Thanh Huan Vo 
  
Valérie Garès 
  
Li-Chun Zhang 
  
André Happe 
  
Emmanuel Oger 
  
Stephane Paquelet 
  
Guillaume Chauvet 
  
Stéphane Paquelet 
  
  
  
  
  
  
  
  
  
Cox regression with linked data

Keywords: adjusted estimating equation, linkage error, record linkage, secondary analysis, variance estimation

à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

Record linkage, also known as data matching, is a process of combining data from different sources that refer to the same individuals or entities. Nowadays, data are collected everywhere by different sectors, and the ability of combining information from several databases can lead to novel knowledge for analysts. For example, record linkage is widely used in epidemiology and medical studies to enrich data on clinical performance and other healthrelated information (e.g. [START_REF] Harron | Linking data for mothers and babies in de-identified electronic health data[END_REF][START_REF] Shivani Padmanabhan | Approach to record linkage of primary care data from clinical practice research datalink to other health-related patient data: overview and implications[END_REF]. In national censuses, population data files obtained at different times can be linked to create longitudinal data sets [START_REF] Zhang | Data survey: Developing the statistical longitudinal census dataset and identifying its potential uses[END_REF]. Record linkage may also be applied early in a survey to link the sampling frame and administrative data (e.g. [START_REF] Winkler | An application of the fellegi-sunter model of record linkage to the 1990 u.s. decennial census[END_REF]. The linked data allows for statistical analysis (e.g., Cox regression) which would not be possible with data collected solely by means of the survey.

The record linkage process is straightforward if unique identifiers (e.g. Social Security Number) are available and free of error in both databases. However, this information is often not available, or sometimes cannot be used due to ethical reasons. In such cases, record linkage methods may only use partial identifying information shared between databases, such as name, address, and gender. The variables used for comparison are called matching variables. Over the last decades, several methods have been developed to link data efficiently [START_REF] Herzog | Data Quality and Record Linkage Techniques[END_REF][START_REF] Peter | Data Matching: Concepts and Techniques for Record Linkage, Entity Resolution, and Duplicate Detection[END_REF], such as the frequentist approach [START_REF] Fellegi | A theory for record linkage[END_REF][START_REF] Winkler | Using the em algorithm for weight computation in the fellegi-sunter model of record linkage[END_REF][START_REF] Vo | Extending the Fellegi-Sunter record linkage model for mixed-type data with application to the French national health data system[END_REF] and the Bayesian approach [START_REF] Tancredi | A hierarchical bayesian approach to matching and size population problems[END_REF][START_REF] Sadinle | Bayesian estimation of bipartite matchings for record linkage[END_REF]. However, because the matching variables are not unique and are likely to contain inaccuracies, linkage errors are unavoidable. The two kinds of record linkage errors are false links (false positives, i.e. a non-matched pair predicted as a link), and missed links (false negatives, i.e. a matched pair failed to be predicted as a link). Ignoring these errors may cause substantial bias in the analysis model [START_REF] Neter | The effect of mismatching on the measurement of response errors[END_REF], causing misleading inference. It is therefore important to account for linkage errors in statistical analysis.

In published literature, two positions are usually considered to account for linkage errors in statistical analysis. Under the primary analysis framework, the data analyst is supposed to be granted access to the full linkage process, including knowledge of matching data. From this perspective, [START_REF] Scheuren | Regression analysis of data files that are computer matched[END_REF] made use of the two highest matching weights of each record pair to reduce the bias of ordinary least square estimators under a linear regression model. However, the proposed estimators are not unbiased in full generality. [START_REF] Lahiri | Regression analysis with linked data[END_REF] discussed this problem and proposed unbiased estimators in the same context, using the posterior matching probabilities obtained from the Fellegi-Sunter record linkage model. [START_REF] Hof | Methods for analyzing data from probabilistic linkage strategies based on partially identifying variables[END_REF] extended the method by [START_REF] Lahiri | Regression analysis with linked data[END_REF] for multiple links, and also proposed alternative estimators based on weighted least square methods, both for linear and logistic regression models.

Recently, [START_REF] Han | Statistical analysis with linked data[END_REF] adapted the approach by [START_REF] Lahiri | Regression analysis with linked data[END_REF] to provide a system of estimating equations, which may lead to unbiased estimators under a generalized linear model.

In some applications, the analysis step is separated from the record linkage, e.g. when the matching variables contain confidential information. This is the secondary analysis framework, in which the data analyst is only provided access to the final linked data, whereas the (unknown) record linkage process has been performed by a third-party operator (see for example [START_REF] Zhang | On secondary analysis of datasets that cannot be linked without errors[END_REF]. Starting from this perspective, [START_REF] Chambers | Regression analysis of probability-linked data[END_REF] proposed the exchangeable linkage error (ELE) model, and bias-corrected estimating equations for both linear and logistic regression modeling. Under the ELE model, it is assumed that linked records may be split into distinct blocks inside which the probability of correct linkage and the probability of incorrect linkage are constant. Following this work, Kim and Chambers (2012a,b); Chambers and Kim (2015); Chambers and Diniz da Silva (2020) developed methods for secondary analysis of linked data. Recently, [START_REF] Zhang | Linkage-data linear regression[END_REF] proposed a pseudo ordinary least square method for secondary linkage-data linear regression analysis, which can accommodate heterogeneous linkage errors and incomplete match space problems.

