} (31)

where ν̃γ+1,ζ′

u and π̃γ+1,ζ′

u,i are the coefficients of the cut generated at iteration u < υ

by considering realization ζ ′ ∈ Rγ+1.
This leads to the following MILP sub-problem P̃γ

υ (Sm, ψ̃γ
υ ,X γ,ζ):

Q̃γ,ζ
υ (Sm) = min

∑
n∈X γ,ζ

ρnFn(Xn, Y n, Sn,Wn, Ln) +
∑

ℓ∈L(γ,ζ)

θγℓ (32)

subject to

θγℓ ≥
∑

ζ′∈Rγ+1

(ν̃γ+1,ζ′

u +
∑
i∈I

π̃γ+1,ζ′

u,i Sℓ
i) ∀u ∈ {1, ..., υ − 1}, ∀ℓ ∈ L(γ, ζ) (33)

Constraints (21)− (30)

3.2. Approximate SDDiP algorithm

The approximate SDDiP algorithm is an iterative algorithm. Each iteration υ involves
a sampling step, a forward step and a backward step.

18

In the sampling step, a sampling of K scenarios is carried out from the scenario
tree. Let ωk

υ be the set of nodes belonging to scenario k at iteration υ and Ωυ =

{ω1
υ, . . . , ω

k
υ , . . . , ω

K
υ } be the set of sampled scenarios. ζk,γυ is the index of the realization

inRγ containing the values at macro-stage γ of the uncertain parameters in the scenario
k sampled at iteration υ .

In the forward step, the algorithm proceeds stage-wise from macro-stage γ = 1 to Γ.
For each sampled scenario ωk

υ and each macro-stage γ, the problem P̃γ(Sm
υ , ψ̃

γ
υ ,X γ,ζk,γ

υ)
is solved. This problem uses the current approximation ψ̃γ

υ of the expected cost-to-go
function Qγ(·) and has an entering inventory Sm

υ computed at the node m = ωk
υ ∩

Vt′(γ−1) corresponding to the node in the sampled scenario ωk
υ belonging to the last

period of γ − 1. Before proceeding to the next macro-stage, we record Sℓ
υ for the node

ℓ = ωk
υ ∩ L(γ, ζ

k,γ
υ). At the end of this step, the average and standard deviation of the

total cost over all sampled scenarios are computed and these values are used to obtain
a statistical upper-bound of the problem.

In the backward step, the algorithm proceeds stage-wise from macro-stage γ = Γ to
macro-stage 1. For each scenario k = 1, . . . ,K, each node m ∈ ωk

v ∩ Vt
′(γ) and each

realization ζ ∈ Rγ+1, it solves a suitable relaxation of P̃γ+1(Sm
υ , ψ̃

γ+1
υ+1,X γ+1,ζ). Note

that this problem uses the updated approximation ψ̃γ+1
υ+1 of Qγ+1(·) which has just

been computed and has an entering inventory Sm
υ corresponding to the value recorded

for node m during the forward step. This relaxation is then used to generate new
cuts and obtain an updated approximation ψ̃γ

υ+1 of Qγ(·). Finally, the sub-problem
P̃1(0, ψ̃1

υ+1,X 1,1) solved at macro-stage γ = 1 provides a lower bound for the overall
problem. The algorithm stops when the upper and lower bounds are close enough,
according to some convergence criterion.

The cuts generated during the backward step correspond to the strengthened Ben-
ders’ cuts introduced by Zou, Ahmed, and Sun (2019). More precisely, we generate a
cut for each macro-stage γ = Γ− 1, . . . , 1 and each node m ∈ Ωυ ∩ Vt

′(γ) as follows.
For each realization ζ ′ ∈ Rγ+1,

• We solve the linear relaxation of P̃γ+1
υ (Sm

υ , ψ̃
γ+1
υ+1,X γ+1,ζ′

) to optimality. We get
the dual value of each copy constraint (25) and use them to set the value of vector
π̃γ+1,ζ′

υ .
• We then solve the Lagrangian relaxation of P̃γ+1

υ (Sm
υ , ψ̃

γ+1
υ+1,X γ+1,ζ′

) in which
each copy constraint S̃ξγ,ζ

i = Sm
v,i has been dualized with a Lagrangian multiplier

set to π̃γ+1,ζ′

υ,i . We record the optimal value of this Lagrangian relaxation and set
ν̃γ+1,ζ′

υ to this value.

This allows us to add to ψ̃γ
υ a cut of type (34) for each node m ∈ Ωυ ∩ Vt

′(γ) to
obtain the improved approximation ψ̃γ

υ+1 of Qγ+1(·):

θγ,m ≥
∑

ζ′∈Rγ+1

(
ν̃γ+1,ζ′

υ +
∑
i∈I

π̃γ+1,ζ′

υ,i Sm
i

)
(34)

As a synthesis, the main steps of the proposed approximate SDDiP algorithm are
summarized in Algorithm 1.

19

Algorithm 1: Approximate SDDiP algorithm
1 Initialize LB ← −∞, UB ← +∞, υ ← 1
2 while no stopping criterion is satisfied do
3 Sampling step
4 Randomly select K scenarios Ωυ = {ω1

υ, ..., ω
K
υ }

5 Forward step
6 for k = 1, ...,K do
7 for γ = 1, ...,Γ do
8 Solve P̃γ(Sm

υ , ψ̃
γ
υ ,X γ,ζk,γ

υ) for m = ωk
υ ∩ Vt′(γ−1)

9 Record Sℓ
υ for ℓ = ωk

υ ∩ L(γ, ζk,γυ)
10 end
11 costk ←

∑
n∈ωk

υ
Fn(Xn, Y n, Sn,Wn, Ln)

12 end
13 µ̂←

∑K
k=1 cost

k and σ̂2 ← 1
K−1

∑K
k=1(cost

k − µ̂)2

14 UB ← µ̂+ zα/2
σ̂√
K

15 Backward step
16 for γ = Γ− 1, ..., 1 do
17 for k = 1, ...,K do
18 Let m = ωk

υ ∩ Vt′(γ)

19 for ζ ∈ Rγ+1 do
20 Solve the linear relaxation of P̃γ+1(Sm

υ , ψ̃
γ+1
υ+1,X γ+1,ζ) and collect the

coefficients π̃γ+1,ζ′

υ of the strengthened Benders’ cut
21 Solve the Lagrangian relaxation of P̃γ+1(Sm

υ , ψ̃
γ+1
υ+1,X γ+1,ζ) and

collect the constant value ν̃γ+1,ζ′

υ of the strengthened Benders’ cut
22 end
23 Add the generated cut of type (34) to the current approximation of Qγ

24 end
25 end
26 LB ← Q̂1

υ+1(0)
27 v ← v + 1
28 end

3.3. Original vs approximate SDDiP algorithm

The approximate SDDiP algorithm presented here differs from the original one with
respect to three key features.