Although the Cox proportional hazard model [START_REF] Cox | Regression models and life-tables[END_REF] is of routine use for survival analysis, comparatively very few papers have focused on accounting for record linkage errors in this context. [START_REF] Baldi | The impact of record inkage bias in the cox model[END_REF] performed a simulation study emphasizing the impact of incomplete record linkage errors on the parameter estimation of the Cox model, but did not propose any solution to obtain unbiased estimators for the model parameters. [START_REF] Michel | A probabilistic record linkage model for survival data[END_REF] proposed a joint modeling for survival analysis and probabilistic record linkage. However, this analysis model is developed under a primary analysis viewpoint, while in many applications, a secondary analysis is more likely. In this work, we reason from the secondary analysis position. We propose a model to account for record linkage errors, and an estimation method to correct for the bias caused by false link errors in the Cox regression model.

The article is organised as follows. In Section 2, we propose a new estimating equation, which leads to an approximately unbiased parameters estimation of the Cox model with linked data. A variance estimator is also proposed. In Section 3, we evaluate the proposed estimator and the associated variance estimator through simulation studies. In Section 4, an application on a real dataset is presented. Finally, possible further research is discussed in Section 5.

Cox regression analysis with linked data

Cox regression model

The Cox proportional hazard model [START_REF] Cox | Regression models and life-tables[END_REF] is the most popular method to assess the effect of covariates X on a survival time. This is therefore one of the most important models in medical research. Suppose that a random sample of n units is available. For each unit i = 1, . . . , n, we let T i be a non-negative random variable, which denotes the duration between a time origin and the time of occurrence of some event of interest. We suppose that T i is right censored, which means that the event is observed only if it occurs before censoring time C i . For units i = 1, . . . , n, we therefore observe T i = min( T i , C i ). We let

δ i = 1 { T i ≤C i}
denote the variable indicating whether the duration time is observed prior to censoring. The vector of covariates is denoted as X i = (X 1 i , . . . , X p i ) T . In this section, we first suppose that X i is observed for any unit in the sample.

According to the Cox model, the hazard function of an event at time t is given by

λ(t|X i ) = λ 0 (t) exp X T i β 0 , (1) 
where β 0 = (β 01 , . . . , β 0p ) T is a p-vector of unknown parameters and λ 0 (t) is a common baseline hazard function. Assuming that the survival times are observed on a finite interval, and that C is independent of T conditionally on X, a consistent estimator β of β 0 may be obtained by solving the estimating equation:

H 0 (β) ≡ 1 n n i=1 δ i X i - n j=1 Y j (T i ) exp X T j β X j n j=1 Y j (T i ) exp X T j β = 0, (2) 
where Y j (t) = 1 (T i ≥t) is an at-risk indicator (see for example [START_REF] Andersen | Cox's regression model for counting processes: A large sample study[END_REF]. We call (2) the theoretical estimating equation. This is also the maximum partial likelihood (mpl) estimation. Under some mild assumptions, a consistent estimator of the covariance matrix of β is given by

Vmpl ( β) = -n∇H 0 ( β) -1 , (3) 
see [START_REF] Andersen | Cox's regression model for counting processes: A large sample study[END_REF].

Linkage error model

Suppose that we have a dataset A of n A time-to-event data. If the covariates X i were known for any unit i ∈ A, the parameter of the Cox model would be estimated by solving the theoretical estimating equation (2). However, if the covariates are not known in database A, equation (2) may not be solved in practice.

In order to obtain the needed covariates, a linkage is performed with a dataset B of size n B ≥ n A , containing in particular the auxiliary variables X i . For any unit i in A, we note Z i for the vector of auxiliary values resulting from the linkage process. Reasoning from the secondary analysis perspective, we do not have access to the matching variables and do not know the actual linkage process.

We assume that the linkage error is non-informative of the regression model, i.e. may depend on the errors in the matching process, but not on the model covariates nor on the survival time (e.g. [START_REF] Chambers | Domain estimation under informative linkage[END_REF]. This is the key assumption of most secondary analysis approaches in the literature, for which [START_REF] Zhang | Linkage-data linear regression[END_REF] have proposed a diagnostic test. Adopting the modelling approach in Copas and Hilton (1990), we suppose that both databases are partitioned into blocks A v and B v , v = 1, . . . , V , and that the record linkage is performed independently in these blocks. Also, we suppose that for any entity i ∈ A v , we have:

Z i =    X i with probability α v , X (j) with probability 1 -α v , (4) 
where (j) stands for some unit randomly selected in database B v . In other words, it is supposed that for any i ∈ A v , the correct entity is linked to i with probability α v , otherwise the unit j linked to i is randomly selected in B v . We suppose that the linkage is performed independently for any unit i ∈ A v , conditionally on the X j 's for j ∈ B v .