First, the original SDDiP algorithm is based on a full decomposition of the stochastic
problem into small deterministic sub-problems. In this decomposition, each macro-
stage γ corresponds to a single decision stage σ, there are thus Σ expected cost-to-go
functions to approximate. In contrast, we propose to use a partial decomposition into
medium-size stochastic sub-problems. This may positively impact the computational
efficiency of the SDDiP algorithm. Namely, the number of expected cost-to-go functions
to approximate is significantly reduced from the number of decision stages Σ to the
number of macro-stages Γ ≪ Σ. Furthermore, each sub-problem solved during the
forward step of a given iteration covers a larger portion of the planning horizon and has
a better visibility on the future input parameters. The obtained solution will thus tend
to be less myopic and of better quality. All this may accelerate the global convergence
of the algorithm. Yet, the size of the sub-problems to be solved at each iteration, and
accordingly the computational effort needed to perform one iteration of the algorithm,
will also increase. It is however possible to limit this increase to some extent: this will

20

be the purpose of the first algorithmic enhancement discussed in Subsection 4.1.
Second, Zou, Ahmed, and Sun (2019) show that the SDDiP algorithm has a finite

and optimal convergence when the state variables, i.e. the variables linking the deci-
sion stages to one another, are restricted to be binary. However, in Problem (1)-(13),
the state variables are the continuous inventory level variables Sn. In this case, Zou,
Ahmed, and Sun (2019) suggested to use a binary approximation of the state variables
but this would require the introduction of a large number of additional binary vari-
ables in the problem formulation. Our preliminary experiments showed that this leads
to prohibitive computation times. In the proposed approximate SDDiP, we thus keep
continuous state variables as done e.g. by Hjelmeland et al. (2019) and Quezada, Gic-
quel, and Kedad-Sidhoum (2019b). In this case, the finite convergence of the algorithm
is not theoretically guaranteed anymore. However, in practice, this approximation may
lead to better solutions thanks to the significant reduction of the computational effort
required at each iteration.

Third, we only generate strengthened Benders’ cuts to approximate the expected
cost-to-go functions whereas the original SDDiP algorithm relies on three types of
cuts: strengthened Benders’ cuts, integer optimality cuts and Lagrangian cuts. Integer
optimality cuts can only be generated when the state variables are binary. Moreover,
the generation of Lagrangian cuts, even if possible in our case, would imply to solve
a series of dual Lagrangian problems through a sub-gradient algorithm. The related
computational effort leads to a significant increase in the computation time needed to
carry out one iteration of the approximate SDDiP algorithm and negatively impacts its
performance. In contrast, strengthened Benders’ cuts can be generated with a limited
computational effort. Moreover, we investigate in Subsection 4.2 a way of improving
the quality of the solution obtained with Algorithm 1 by exploiting the existence of
alternative MILP formulations for each sub-problem P̃γ+1(Sm

υ , ψ̃
γ+1
υ+1,X γ+1,ζ) used in

the backward step.

4. Algorithmic Enhancements

This section presents two ways of improving the numerical efficiency, both in terms of
computation time and solution quality, of the approximate SDDiP algorithm discussed
above.

4.1. ε-optimal strengthened Benders’ cuts

The first enhancement aims at reducing the computational effort needed to generate
the strengthened Benders’ cuts in the backward step. This may be done by using a
sub-optimal solution (instead of an optimal solution) of the Lagrangian relaxation of
sub-problem P̃γ+1(Sm

υ , ψ̃
γ+1
υ+1,X γ+1,ζ) to define the value of each constant ν̃γ+1,ζ′

υ (see
line 21 of Algorithm 1). Note that Rahmaniani et al. (2020) recently used a similar
approach in the context of a Benders’ decomposition algorithm.

We thus propose to use ε-optimal strengthened Benders’ cuts, i.e. to generate
strengthened Benders’ cuts obtained by using a solution of the Lagrangian relaxation
of each sub-problem P̃γ+1(Sm

υ , ψ̃
γ+1
υ+1,X γ+1,ζ) which is at most ε units of the optimal

value. This can be done as follows for a given iteration υ, macro-stage γ and scenario
k.

Let m be the node such that m = Ωυ ∩ Vt
′(γ). For each realization ζ ′ ∈ Rγ+1,

21

• We solve the linear relaxation of P̃γ+1
υ (Sm

υ , ψ̃
γ+1
υ+1,X γ+1,ζ′

) to optimality. We
collect the dual value of each copy constraint (25) and use them to set the value
of vector π̃γ+1,ζ′

υ .
• We solve the Lagrangian relaxation of P̃γ+1

υ (Sm
υ , ψ̃

γ+1
υ+1,X γ+1,ζ′

) in which each
copy constraint S̃ξγ,ζ

i = Sm
i has been dualized with a Lagrangian multiplier set

to π̃γ+1,ζ′

υ,i , until the value of the best known feasible solution is at most ε units
from the best known lower bound. Let ν̃γ+1,ζ′

υ (ε) be the value of this solution.

νγ+1,ζ′

υ (ε) = ν̃γ+1,ζ′

υ (ε)(1−ε) is a lower bound of the optimal value of the Lagrangian
relaxation of sub-problem P̃γ+1

υ (Sm
υ , ψ̃

γ+1
υ+1,X γ+1,ζ′

), i.e., ν̃γ+1,ζ′

υ ≥ νγ+1,ζ′

υ (ε). The
following cut is thus a valid linear under-approximation of Qγ(Sm).

θγm ≥
∑

ζ′∈Rγ+1

(νγ+1,ζ′

υ (ε) +
∑
i∈I

π̃γ+1,ζ′

υ,i Sm
i) (35)

4.2. Generation of strengthened Benders’ cuts using alternative MILP
formulations

We now investigate a way of improving the quality of the solution provided by the
approximate SDDiP algorithm through the use of a wider set of strengthened Benders’
cuts. The main idea is to exploit the fact that there exist alternative MILP formulations
for the sub-problems P̃γ+1

υ (Sm
υ , ψ̃

γ+1
υ+1,X γ+1,ζ′

).
Namely, P̃γ+1

υ (Sm
υ , ψ̃

γ+1
υ+1,X γ+1,ζ′

) is a MILP whose initial formulation is given by
Equations (32)-(33), (21)-(30). This formulation may be strengthened by two sets of
valid inequalities: the (k, U) path inequalities presented by Quezada et al. (2020) or
the stronger (ℓ, k, U) path inequalities recently introduced by Quezada, Gicquel, and
Kedad-Sidhoum (2021a). The reader is referred to these two papers for more detail
about these valid inequalities and the related separation algorithms.

Now, recall that in Algorithm 1, the coefficients π̃γ+1,ζ′

υ of the strengthened Benders’
cut generated in the backward step are obtained by solving the linear relaxation of
P̃γ

υ (Sm
υ , ψ̃

γ
υ ,X γ,ζ) and collecting the dual values of the copy constraints S̃ξγ,ζ

= Sm.
A key observation here is that these dual values will vary according to the MILP
formulation used for P̃γ

υ (Sm
υ , ψ̃

γ
υ ,X γ,ζ). Hence, for a given value of the entering stock

Sm, by considering alternative MILP formulations for P̃γ
υ (Sm

υ , ψ̃
γ
υ ,X γ,ζ), it is possible

to generate different strengthened Benders’ cuts, each one corresponding to different
values of coefficients ν̃γ,ζυ and π̃γ,ζυ .

We point out here that, in general, there does not exist a dominance relationship
between these three different cuts. In other words, a cut generated using a stronger
formulation of P̃γ

υ (Sm
υ , ψ̃

γ
υ ,X γ,ζ) does not necessarily lead to a better approximation

of Qγ−1(·).
Similar to Quezada, Gicquel, and Kedad-Sidhoum (2022), we thus investigate an

extension of Algorithm 1 in which strengthened Benders’ cuts based on alternative
MILP formulations for P̃γ

υ (Sm
υ , ψ̃

γ
υ ,X γ,ζ) are sequentially generated. The proposed

strategy is based on three increasing levels of formulation improvement.

• At the initial level (λ = 0), the algorithm generates strengthened Benders’ cuts
based on the initial formulation of P̃γ

υ (Sm
υ , ψ̃

γ
υ ,X γ,ζ). It moves to the next level

if the lower bound has not improved after a predefined number of consecutive

22

iterations.
• At the first level (λ = 1), the algorithm generates strengthened Benders’ cuts

based on the initial formulation of P̃γ
υ (Sm

υ , ψ̃
γ
υ ,X γ,ζ) improved by (k, U) path

inequalities. More precisely, at each iteration of the approximate SDDiP algo-
rithm, we add (k, U) path inequalities to the formulation of each sub-problem
using a single run of a cutting plane generation procedure proposed in Quezada
et al. (2020) before solving its linear relaxation and collecting the dual values
of the copy constraints. The algorithm moves to the next level when the lower
bound has not improved after a predefined number of consecutive iterations.
• At the second level (λ = 2), the algorithm generates strengthened Benders’ cuts

based on the initial formulation strengthened by (ℓ, k, U) path inequalities. More
precisely, at each iteration of the approximate SDDiP algorithm, we add (ℓ, k, U)
path inequalities to the formulation of each sub-problem using a single run of a
heuristic cutting plane generation procedure proposed by Quezada, Gicquel, and
Kedad-Sidhoum (2021a) before solving the linear relaxation of the problem and
collecting the dual values of the copy constraints. Finally, the algorithm stops
if the lower bound has not improved after a predefined number of consecutive
iterations.

5. Computational experiments

In this section, we focus on assessing the performance of the proposed approximate
SDDiP algorithm by comparing it with the one of a stand-alone mathematical pro-
gramming solver using the extensive formulation (1)-(13) and with the one of the
original SDDiP algorithm introduced by Zou et al. Zou, Ahmed, and Sun (2019).

We first describe the scheme used to randomly generate instances of the stochastic
problem. We then present in more detail the experimental setup used for our numerical
experiments and discuss the corresponding computational results. Finally, we present
the outcome of some rolling horizon simulations carried out on small-size instances.
This enables us to draw some useful managerial insights regarding the impact of the
scenario tree structure on the actual production cost.

5.1. Instance generation

We randomly generated instances as follows.
The number of parts was set to I = 5. For the bill-of-materials coefficients ϖi, we set

ϖ0 = ϖ2I+1 = 1 and randomly generated the value of ϖi = ϖi+I , i = 1...I, following
a discrete uniform distribution over [1; 6].

Regarding the scenario tree structure, we used only balanced trees with Σ ∈
{4, 6, 8, 12} stages, a constant number b ∈ {1, 2, 3, 5} of time periods per stage and
a constant number R ∈ {3, 5, 10, 20} of equi-probable realizations per stage. We con-
sidered 8 possible combinations for these parameters, leading to scenario trees involving
between 1000 and 3.2 million scenarios. Costs were generated by using a production-
holding cost ratio g/h ∈ {2, 4}, a setup-holding cost ratio f/h ∈ {200, 400} and a
returns-demand quantity ratio r/d ∈ {1, 3, 5}. For each considered scenario tree struc-
ture and each possible combination of g/h, f/h and r/d, five instances were randomly
generated, resulting in a total of 480 instances.

More precisely, for each instance, we randomly generated the input data relative to

23

each node n ∈ V as follows.

• Demand dn was uniformly distributed in the interval [0, 100] and the returns
quantity rn was uniformly distributed in the interval [0.8(r/d)d̄, 1.2(r/d)d̄], where
d̄ = 1

V
∑
dn.

• The proportion of recoverable parts δni , i ∈ Ir, was uniformly distributed in the
interval [0.4, 0.6].
• The holding cost hn0 for the returned product i = 0 was fixed to 1. The holding

cost hni for each recoverable item i ∈ Ir was randomly generated following a
discrete uniform distribution over interval [2, 7]. Similarly, the holding cost hni for
each serviceable item i ∈ Ir was randomly generated following a discrete uniform
distribution over interval [7, 12]. Finally, in order to ensure non negative echelon
costs, we set the value of the inventory holding cost for the remanufactured
product, hn2I+1, to

∑I
i=1ϖih

n
I+i+ϵ, where ϵ follows a discrete uniform distribution

over interval [80, 100].
• The production cost gn was uniformly distributed in the interval
[0.8(g/h)h̄, 1.2(g/h)h̄], where h̄ = 1

V
∑
hn2I+1.

• The setup cost fn was uniformly distributed in the interval
[0.8(f/h)h̄, 1.2(f/h)h̄].
• Discarding costs for item i ∈ Ir ∪ {0} were set to qni = 0.8h̄ni , where h̄ni =

1
|V(n)|

∑
v∈V(n) h

v
i .

• The unit penalty cost for lost sales, ln, was fixed to 10000 per unit.
• The probability ρn is computed by assuming that all realizations at a given stage

of the scenario tree are equiprobable. Therefore, ρn = 1/Rσn−1.

5.2. Experimental setup

Each instance is first solved with the mathematical programming solver CPLEX 12.9
using the extensive MILP formulation (1)-(13). This solution method is denoted by
CPX in what follows.