It should be noted that we implicitly assume that A is a subset from B, and that all entities in A can therefore have some matching records in B. Also, we assume that there is at most one link for each record of both databases. In practice, there will often be some entities of A which remain unlinked after the linkage process. This may be due to errors in the matching variables, or to the fact they are not sufficiently discriminant for identifying links. Such incomplete record linkage can be problematic for further analysis if the missed links are not at random [START_REF] Baldi | The impact of record inkage bias in the cox model[END_REF]. For more discussion on this incomplete matching space problem, see Kim and Chambers (2012a); [START_REF] Goldstein | The analysis of record-linked data using multiple imputation with data value priors[END_REF]; [START_REF] Zhang | Linkage-data linear regression[END_REF]. This problem is out of the scope of our work. We therefore assume that the linkage is complete, or alternatively that any missing links are independent on the time of event and model covariates.

Adjusted estimating equation

By naively treating the linked covariates Z i as if they were the true covariates X i for the units i ∈ A, an estimator of β 0 may be obtained by solving the following equation:

H naive (β) ≡ 1 n A V v=1 i∈Av δ i Z i - V v=1 j∈Av Y j (T i ) exp(Z ⊤ j β)Z j V v=1 j∈Av Y j (T i ) exp(Z ⊤ j β) = 0. (5) 
We call (5) the naive estimating equation. Since some units are incorrectly linked, it may lead to biased estimates, see the simulation results in Section 3.

We propose a bias-corrected estimating equation, accounting for the fact that from the hit-miss model ( 4), the covariates may be incorrectly linked. We first introduce some notations. Let us define

g(β, X i ) = exp(X ⊤ i β) and h(β, X i ) = exp(X ⊤ i β)X i .
Also, let XBv , ḡBv (β) and hBv (β) denote the means of X i , g(β, X i ) and h(β, X i ) over B v , respectively. The linkage-error adjusted estimating equation (AEE) is given by

H(β) ≡ 1 n A V v=1 i∈Av δ i X * i (α v ) - V v=1 j∈Av Y j (T i )h * j (α v , β) V v=1 j∈Av Y j (T i )g * j (α v , β) = 0 (6)
where, for any i ∈ A v ,

X * i (α v ) = α -1 v Z i -(α -1 v -1) XBv , g * j (α v , β) = α -1 v g(Z j , β) -(α -1 v -1)ḡ Bv (β), (7) 
h * j (α v , β) = α -1 v h(Z j , β) -(α -1 v -1) hBv (β).
We prove in Appendix A that H(β) is an (approximately) conditionally unbiased estimator for the function H 0 (β) involved in the theoretical estimating equation. Solving the proposed AEE therefore leads to a consistent estimator of β, see the simulation results in Section 3.

Since there is no closed-form solution for the estimating equations considered above, an iterative method like the Newton-Raphson algorithm is commonly used in practice.

Also, the probabilities α v may be (somewhat arbitrarily) specified by the record linkage practitioner, or estimated from a validation sample [START_REF] Chambers | Regression analysis of probability-linked data[END_REF][START_REF] Zhang | Linkage-data linear regression[END_REF] if their true values are unknown.

Variance estimator

In this section, we discuss variance estimation for the estimator of the parameter β 0 obtained by solving the AEE given in (6). We first note that several sources of variance need to be accounted for: a) the (usual) variability associated to solving a sample-based estimating equation, b) the variability associated to the linkage process, and c) the variability associated to the estimation of the probabilities α v , v = 1, . . . , V . Using the variance estimator given in (3) fails to account for all these sources of variability, and therefore leads to an underestimation of the variance, see the simulation results in Section 3.

We propose a sandwich-like variance estimator, which reads as follows:

VAEE ( β) ≡ {∇ H( β)} -1 × V{ H(β 0 )} × {∇ H( β)} -1 , (8) 
with

V{ H(β 0 )} = V1 { H(β 0 )} + V2 { H(β 0 )}. (9) 
The first component V1 { H(β 0 )} in ( 9) accounts for the variability in (c). Under the assumption that the validation samples S v used for such estimation are selected in the datasets A v through simple random sampling without replacement, this variance estimator is

V1 { H(β 0 )} = V v=1 H2,v (α v , β){ H2,v (α v , β)} ⊤ × 1 n Sv - 1 n Av n Sv n Sv -1 1 -αv α3 v ,
where n Sv is the sample size of the validation set S v , and

H2,q (α v , β) = 1 n A i∈Av δ i {(Z i -XBv ) - j∈Av Y j (T i ) h(β, Z j ) -hBv (β) -R * i (α v , β) {g(β, Z j ) -ḡBv (β)} j∈Av Y j (T i )g * j (α v , β) }.
with

R * i (α v , β) = j∈Av Y j (T i )h * j (α v , β) j∈Av Y j (T i )g * j (α v , β)
.

The second component V2 { H(β 0 )} in (9) accounts for both the variability in (a) and (b).