Each instance is then solved using the original SDDiP algorithm proposed by Zou,
Ahmed, and Sun (2019). This algorithm is based on a full decomposition of the scenario
tree in which each macro-stage comprises a single stage (i.e. Γ = Σ). Moreover, it
uses the dynamic programming formulation (20)-(30) in which the continuous state
variables are replaced by a set of binary variables thanks to a binary approximation.
This one is carried out by computing an upper bound of the inventory level of item
i ∈ I as Smax

i = maxℓ∈VTϖid
1,ℓ. Each continuous variable Sn

i , i ∈ I,n ∈ V, is then
approximated using a set of B = ⌈log2(max

i∈I
Smax
i)⌉ binary variables.

Finally, each instance is solved using the proposed approximate SDDiP algorithm
based on the dynamic programming formulation (20)-(30). We will refer to this algo-
rithm as Algorithm appSDDiP. Several variants of this algorithm are considered in our
numerical experiments. They differ from one another with respect to two aspects:

• The partial decomposition of the scenario tree. We use partitions of the set of
decision stages S in which each macro-stage corresponds to a constant number
G ∈ {1, 2} of stages.
• The maximum level of formulation improvement considered when generating the

strengthened Benders’cuts. Thus, appSDDiP-λmax denotes a variant of the al-
gorithm in which the sub-problem formulation improvement levels 0,...,λmax are
sequentially used following the strategy described at the end of Subsection 4.2.

24

Note that in Algorithm appSDDiP, all cuts are generated as ε-optimal strengthened
Benders’ cuts, with ε set to 1%.

Moreover, for the SDDiP and appSDDiP algorithms, the number of scenarios sam-
pled at each iterationK is set to 1. We use the following stopping criteria: the algorithm
stops when the lower bound LB does not improve after 30 iterations or when 1000 iter-
ations have been carried out. Note that at this point, the upper bound UB is computed
considering only K = 1 scenario and is not statistically representative. Thus, after the
algorithm has stopped, we compute an updated statistical upper bound based on a
larger number of scenarios as follows. We randomly sample K ′ = 1000 scenarios and
compute a feasible solution for each of them using the final approximation of the ex-
pected cost-to-go functions to evaluate the objective function at each (macro)-stage.
We then construct a 95% confidence interval and report the right endpoint of this
interval as the statistical upper bound of the optimal value.

All the algorithms were implemented in C++ using the Concert Technology envi-
ronment. The MILP and LP sub-problems embedded into the SDDiP and appSDDiP
algorithms were solved using CPLEX 12.9. All computations have been carried out on
the computing infrastructure of the Laboratoire d’Informatique de Paris VI (LIP6),
which consists of a cluster of Intel Xeon Processors X5690. We set the cluster to use
two 3.46GHz cores and 24GB RAM to solve each instance. We impose a time limit of
7200 seconds to method CPX to solve each instance. For the SDDiP and extSDDiP
algorithms, we impose a time limit of 3600 seconds to compute a lower bound and 3600
seconds to compute the true or statistical upper bound.

5.3. Results

Tables 1-4 display the numerical results. Columns R and b describe the structure of
the scenario tree when needed. The corresponding number of nodes in the scenario
tree, |V|, and the number of scenarios, |VT |, are then provided. Column G indicates
the number of stages per macro-stage in the partial decomposition of the scenario tree
and Column Method indicates the algorithm used to solve each instance (see notation
at Subsection 5.2). Each line in the tables thus provides the average results of the
indicated resolution method over the 60 instances corresponding to the given scenario
tree structure but to various values of the r/d,f/h and g/h ratios. Column Gap displays
the gap between the lower bound (LB) and the upper bound (UB) found by each
method, i.e. Gap = |UB−LB|/UB. The average total computation time in seconds is
reported in Column Time(s), the average number of iterations in Column #ite and the
total number of valid inequalities generated to improve the sub-problem formulation
is provided in Column #VI.

Results from Table 1 first show that, when using the extensive formulation (1)-(13),
method CPX outperforms the other methods for the smallest considered instances,
i.e. the instances corresponding to Σ = 4, R = 10 and b = 1, providing an average
gap of 0.24% within the allotted time limit. When the number of realizations per
stage increases, i.e. for the instances corresponding to Σ = 4, R = 20 and b = 1, the
relative performance of method CPX deteriorates but the average gap remains below
2%. However, when the number of stages, and consequently the size of the scenario
tree, increases, the performance of method CPX strongly deteriorates. This can be seen
from the results displayed in Tables 2-4: method CPX namely provides an average gap
of 94% for the instances with Σ = 8, R = 5 and b = 2 and cannot find any feasible
solution for the largest instances.

25

We also observe from the results displayed in Tables 2-4 that method SDDiP is able
to provide feasible solutions for all the considered instances and that it consistently
provides average gaps smaller than the ones obtained with method CPX for the medium
to large-size instances. It thus clearly outperforms method CPX in terms of solution
quality for these instances. However, the remaining gaps are still significant as they
can be up to 55%.

Finally, these results show that the proposed appSDDiP algorithm significantly out-
performs methods CPX and SDDiP. Namely, the average gap over all considered in-
stances is significantly decreased from more than 50% with method CPX (resp. from
38.56% with method SDDiP) to 5.19% with method appSDDiP-2 and G = 2.

We now deepen our analysis and seek to independently assess the impact of each
proposed adaptation of the initial SDDiP algorithm.

We first note that a large part of the gap reduction is obtained by using continuous
(rather than binary) state variables. This can be seen by looking at the results obtained
with the appSDDiP-0 algorithm for G = 1. We observe that the gap is reduced from
38.58% with method SDDiP to 8.70% with method appSDDiP-0. This improvement
is mainly explained by the fact that the sub-problems expressed with continuous state
variables are much easier to solve than the ones expressed with binary state variables.
This allows the appSDDiP-0 algorithm to carry out more iterations than the SDDiP
algorithm within the allotted time and to build better approximations of the expected
cost-to-go functions.

We then study the impact of using a partial decomposition rather than a full de-
composition of the scenario tree by comparing the results obtained with appSDDiP-0
for G = 1 and G = 2. We thus observe that the average gap is reduced from 8.70%
with the appSDDiP-0 algorithm based a full decomposition (G = 1) to 5.67 % with
the appSDDiP-0 algorithm based on a partial decomposition involving G = 2 stages
per macro-stage. This shows the practical interest of using a partial decomposition of
the scenario tree.

Finally, we can evaluate the impact of using valid inequalities to strengthen the linear
relaxation of each sub-problem in order to generate additional strengthened Benders’
cuts. Results in Tables 1-4 suggest that only a slight improvement in the performance
of the extSDDiP algorithm is obtained by using improved MILP formulations for the
sub-problems to generate strengthened Benders’ cuts. The average gap is namely only
reduced from from 5.67% with method appSDDiP-0 to 5.32% with method appSDDiP-

Table 1. Performance of each method at solving instances with Σ = 4 and b = 1

R |V| |VT | G Method Gap Time (s) # ite # VI
10 1,110 1,000 1 SDDiP 23.55 4,306.65 50 0

appSDDiP-0 7.46 1,358.58 222 0
2 appSDDiP-0 2.00 205.15 87 0

appSDDiP-1 1.20 1,696.08 173 566
appSDDiP-2 1.18 1,956.50 192 580

4 CPX 0.24 6,513.00 0 0
20 8,420 8,000 1 SDDiP 22.80 4,202.29 29 0

appSDDiP-0 6.98 1,974.58 267 0
2 appSDDiP-0 4.89 1,336.35 112 0

appSDDiP-1 5.55 3,342.38 156 1,403
appSDDiP-2 4.70 3,463.68 165 1,518

4 CPX 1.57 7,201.81 0 0

26

Table 2. Performance of each method at solving instances with Σ = 6 and b = 1

R |V| |VT | G Method Gap Time (s) # ite # VI
10 111,110 100,000 1 SDDiP 30.37 5,641.81 31 0

appSDDiP-0 8.81 2,513.51 296 0
2 appSDDiP-0 5.88 3,507.57 224 0

appSDDiP-1 5.58 4,570.10 222 500
appSDDiP-2 5.61 4,579.56 214 462

4 CPX 68.27 7,217.53 0 0
20 3.36×106 3.2×106 1 SDDiP 35.67 5,608.54 19 0

appSDDiP-0 9.83 3,664.12 395 0
2 appSDDiP-0 8.45 4,599.68 131 0

appSDDiP-1 7.66 4,894.02 109 84
appSDDiP-2 7.59 4,814.77 111 84

4 CPX - - - -

1 and to 5.19% method appSDDiP-2, for a partial decomposition based on G = 2.

6. Managerial insights

Before concluding, we would like to discuss some managerial insights relative to the
practical implementation of an MSSiP approach such as the one studied in this paper.

6.1. Data acquisition

We first discuss the acquisition of the input data needed to build the scenario tree of
the MSSiP. These data are mostly the same as the ones needed to implement other
deterministic approaches as they consist in forecasts on the future demand, returns and
costs. However, whereas deterministic approaches only need the expected value of each
input parameter, the MSSiP approach requires probabilistic information about the
distribution of each input parameter. In simple forecasting methods (e.g. exponential
smoothing), this probabilistic information may be obtained by considering the forecast-
ing error term. This one is usually modeled as a random variable following a centered
normal distribution with a standard deviation quantifying the degree of accuracy of

Table 3. Performance of each method at solving instances with Σ = 8 and R = 5

b |V| |VT | G Method Gap Time (s) # ite # VI
2 195,311 78,125 1 SDDiP 47.76 7,151.78 24 0

appSDDiP-0 9.11 3,929.52 403 0
2 appSDDiP-0 6.31 3,501.71 220 0

appSDDiP-1 6.15 5,233.31 226 1,217
appSDDiP-2 5.64 4,965.82 252 1,529

4 CPX 93.48 7,236.10 0 0
5 488,279 78,125 1 SDDiP 41.74 7,222.84 14 0

appSDDiP-0 6.68 3,815.32 378 0
2 appSDDiP-0 4.11 5,884.19 140 0

appSDDiP-1 4.42 6,667.21 123 1,612
appSDDiP-2 4.73 6,335.19 146 2,657

4 CPX - - - -

27

Table 4. Performance of each method at solving instances with Σ = 12 and R = 3

b |V| |VT | G Method Gap Time (s) # ite # VI
1 265,719 177,147 1 SDDiP 51.04 7,207.72 38 0

appSDDiP-0 11.00 3,313.90 356 0
2 appSDDiP-0 7.69 2,567.41 402 0

appSDDiP-1 6.34 3,807.25 424 514
appSDDiP-2 6.29 3,595.10 505 685

4 CPX 91.33 7,243.70 0 0
3 797,159 177,147 1 SDDiP 55.60 7,230.25 15 0

appSDDiP-0 9.72 3,607.37 395 0
2 appSDDiP-0 6.01 3,893.92 221 0

appSDDiP-1 5.65 5,987.09 246 2,232
appSDDiP-2 5.75 5,380.00 272 2,851

4 CPX - - - -

the forecasts. More advanced forecasting methods (see e.g. ensemble learning meth-
ods) may directly provide probabilistic forecasts, i.e. forecasts assigning a probability
to every possible outcome rather than providing a single value.

However, this probabilistic description often relies on continuous probability distri-
butions. In order to build a scenario tree, we need to sample from this distribution.
Brandimarte (2006) provides a numerical comparison between various sampling meth-
ods and recommends to use Latin hypercube sampling. Anyway, whatever the sampling
method used to generate the scenario tree, there will clearly be a loss of information.
The impact of this loss of information may be mitigated, at least partially, by increasing
the number of children per node, i.e. the number of realizations per stage R. Namely,
the more children per node in the scenario tree, the least information is lost during
sampling and the better the quality of the obtained production plans. This however
leads to a sharp increase in the size of the scenario tree, which shows the need to
develop methods capable of handling large-size scenario trees.

6.2. Quality of the stochastic solution

The production planning model obtained with an MSSiP approach is more complex
that the ones we would obtain with a deterministic approach (using the expected
value of the random parameters as input data) or two-stage stochastic programming
approach (considering the randomness of the input parameters but assuming that
their actual value is revealed in one go once the first-stage decisions are made). Thus,
the question arises about whether the quality of the stochastic solution obtained by
an MSSiP approach is worth the additional modeling and computational effort. A
first answer is provided by the results of the rolling-horizon simulation presented in
Quezada, Gicquel, and Kedad-Sidhoum (2022). These results namely show that the
average increase in the actual production cost observed when using the deterministic
model (resp. the two-stage stochastic programming model) instead of the multi-stage
stochastic model is 45% (resp. 19%). This clearly shows the potential benefit of using
an MSSiP approach instead of simpler production planning models.

In what follows, we seek to gain some additional managerial insights on the impact
of the scenario tree structure (defined by the number of stages and the number of
realizations per stage) on the actual production cost observed when implementing the
first-stage decisions recommended by the proposed MSSiP model.

28

This assessment is achieved by carrying out a rolling horizon simulation similar to
the one used by Brandimarte (2006) and Quezada et al. (2020). This one consists
in simulating, within a rolling horizon framework, the application of the first-stage
decisions over a true scenario and in recording the corresponding cost.