We have

V2 { H(β 0 )} = s 2 H ( β) n A
where

s 2 H (β) = 1 n A -1 V v=1 i∈Av H i (β) - 1 n A V v=1 j∈Av H j (β) 2 and H i (β) = δ i X * i (α v ) - V v=1 j∈Av Y j (T i )h * j (α v , β) V v=1 j∈Av Y j (T i )g * j (α v , β)
.

The derivation of this variance estimator is explained in detail in Appendix B. It is evaluated empirically in the next section through a simulation study.

A simulation study

In this section, we evaluate the performance of the proposed estimator for the parameter 

Data generation

Assume that there are two datasets A with n A individuals, and B with n B ≥ n A individuals.

We first generate the n B units in database B with p = 2 covariates, including a continuous variable X 1 ∼ N (0, 1) and a binary variable X 2 ∼ Bernoulli(0.7). Given the p-vector of coefficients β = (β 1 , β 2 ) ⊤ = (0.5, -0.5) ⊤ , the true survival time T B is generated as

T B = - log(U ) λ exp (X ⊤ β)
where U follows a standard uniform distribution [START_REF] Bender | Generating survival times to simulate cox proportional hazards models[END_REF], and λ is fixed as equal to 1 for simplicity. A constant censoring time is chosen (from 100 000 independent data generation runs) to yield a censoring rate of approximately 0.25 over all the simulation runs.

Without loss of generality, we suppose that the units in dataset A are the n A first ones in dataset B. In other words, a pair of individuals (a i , b j ) for i ∈ A and j ∈ B is a match

if i = j = 1, . . . , n A . The survival times T A i for i ∈ A are therefore obtained as T A i = T B i for i = 1, . . . , n.
Given the number of blocks v and the probabilities α v for V = 1, . . . , V , the linked values Z for covariates in database A are obtained according to the linkage error model (4). Inside each block A v , an audit sample of 10% of the units is selected by simple random sampling without replacement, and used for the estimation of αv .

Methods and performance indicators

For each scenario, we consider the following estimation methods. The Theoretical is obtained by solving the theoretical estimating equation (2) with the true values of covariates X. This is a benchmark estimation strategy, since it cannot be applied on linked data in practice. The Naive is obtained by solving the naive estimating equation ( 5) with linked data. The Validation is obtained by solving the theoretical estimating equation (2) with only correct linked pairs in the validation set. Note that, contrarily to Theoretical, this method may be used in practice if an audit sample is available. For each of these three methods, the variance of the estimator of the parameter in the Cox model is estimated by using the variance estimator Vmpl ( β) in equation ( 3), implemented by means of R survival package.

For each scenario, we also consider estimation methods making use of the proposed approach. The TAEE (theoretical adjusted estimating equation) is obtained by solving the proposed estimating equation ( 6) with the theoretical value of α v . The AEE (adjusted estimating equation) is obtained by solving the proposed estimating equation ( 6), where α v is estimated by taking the proportion of correct links in the audit sample. For each method, the Newton-Raphson algorithm is applied with a maximum of 20 iterations and an initial parameter value β = (0, 0) ⊤ . We also report the number of time (Fails) when the Newton-Raphson algorithm does not converge. For AEE, the variance is estimated by using V( β) in equation ( 32). For TAEE, the variance is estimated by setting V1 { H(β 0 )} = 0 in V( β). For both TAEE and AEE, we also compare to the variance estimator Vmpl ( β) in equation ( 3).

The data generation and the estimation process are repeated R = 1, 000 times. Over these simulations, we compare the estimation methods in terms of the Monte Carlo bias

B MC ( β) = 1 R R r=1 β(r) -β ,
with β(r) the estimator computed on the r-th sample. We also compute the Monte Carlo standard deviation:

Sd MC ( β) = 1 R -1 R r=1 β(r) -β 2 .
For the variance estimation methods, we compute the Monte Carlo estimates of standard deviation

Sd = 1 R R r=1 V(r) ( β(r) ),
with V(r) a variance estimator computed on the r-th sample. The Monte Carlo estimate of standard deviation is compared to the true standard deviation Sd( β), approximated by Sd MC ( β).

Simulation results

One block situation

In this section, we consider the situation when the data sets are generated as presented in Section 3.1, with V = 1 block only. We consider two cases. In the first one, the sample sizes n A = 1, 000 and n B = 2, 000 are held fixed, and we let the probability of correct link α vary in {0.75, 0.85, 0.95}. In the second one, the probability of correct link is held fixed, equal to 0.85. We let n A vary in {500, 1000, 2000}, with n B = 2n A .

The simulation results obtained in Case 1 are presented in Table 1. As expected, the Theoretical method leads to an unbiased estimation of the parameters. The Naive method leads to severely biased estimators, especially with the smaller value α = 0.75.

The bias decreases as the probability of correct link increases, as expected. The proposed methods TAEE and AEE lead to approximately unbiased estimation of the parameters, with a larger variability for AEE as expected. We note that the variability is but only moderately increased, as compared to Theoretical. The Validation method also leads to unbiased estimators of the Cox regression coefficients, but with a larger variability than both TAEE and AEE.