In view of the related computational effort, we focus on instances involving small-
size scenario trees and use a rolling horizon of T sim = 12 time periods. The reference
case corresponds to scenario trees with Σ = 3 decision stages, b = 1 period per stage
and R = 2 realizations per stage. Let Cref be the total actual cost, over the T sim = 12
simulated periods, incurred by the application of the first-stage decisions over the true
scenario. Note that this cost differs from the objective function value of the MSSiP
model. We then seek to assess the impact of a change in the scenario tree structure on
this actual cost. To this aim, we first fix Σ to 3 and increase R to 3, 4 or 5. Second,
we set R to 2 and increase Σ to 4, 5 or 6. Let Cmod be the corresponding total actual
cost. We finally compute the relative difference RD = 100(Cmod − Cred)/Cred.

The instances were generated as in the previous subsection, apart from the disassem-
bly yield δ which was generated from two uniform distributions: [0.1,0.5] (poor-quality
returns) and [0.5,0.9] (good-quality returns). We randomly generated 400 true inde-
pendent scenarios for each combination of the ratios g/h ∈ {2, 4}, f/h ∈ {200, 400},
r/d ∈ {1, 3} and each level of returns quality, resulting in a total of 6400 true scenarios.
Table 5 reports the average value and standard deviation of RD obtained with each
modified scenario tree structure, each value of r/d and each level of returns quality.

The obtained results suggest the actual performance of the production plan provided
by the MSSiP model might improve significantly when the number of realizations per
stage R in the scenario tree increases. Namely, for Σ = 3, the actual production cost
is decreased on average by 5.44% when R increases from 2 to 5. Moreover, we note
that, for the instances with r/d = 3 and δ ∈ [0.1, 0.5], the cost decreases by more than
12% when R increases from 2 to 5. A detailed analysis shows that this cost reduction
mainly comes from a decrease in the lost sales costs. This might be explained by the
fact that with more realizations per stage in the scenario tree, we are able to more
accurately anticipate the impact on the stochastic input parameters of our (in)ability
at meeting the demand for the remanufactured products.

However, results from Table 5 also indicate that, in general, increasing the number of
stages in the scenario tree leads to an increase of the actual cost of the production plan.
This rather counter-intuitive result may be explained by the fact that the first-stage
solutions provided by the MSSiP model are too conservative and tend to overproduce
and/or overstock in order to gain protection against future realizations which will not
actually occur in the true scenario.

Table 5. Impact on the actual production cost of the scenario tree structure
(Σ, R) (3,3) (3,4) (3,5) (4,2) (5,2) (6,2)

r/d δ Ave. Std.Dev. Ave. Std.Dev. Ave. Std.Dev. Ave. Std.Dev. Ave. Std.Dev. Ave. Std.Dev.
1 [0.1,0.5] -1.33 3.45 -1.82 3.65 -2.05 3.42 0.99 4.24 2.52 4.50 4.74 5.39

[0.6,0.9] -3.70 6.66 -4.86 6.54 -5.64 6.62 0.10 7.28 2.55 8.45 3.19 7.84
3 [0.1,0.5] -6.58 21.45 -10.61 17.93 -12.09 16.93 -4.58 20.45 -4.62 22.78 -7.35 19.49

[0.6,0.9] -1.02 8.94 -1.76 10.60 -1.98 11.43 5.55 12.40 10.28 15.70 14.86 18.30
Average -3.15 12.41 -4.76 11.64 -5.44 11.62 0.52 13.18 2.68 15.56 3.86 16.22

29

7. Conclusion and perspectives

We studied production planning for a three-echelon remanufacturing system under
uncertain input data. We investigated a scenario-tree based MSSiP approach and de-
voted ourselves to solving instances involving large-size scenario trees. To this aim,
we proposed to adapt the extSDDiP algorithm investigated by Quezada, Gicquel, and
Kedad-Sidhoum (2022) for the much simpler SULS problem and discussed several ways
to overcome the numerical difficulties arising from the size of the sub-problems to be
solved in the backward step of this algorithm. Our computational experiments carried
out on large-size randomly generated instances suggested that the proposed algorithm
is capable of obtaining near-optimal solutions in practicable computation times and
outperforms both the mathematical programming solver CPLEX 12.9 using an exten-
sive MILP formulation and the initial SDDiP algorithm proposed in Zou, Ahmed, and
Sun (2019).

An interesting research direction could be to study whether the proposed algorithm
may be useful at solving a larger class of lot-sizing problems involving e.g. capacitated
resources, demand backlogging and/or non-zero setup times.

Acknowledgment

The authors would like to thank anonymous referees for their detailed reviews that
helped to improve an initial version of this paper. This research was partially supported
by Dicyt project 062217QV, Vicerrectoría de Investigación, Desarrollo e Innovación,
Universidad de Santiago de Chile.

Data availability statement

The data that support the findings of this study are openly available in GitHub at
https://github.com/FrancoQuezada/SDDiP_RLS_IJPR2022.git.

Disclosure statement

The authors report there are no competing interests to declare.

References

Attila, Öykü Naz, Agostinho Agra, Kerem Akartunalı, and Ashwin Arulselvan. 2021. “Robust
formulations for economic lot-sizing problem with remanufacturing.” European Journal of
Operational Research 288 (2): 496–510.

Brahimi, Nadjib, Nabil Absi, Stéphane Dauzère-Pérès, and Atle Nordli. 2017. “Single-item
dynamic lot-sizing problems: An updated survey.” European Journal of Operational Research
263 (3): 838–863.

Brandimarte, Paolo. 2006. “Multi-item capacitated lot-sizing with demand uncertainty.” Inter-
national Journal of Production Research 44 (15): 2997–3022.

Fang, Chang, Xinbao Liu, Panos M Pardalos, Jianyu Long, Jun Pei, and Chao Zuo. 2017.
“A stochastic production planning problem in hybrid manufacturing and remanufacturing
systems with resource capacity planning.” Journal of Global Optimization 68 (4): 851–878.

30

Frifita, Sana, Hasan Murat Afsar, and Faicel Hnaien. 2022. “A robust optimization approach
for disassembly assembly routing problem under uncertain yields.” Expert Systems with
Applications 117304.

Guide, V. Daniel R. 2000. “Production planning and control for remanufacturing: industry
practice and research needs.” Journal of Operations Management 18 (4): 467–483.

Guide, V Daniel R, Vaidyanathan Jayaraman, and Rajesh Srivastava. 1999. “Production plan-
ning and control for remanufacturing: a state-of-the-art survey.” Robotics and Computer-
Integrated Manufacturing 15 (3): 221–230.

Hatcher, Gillian D, Winifred L Ijomah, and James FC Windmill. 2013. “Design for remanu-
facturing in China: a case study of electrical and electronic equipment.” Journal of Reman-
ufacturing 3 (1): 1–11.

He, Junkai, Feng Chu, Alexandre Dolgui, Feifeng Zheng, and Ming Liu. 2022. “Integrated
stochastic disassembly line balancing and planning problem with machine specificity.” In-
ternational Journal of Production Research 60 (5): 1688–1708.