We now turn to the variance estimators. 

Multiple blocks

In this section, we consider the situation when the data sets are generated as presented in Section 3.1, with V = 3 blocks only. We take (n A 1 , n A 2 , n A 3 ) = (250, 500, 250) and 500,1000,500). Also, we consider a first scenario where (α 1 , α 2 , α 3 ) = (0.8, 0.9, 1.0); a second scenario where (α 1 , α 2 , α 3 ) = (0.7, 0.8, 0.9); a third scenario where (α 1 , α 2 , α 3 ) = (0.6, 0.7, 0.8).

(n B 1 , n B 2 , n B 3 ) = (
Let ᾱ be the weighted average of α 1 , . . . , α v defined as

ᾱ = V i=1 n Av α v V i=1 n Av .
This leads to a percentage of correct links approximately equal to ᾱ = 90% in Scenario 1, ᾱ = 80% in Scenario 2 and ᾱ = 70% in Scenario 3. In this context, we also consider two additional versions of our proposed methods, when we are unable to access to the value α v of each block, but we have only access to their weighted average: TAEE-ᾱ where the AEE is used with V = 1 and true value of ᾱ, and AEE-ᾱ where the AEE is used with V = 1 and estimated value of α.

The simulation results are presented in Table 3, and confirm the good results of the proposed methods observed in the situation of one block. Scenario 2 and 3 are the cases when the behaviour of the Naive method is particularly poor, with a very large bias due to a larger number of false links. On the other hand, AEE performs well in reducing the estimation bias even in this situation. The proposed variance estimator also performs well in these cases.

When the block-specific true link rate is not correlated with the block-specific distribution of T and X, e.g. this multiple blocks simulation set up, a single-ᾱ adjustment (TAEE-ᾱ and AEE-ᾱ) can still perform well. Moreover, they can have a smaller variance. In practice, this is very helpful when the analyst cannot conduct auditing, and when the linker can only provide a single overall estimate of α. Although this is a favourable condition for secondary analysis, block-specific adjustment is the default approach as long as one cannot be sure whether such non-informativeness is the case in a given situation. Thus, obtaining block-specific α v is much more demanding in the real world. 

Data description

The proposed model is fitted to a linked dataset between a registry of strokes, denoted by AVC ("Accident Vasculaire Cérébral"), and an extraction of the national health information system of France, denoted by SNDS ("Système national des données de santé"). The AVC recorded all stroke cases of patients aged 15 years and older, who have lived in the Brest area from 2008 to the end of 2018. SNDS is an extraction from the French health information system, and contains patients for whom at least one medical service or hospitalization were recorded since 2008 while they were living in the Brest area. Due to the limited information in the registry, there is a demand of linking AVC and SNDS to enrich the registry for further analyses.

The linkage was performed by a separate team, and due to confidentiality restrictions, we were not allowed to access to the matching data and have limited knowledge about the linkage. A deterministic record linkage method was used. This is the simpler linkage approach, which ideally requires agreement on all matching variables, or otherwise on a (large) subset of these variables. In the linkage process, there are 9 matching variables, and the linkage is implemented sequentially. In the first step, it is required that the 9 matching variables agree for a pair to be viewed as a link. The corresponding pairs are then suppressed, and among the remaining ones it is asked that 8 matching variables agree for a pair to be viewed as a link. The procedure continues on similarly. The process is summarized in Table 4.

After performing the linkage process, a dataset of 3, 535 patients has been obtained.

It contains the survival time, the censoring indicator and three covariates (age, gender, type of stroke). We suppose that these covariates were obtained from SNDS by the linkage process, and may therefore be affected by linkage errors. A description of the dataset is presented in Table 5. In this application, we are interested in comparing the risk of death after the first stroke between males and females, taking into account the age and the type of stroke. 

Steps

Cox regression analysis

In this application, we use the Cox regression model (1) to model the relationship between the survival time and three explanatory variables (age, gender, type of stroke). We consider AVC as database A and SNDS as database B in our proposed model. In the naive approach, we use the linked data as if it was directly observed. However, the simulation results in Section 3.3 show that linkage errors lead to biased estimators of the regression coefficients.

Therefore, we also use the adjusted estimating equation ( 6). For the record pairs obtained at each step, the percentage of matching variables which are in agreement are seen as a proxy of the probability that the matching is correct. For example, for the 1, 500 pairs obtained at step 4, the probability that the matching is correct is estimated as 6/9 = 0.667. We suppose that the linked dataset is comprised of two blocks, and the estimates of α v for each block v are obtained as follows:

Variable

• Block 1: 1,792 record pairs are obtained from Step 1, with α1 = 9/9 = 1.

• Block 2: 1,743 remaining record pairs, with α2 = 170 × 8/9 + 11 × 7/9 + 1500 × 6/9 + 58 × 5/9 + 4 × 4/9 1743 ≃ 0.694.