Hilger, Timo, Florian Sahling, and Horst Tempelmeier. 2016. “Capacitated dynamic production
and remanufacturing planning under demand and return uncertainty.” OR Spectrum 38 (4):
849–876.

Hjelmeland, Martin N., Jikai Zou, Arild Helseth, and Shabbir Ahmed. 2019. “Nonconvex
Medium-Term Hydropower Scheduling by Stochastic Dual Dynamic Integer Programming.”
IEEE Transactions on Sustainable Energy 10 (1): 481–490.

Kazemi, Nima, Nikunja Mohan Modak, and Kannan Govindan. 2019. “A review of reverse
logistics and closed loop supply chain management studies published in IJPR: a bibliometric
and content analysis.” International Journal of Production Research 57 (15-16): 4937–4960.

Kerr, Wendy, and Chris Ryan. 2001. “Eco-efficiency gains from remanufacturing: A case study
of photocopier remanufacturing at Fuji Xerox Australia.” Journal of Cleaner Production 9
(1): 75–81.

Kilic, Onur A. 2013. “A MIP-Based Heuristic for the Stochastic Economic Lot Sizing Problem
with Remanufacturing.” IFAC Proceedings Volumes 46 (9): 742–747.

Kilic, Onur A, Huseyin Tunc, and S Armagan Tarim. 2018. “Heuristic policies for the stochastic
economic lot sizing problem with remanufacturing under service level constraints.” European
Journal of Operational Research 267 (3): 1102–1109.

Krystofik, Mark, Allen Luccitti, Kyle Parnell, and Michael Thurston. 2018. “Adaptive reman-
ufacturing for multiple lifecycles: A case study in office furniture.” Resources, Conservation
and Recycling 135: 14–23.

Li, Congbo, Fei Liu, Huajun Cao, and Qiulian Wang. 2009. “A stochastic dynamic programming
based model for uncertain production planning of re-manufacturing system.” International
Journal of Production Research 47 (13): 3657–3668.

Lund, Robert T. 1984. Remanufacturing: the experience of the United States and implications
for developing countries. Vol. 31. World Bank.

Macedo, Pedro Belluco, Douglas Alem, Maristela Santos, Muris Lage Junior, and Alfredo
Moreno. 2016. “Hybrid manufacturing and remanufacturing lot-sizing problem with stochas-
tic demand, return, and setup costs.” The International Journal of Advanced Manufacturing
Technology 82 (5-8): 1241–1257.

Naeem, Mohd, Dean J Dias, Rupak Tibrewal, Pei-Chann Chang, Manoj Kumar Tiwari, et al.
2013. “Production planning optimization for manufacturing and remanufacturing system in
stochastic environment.” Journal of Intelligent Manufacturing 24 (4): 717–728.

Pereira, Mario VF, and Leontina MVG Pinto. 1991. “Multi-stage stochastic optimization ap-
plied to energy planning.” Mathematical Programming 52 (1-3): 359–375.

Pochet, Yves, and Laurence A Wolsey. 2006. Production planning by mixed integer program-
ming. Vol. 149. Springer.

Quezada, Franco, Céline Gicquel, and Safia Kedad-Sidhoum. 2019a. “Stochastic Dual Dynamic
integer Programming for a multi-echelon lot-sizing problem with remanufacturing and lost
sales.” In 2019 6th International Conference on Control, Decision and Information Tech-
nologies (CoDIT), 1254–1259.

31

Quezada, Franco, Céline Gicquel, and Safia Kedad-Sidhoum. 2019b. “A Stochastic Dual Dy-
namic Integer Programming for the Uncapacitated Lot-Sizing Problem with Uncertain De-
mand and Costs.” In Proceedings of the International Conference on Automated Planning
and Scheduling, Vol. 29, 353–361.

Quezada, Franco, Céline Gicquel, and Safia Kedad-Sidhoum. 2021a. “New Valid Inequalities
for a Multi-echelon Multi-item Lot-Sizing Problem with Returns and Lost Sales.” In Com-
putational Logistics, edited by Martijn Mes, Eduardo Lalla-Ruiz, and Stefan Voß, Cham,
192–207. Springer International Publishing.

Quezada, Franco, Céline Gicquel, and Safia Kedad-Sidhoum. 2021b. “A partial nested decom-
position approach for remanufacturing planning under uncertainty.” In IFIP International
Conference on Advances in Production Management Systems, 663–672. Springer.

Quezada, Franco, Céline Gicquel, and Safia Kedad-Sidhoum. 2022. “Combining polyhedral
approaches and stochastic dual dynamic integer programming for solving the uncapacitated
lot-sizing problem under uncertainty.” INFORMS Journal on Computing 34 (2): 1024–1041.

Quezada, Franco, Céline Gicquel, Safia Kedad-Sidhoum, and Dong Quan Vu. 2020. “A multi-
stage stochastic integer programming approach for a multi-echelon lot-sizing problem with
returns and lost sales.” Computers & Operations Research 116: 104865.

Rahmaniani, Ragheb, Shabbir Ahmed, Teodor Gabriel Crainic, Michel Gendreau, and Walter
Rei. 2020. “The Benders dual decomposition method.” Operations Research 68 (3): 878–895.

Rathore, Pragam, Srinivas Kota, and Amaresh Chakrabarti. 2011. “Sustainability through
remanufacturing in India: a case study on mobile handsets.” Journal of Cleaner Production
19 (15): 1709–1722.

Saavedra, Yovana MB, Ana PB Barquet, Henrique Rozenfeld, Fernando A Forcellini, and
Aldo R Ometto. 2013. “Remanufacturing in Brazil: case studies on the automotive sector.”
Journal of Cleaner Production 53: 267–276.

Shapiro, Alexander. 2011. “Analysis of stochastic dual dynamic programming method.” Euro-
pean Journal of Operational Research 209 (1): 63–72.

Slama, Ilhem, Oussama Ben-Ammar, Simon Thevenin, Alexandre Dolgui, and Faouzi Mas-
moudi. 2022. “Stochastic program for disassembly lot-sizing under uncertain component
refurbishing lead times.” European Journal of Operational Research .

Suzanne, Elodie, Nabil Absi, and Valeria Borodin. 2020. “Towards circular economy in pro-
duction planning: Challenges and opportunities.” European Journal of Operational Research
287 (1): 168–190.

Thevenin, Simon, Yossiri Adulyasak, and Jean-François Cordeau. 2020. “Stochastic Dual Dy-
namic Programming for Multi-Echelon Lot-sizing with Component Substitution.” Cahier
du GERAD 1–25.

Wang, Hsiao-Fan, and Yen-Shan Huang. 2013. “A two-stage robust programming approach to
demand-driven disassembly planning for a closed-loop supply chain system.” International
Journal of Production Research 51 (8): 2414–2432.