Besides, because the covariates are not available for any units in the SNDS, the adjustment terms in (7) cannot be computed since the proposed approach requires full access to the set of covariates in database B. We therefore use the proxy solution suggested in equation ( 33), which requires that the covariates are known on database A only. Simulations in Appendix C show that if the database A may be seen as a random sample from the database B, or when the sampling leading to A is independent of the covariates, this method leads to comparable results as the method proposed in Section 2.3. In Table 6, we present the estimations arising from both the Naive and the AEE methods.

Naive

The two methods decidedly lead to different estimations. If the Naive method is used, the hazard ratio of sex is 0.887, which means that given the same age and the same type of stroke, the female's risk of death after the first stroke is 0.887 times smaller than male's.

On one hand, this ratio from the adjusted estimating equation approach is just 0.865.

Discussion

In this work, our simulations proved that the naive use of linked data may lead to substantial bias in a Cox regression model. Therefore, under the secondary analysis position where the analyst can access to linked data only, we have proposed an adjusted estimating equation for linked data, which can correct the bias from the naive estimating equation. A variance estimator, which can capture three sources of variability has also been proposed. However, proving the asymptotic normality of the resulting estimators remains challenging.

Through various simulation scenarios with one block and also multiple blocks, the proposed adjusted estimating equation is shown to have significantly corrected the bias of the naive estimating equation. Additional simulations study the non-information linkage assumption and the sensitivity analysis of α are presented in Section 1 of the Supplementary material. We have also proposed different variants of the approach for scenarios where information is limited. For example, when the block-specific linkage rate α v is not available for each block, our method still works well by using the average true link rate ᾱ. If the analysts are not able to fully access the covariates in database B, we proposed to use the adjustments in (33), which still maintain the good performance of the AEE if A is a random sample from B. In addition, a linear approximated estimating equation (LAEE), which can provide better estimation than AEE with small sample size, is given in Section 2 of the Supplementary material.

Although the proposed method has improved on the naive estimation, there are perspectives that need to be developed. In this work, we assumed that observations on survival time are already available and all explanatory variables are obtained from another database.

In practice, there are some cases when a part of the covariates is also available in A, and only a part of the covariates is acquired from B by linkage. In addition, the covariates can be obtained from several sources with different linkage processes. The proposed model should be developed to adapt to these cases.

We also supposed that the survival time and the censoring indicator are observed in database A, while the explanatory variables are obtained from database B by a linkage process. However, the opposite situation may occur in practice: the covariates may be available for the units in A, while the survival time needs to be obtained from another database B by a linkage process. In this case, the proposed estimating equation may not be applied and different adjustments need to be developed.

A Expectation of the adjusted estimating equation

The proposed adjusted estimating equation is given by

H(β) ≡ 1 n A V v=1 i∈Av δ i X * i (α v ) - V v=1 j∈Av Y j (T i )h * j (α v , β) V v=1 j∈Av Y j (T i )g * j (α v , β) = 0. (10) 
Let F = {(T i , δ i ), i = 1, . . . , n A and X j , j = 1, . . . , n B } denote the information related to the duration times and censoring indicators for the units in A, and to the true values of covariates for all the units in B. We have

E{ H(β) | F} = 1 n A V v=1 i∈Av E δ i X * i - V v=1 j∈Av Y j (T i )h * j (α v , β) V v=1 j∈Av Y j (T i )g * j (α v , β) F = 1 n A V v=1 i∈Av δ i            E(X * i | F) E 1 -E V v=1 j∈Av Y j (T i )h * j (α v , β) V v=1 j∈Av Y j (T i )g * j (α v , β) F E 2            (11) 
For each i ∈ A v and j ∈ B v , let l ij be an indicator equal to 1 if unit i and j are linked, and to 0 otherwise. Then for each i ∈ A v , we have Z i = j∈Bv l ij X j , and

E(Z i | F) = j∈Bv X j E(l ij | F).
Under the non-informative assumption for the linkage process, we obtain from the hit-miss model ( 4) that

E(l ii | F) = α v + (1 -α v )(n B ) -1 , E(l ij | F) = (1 -α v )(n B ) -1 for j ∈ B \ {i}, which leads to E(Z i | F) = α v X i + (1 -α v ) XBv
From equation ( 7) and under the non-informative linkage assumption, we have

E 1 = E α -1 v Z i -(α -1 v -1) XBv | F = α -1 v E (Z i | F) -(α -1 v -1) XBv = α -1 v α v X i + (1 -α v ) XBv -(α -1 v -1) XBv = X i . (12) 
By using a first order Taylor approximation, we have up to negligible factors of order

O p (n -1 A ): E 2 ≈ E V v=1 j∈Av Y j (T i )h * j (α v , β) F E V v=1 j∈Av Y j (T i )g * j (α v , β) F (13) 
where

E V v=1 j∈Av Y j (T i )h * j (α v , β) F = V v=1 j∈Av E Y j (T i )h * j (α v , β) | F = V v=1 j∈Av Y j (T i )E h * j (α v , β) | F = V v=1 j∈Av Y j (T i )h(β, X j ).
any unit i ∈ A. We note T A ≡ {T i } i∈A for the set of outcome values in A. The auxiliary variables are obtained in A by using record linkage, leading to the pseudo auxiliary variables Z i for any unit i ∈ A. We note Z A ≡ {Z i } i∈A for the set of pseudo values in A.