Xiang, Wang, and Chen Ming. 2011. “Implementing extended producer responsibility: vehicle
remanufacturing in China.” Journal of Cleaner Production 19 (6-7): 680–686.

Zou, Jikai, Shabbir Ahmed, and Xu Andy Sun. 2019. “Stochastic dual dynamic integer pro-
gramming.” Mathematical Programming 175 (1): 461–502.

32

Appendix: Notation

Input parameters

I Number of part types composing a returned/remanufactured product.
ϖi Number of parts i embedded in a returned/remanufactured product.
I Set of all items involved in the remanufacturing production system.
Ir Set of recoverable parts provided by the disassembly process.
Is Set of serviceable parts provided by the refurbishing processes.
J Set of production processes.
T Number of time periods in the planning horizon.
T Set of time periods, i.e, T = {1, . . . , T}.
Σ Number of decision stages in the stochastic process.
S Set of stages of the stochastic process, i.e., S = {1, . . . ,Σ}.
T σ Set of time periods belonging to stage σ ∈ S.
V Set of nodes in a scenario tree.
Vt Set of nodes belonging to time period t ∈ T .
Vσ Set of nodes belonging to stage σ ∈ S.
V(n) Set of nodes belonging to the sub-tree of V rooted in node n.
ρn Probability associated with the state represented by node n.
tn Time period t ∈ T of node n ∈ V.
σn Stage σ ∈ S of node n ∈ V.
an Predecessor of a node n in the scenario tree.
C(n) Set of immediate children of node n ∈ V.
dn Customers’ demand at node n ∈ V.
rn Quantity of used products (returns) collected at node n ∈ V.
δni Proportion of recoverable parts i ∈ Ir obtained by disassembling one unit of returned

product at node n ∈ V.
fnp Setup cost for process p ∈ J at node n ∈ V.
hni Inventory holding cost for item i ∈ I at node n ∈ V.
qni Unit cost for discarding item i ∈ Ir ∪ {0} at node n ∈ V.
gn Cost for discarding the unrecoverable parts obtained while disassembling one unit of

returned product at node n ∈ V.
ln Unit lost-sales penalty cost at node n ∈ V.
Fn(·) Cost function at node n ∈ V.
Fn Subset of Constraints (8)-(13) related to node n.

Decision Variables

ESn
i Echelon stock of item i ∈ I \ {0} at node n ∈ V.

PSn
0 Physical inventory level of used product i = 0 at node n ∈ V.

Sn Inventory level vector at node n ∈ V: Sn = (PSn
0 , ES

n
1 , ES

n
2 , . . . , ES

n
2I+1).

Ln Lost sales at node n ∈ V.
Wn

i Quantity of item i ∈ Ir ∪ {0} discarded at node n ∈ V.
Xn

p Quantity to be produced by process p ∈ J at node n ∈ V.
Y n
p Binary decision variable equal to 1 if there is setup on process p ∈ J at node n ∈ V,

to 0 otherwise.

33

Approximate SDDiP algorithm

Γ Number of macro-stages.
G Set of macro-stages, i.e. partition of the set of decision stages S.
S(γ) Set of consecutive stages belonging to macro-stage γ ∈ G.
t(γ) First time period belonging to macro-stage γ.
t′(γ) Last time period belonging to macro-stage γ.
η A node belonging to the first time period t(γ) of macro-stage γ.
Wη Set of nodes of the sub-tree V(η) belonging to macro-stage γ, i.e., Wη =

∪t=t(γ),...,t′(γ)Vt ∩ V(η).
L(η) Set of leaf nodes of sub-tree Wη, i.e, L(η) =Wη ∩ Vt′(γ).
℧ Set of sub-tree root nodes induced by G, i.e, ℧ = ∪γ∈GVt(γ).
Pη(·) Sub-problem defined by the constraint and cost parameters at node η ∈ ℧.
Qη(·) Optimal objective value of Problem Pη(·).
Qℓ(·) Expected cost-to-go function at node ℓ ∈ L(η): Qℓ(·) =

∑
m∈C(ℓ)Q

m(·).
Qγ(·) Expected cost-to-go function at macro-stage γ ∈ G.
F γ Number independent realizations at macro-stage γ.
Rγ Set of independent realizations at macro-stage γ.
X γ,ζ Sub-tree describing realization ζ ∈ Rγ .
ξγ,ζ Root node of sub-tree X γ,ζ .
L(γ, ζ) Leaf nodes of sub-tree X γ,ζ .
Pγ(·, ·) Sub-problem defined at macro-stage γ.
S̃ξγ,ζ

i Auxiliary decision variable corresponding to a local copy in Problem Pγ(·, ·) of the
inventory level variable Sm

i .
ψ̃γ
υ(·) Approximation of the expected cost-to-go function Qγ(·) available at iteration υ of

the approximate SDDiP algorithm for macro-stage γ.
θγ,ℓ Decision variable taking the minimum value among a set of available linear support-

ing hyper-planes.
π̃γ+1,ζ′

υ,i Coefficient of inventory variable Sℓ
i in the cut generated at iteration υ of the approx-

imate SDDiP algorithm considering realization ζ ′ ∈ Rγ+1.
ν̃γ+1,ζ′

υ Constant coefficient in the cut generated at iteration υ of the approximate SDDiP
algorithm considering realization ζ ′ ∈ Rγ+1.

νγ+1,ζ′

υ (ε) Constant coefficient in the ε-optimal strengthened Benders’ cut generated at iteration
υ of the approximate SDDiP algorithm considering realization ζ ′ ∈ Rγ+1.

P̃γ
υ (·, ·, ·) Approximate MILP sub-problem related to macro-stage γ solved at iteration υ of

the approximate SDDiP algorithm.
K Number of sampled scenarios in the forward step.
Ωυ Set of sampled scenarios in the forward step of the SDDiP algorithm at iteration υ.
ωw
υ A sampled scenario in Ωυ at iteration υ.

34

List of figures

Figure 1 Caption: Illustration of studied remanufacturing system.
Figure 1 Alt Text: Diagram describing the flow of returned products inside the
remanufacturing production system.
Figure 1 Long Description: Diagram describing the flow of returned products
inside the remanufacturing production system; each stock level is represented by
a triangle and each process is represented by a rectangle. The flow of returned
products through the system is represented by arrows that connect stock levels
and processes.

Figure 2 Caption: Scenario tree structure.
Figure 2 Alt Text: Set of circles connected by straight lines.
Figure 2 Long Description: Set of circles connected by straight lines. Each circle
represents a possible realization of the stochastic parameters at each time period
and each line connects the possibles realizations from one period to the next. A
Notation example on a small scenario tree is included in the figure.

35