Finally, a validation sample V of size n V is selected in A by simple random sampling, and the true auxiliary variables X i are obtained for the units i ∈ V . By comparing the pseudo values Z i and the true values X i in V , we obtain an unbiased estimator α for the parameter α.

B.1 Global estimating equation

Using the unbiased estimator α for the parameter α (see equation 4), the global estimating equation for the parameter β is

H(β) ≡ 1 n A n A i=1 δ i X * i (α) - n A j=1 Y j (T i )h * j (α, β) n A j=1 Y j (T i )g * j (α, β) H i (β) = 0, (16) 
where

X * i (α) = Z i α - 1 - α α XB , g * j (α, β) = g(β, Z j ) α - 1 - α α ḡB (β), (17) 
h * j (α, β) = h(β, Z i ) α - 1 - α α hB (β).
Let us denote by β 0 the true value of the parameter. Then we have

H( β) -H(β 0 ) = -H(β 0 ) ≃ {E∇ H(β 0 )}{ β -β 0 },
with ∇ H(β) the differential of H(β). We obtain ββ 0 ≃ -{E∇ H(β 0 )} -1 × H(β 0 ).

It is thus sufficient to obtain a variance estimator for H(β 0 ), from which we can use the sandwich variance estimator

V( β) = {∇ H( β)} -1 × V{ H(β 0 )} × {∇ H( β)} -1 . ( 18 
)
The derivation of V{ H(β 0 )} is explained in the next sections.

B.2 Accounting for the estimation of α

Since we have

1 α = 1 α × 1 1 + α-α α = 1 α 1 - α -α α + o p (n V -0.5 ) = 1 α - α -α α 2 + o p (n V -0.5 ),
we may rewrite the quantities in (17) as

X * i (α) = 1 α (Z i -XB ) + XB X * i (α)
α -α α 2 (Z i -XB ) + o p (n V -0.5 ), g * j (α, β 0 ) = 1 α {g(β 0 , Z j ) -ḡB (β 0 )} + ḡB (β 0 )

g * j (α,β 0 ) -α -α α 2 {g(β 0 , Z j ) -ḡB (β 0 )} + o p (n V -0.5 ), -0.5 ).

h * j (α, β 0 ) = 1 α h(β 0 , Z j ) -hB (β 0 ) + hB (β 0 ) h * j (α,β 0 ) - α -α α 2 h(β 0 , Z j ) -hB (β 0 ) + o p (n V
(

) 19 
Let us denote ϵ = α-α α 2 . By plugging (19) into equation ( 16), we have -0.5 ).

n A j=1 Y j (T i )h * j (α, β) n A j=1 Y j (T i )g * j (α, β) = n A j=1 Y j (T i )h * j (α, β) -ϵ n A j=1 Y j (T i ) h(β 0 , Z j ) -hB (β 0 ) n A j=1 Y j (T i )g * j (α, β) -ϵ n A j=1 Y j (T i ) [g(β 0 , Z j ) -ḡB (β 0 )] + o p (n V
After some algebra, this leads to:

H(β 0 ) = H1 (β 0 ) - α -α α 2 H2 (α, β 0 ) + o p (n V -0.5 ), (20) 
where

H1 (β 0 ) = 1 n A n A i=1 δ i {X * i (α) -R * i (α, β 0 )} H 1i (β 0 ) (21) with R * i (α, β 0 ) = n A j=1 Y j (T i )h * j (α,β)
n A j=1 Y j (T i )g * j (α,β) , and with

s 2 H (β 0 ) = 1 n A -1 n A i=1 H i (β 0 ) - 1 n A n A j=1 H j (β 0 ) 2 = 1 2n A (n A -1) n A i̸ =j=1 {H i (β 0 ) -H j (β 0 )} 2 . ( 29 
)
where H i (•) is defined in ( 16). We have

E s 2 H (β 0 ) n A = EE s 2 H (β 0 ) n A X B , T A (30) = E 1 2n 2 A (n A -1) n A i̸ =j=1 E{H i (β 0 ) -H j (β 0 )| X B , T A } 2 + E 1 2n 2 A (n A -1) n A i̸ =j=1 V{H i (β 0 ) -H j (β 0 )| X B , T A } ≃ E 1 2n 2 A (n A -1) n A i̸ =j=1 {H ti (β 0 ) -H tj (β 0 )} 2
(where H ti (•) is defined in ( 26))

+ E 1 2n 2 A (n A -1) n A i̸ =j=1 V{H i (β 0 )| X B , T A } + V{H j (β 0 )| X B , T A } = E 1 n A (n A -1) n A i=1 H ti (β 0 ) - 1 n A n A j=1 H tj (β 0 ) 2 + 1 n 2 A n A i=1 V{H i (β 0 )| X B , T A } ≃ V H1 (β 0 ) ,
where the last line in (30) follows from a comparison with equation (28). Therefore, V H1 (β 0 ) may be approximately unbiasedly estimated by replacing in (29) the unknown

  of the Cox model, and the associated variance estimator. The data generation process is first presented in Section 3.1. The estimation methods that we evaluate are presented in Section 3.2, along with the performance indicators. The simulation results are given in Section 3.3. To facilitate interpretation and to study the influence of different simulation parameters, we first consider in Section 3.3.1 scenarios with a single block. Scenarios with multiple blocks and different levels of linkage quality are considered in Section 3.3.2. All R programs for simulation are available in https://github.com/thanhhuanVO/ Cox-regression-with-linked-data.

  of stroke (0 = Ischemic, 1 = Hemorrhagic) SNDS Table 5: Description of the linked database

Table 1 :

 1 This is due to the fact that this variance estimator only accounts for the variability of the sample-based estimating equation. On one hand, the proposed variance estimator performs well, except for β 1 when α = 0.75, in which case the variance is underestimated. MC Sd MC Sd mpl Sd AEE B MC Sd MC Sd mpl Sd AEE MC Sd MC Sd mpl Sd AEE B MC Sd MC Sd mpl Sd AEE

	β1	β2

The variance estimator Vmpl ( β) (3) performs well for Theoretical, Naive and Validation, but underestimates the variability of the estimators obtained under TAEE and AEE. Simulation results in Case 1 with three different values for the probability of correct link α ∈ {0.75, 0.85, 0.95}

The simulation results obtained in Case 2 are presented in Table

2

. We observe no qualitative difference compared to Case 1. The TAEE and AEE lead to almost unbiased estimations for the regression coefficients, and the proposed variance estimator performs well for both methods. The bias obtained under the Naive method does not decrease as the sample size increases. As could be expected, the variability obtained under any estimation method decreases as the sample size increases.

Table 2 :

 2 Simulation results in Case 2 with three different values for the sample size n A

Table 3 :

 3 MC Sd MC Sd mpl Sd AEE B MC Sd MC Sd mpl Sd AEE Simulation results with 3 blocks with different linkage quality 18

	β1	β2

Table 4 :

 4 Description of the linkage process

		Number of agreements	Number of record pairs
		among 9 matching variables	
	1	9	1,792
	2	8	170
	3	7	11
	4	6	1,500
	5	5	58
	6	4	4
		Total	3535

Table 6 :

 6 Estimated coefficients (coef), estimated standard deviation of the estimated coefficients (sd), and the hazard ratio (hr = exp(coef)) of the naive method and the AEE method from linked data.

			method		AEE
		coef	sd	hr	coef	sd	hr
	Age	0.059 0.002 1.061	0.070 0.001 1.073
	Sex	-0.120 0.047 0.887	-0.145 0.067 0.865
	Type AVC 0.773 0.058 2.165	0.846 0.082 2.330

Therefore,

By plugging ( 12) and ( 14) into (11), we obtain

B Variance estimation for the proposed adjusted estimator

In this appendix, the derivation of the variance estimator is explained. For simplicity, we focus on the case V = 1 when a single block is used. The extension to multiple blocks is straightforward.

We first recall the main notations. A database B of size n B is first obtained, and the covariates X i are observed for all the units in B. We use the notations

By neglecting the terms which are o p (n V -0.5 ), we obtain from (20) that

Under the assumption that the validation sample S V is selected in A by simple random sampling without replacement, we have

Since µ i is a binary variable, it follows from standard results in survey sampling theory that an unbiased estimator for

Hence the second term in the right-hand side of ( 23) may be estimated by

where H2 ( α, β) is obtained from ( 22) by replacing β 0 with β and α with α. This is the component of the variance estimator which accounts for the estimation of α.

B.3 Accounting for the linkage and estimation error

In this section, we focus on the first term in the right-hand side of (23). We have

It follows from equation ( 15) in Appendix A that

which is the function associated to the theoretical estimating equation that we would solve if the covariates X i were known without linkage error for the units i ∈ A. Secondly, note that conditionally on X B and T A , the terms H 1i (β 0 ) are approximately uncorrelated for i = 1, . . . , n A . More precisely, it can be proved after some algebra that for any i ̸ = j = 1, . . . , n A , we have

Therefore, we obtain that

where H 1i (•) is defined in (21). From ( 25), ( 26) and ( 27), we obtain that

parameter β 0 with β, which leads to

This is the component of the variance estimator, which accounts for both the linkage and estimation errors.

B.4 Global variance estimator

By plugging ( 24) and ( 31) into ( 23), we obtain:

The global variance estimator is therefore obtained from (18) as:

C Sampling affectations

To compute XBv , ḡBv (β) and hBv (β) in ( 7), the AEE requires access to all the X-vectors in B. In some cases, this may not be possible due to confidentiality reasons. In that case, we have access to only the linked dataset A.