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Abstract 23 

The survival, behaviour and competence period of lecithotrophic larvae depends 24 

not only on the energy allocation transferred by maternal colonies, but also on the amount 25 



 

2 

of energy consumed to sustain embryonic, larval and post-larval development. The 26 

objective of the present work is to understand the effect of energy consumption on the 27 

performance of lecithotrophic larvae. To this aim, we analysed free fatty acid (FFA) 28 

content and composition of the larvae of three Mediterranean octocorals (Corallium 29 

rubrum, Eunicella singularis and Paramuricea clavata) as a proxy for energy 30 

consumption. Results showed that C. rubrum larvae consume more FFA than P. clavata, 31 

whereas the energy consumed by E. singularis larvae is high but highly variable. These 32 

results are in accordance with the larval behaviour of these three species, since C. rubrum 33 

larvae are characterized by their high swimming activity frequency, P. clavata larvae are 34 

almost inactive, and the swimming activity frequency of E. singularis larvae is high, 35 

although variable. The differences in FFA composition of the larvae suggest contrasting 36 

energetic strategies that could explain the differences in survival and recruitment rates. 37 

In fact, a high dispersal and recruitment capacities for E. singularis larvae can be inferred 38 

from the FFA composition, whereas the high spatial and temporal variability of 39 

recruitment observed in C. rubrum may be related to the non-selective transfer of FA 40 

from maternal colonies. Finally, the high recovery rates after mass mortality events 41 

observed in P. clavata could be favoured by the presence of a specific FA (22:6(n-3)) 42 

related to adaptation mechanisms under environmental stresses during the first 43 

developmental stages.  44 

 45 

Introduction 46 

 Maternal energy investment in lecithotrophic larvae of marine invertebrates 47 

mainly consists in the allocation of lipids (Richmond, 1987; Arai et al., 1993), being wax 48 

esters, triacylglycerols, sterols and polar lipids the most abundant (Figueiredo et al., 49 

2012). Some symbiotic species also present photosynthetic dinoflagellates of the family 50 
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Symbiodiniaceae (sensu LaJeunesse et al., 2018) in their larvae, which may provide 51 

additional energy to the offspring during development (Kopp et al., 2016; Mies et al., 52 

2017). Differences in the energetic allocation from maternal colonies to larvae, or in the 53 

capacity to obtain energy during the planktonic phase, may influence larvae survival rates. 54 

For example, it is commonly assumed that symbiotic larvae have higher survival rates 55 

than non-symbiotic ones (Yakovleva et al., 2009; Harii et al., 2010). However, survival, 56 

behaviour and the competence period of larvae also depends on the amount of energy 57 

consumed to sustain embryonic, larval and post-larval development (Holland & Spencer, 58 

1973; Gallager & Mann, 1986; Pechenik, 1990; Qian et al., 1990). For instance, since the 59 

metabolic demands in lecithotrophic larvae are related with swimming behaviour, the 60 

actively swimming larvae are expected to have a high energy consumption (Okubo et al., 61 

2008). Moreover, after the swimming phase, the recruitment success of sessile organisms 62 

may also involve a high energy consumption for substrate recognition, competition for 63 

space and early growth (Adjeroud et al., 2017).  64 

The study of free fatty acid (FFA) content in the larval stage may be used as a 65 

proxy for the amount of lipid used at specific times, since FFAs are obtained from the 66 

oxidation of lipid reserves (Gurr et al., 2002), which in turn are beta-oxidized to provide 67 

a source of highly efficient energy (high ATP/Fatty Acid (FA) molecule; Sargent et al., 68 

1988). Therefore, the FFA content is directly related to the energy consumed at a specific 69 

time. Moreover, studying the FFA composition may help to understand the nature of 70 

energetic requirements, such as the attainment and maintenance of optimal health and 71 

physiological functions. This approach has been thoroughly used in the fish culture 72 

industry (Bell & Sargent, 1996; Izquierdo, 1996; Copeman et al., 2002; Bransden et al., 73 

2005) and has recently been applied to understand some important ecological process on 74 

coral species (Viladrich et al., 2016; Conlan et al., 2017; Grinyó et al., 2018). Studies 75 
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that looked at total FA showed that a dietary deficiency in some FAs can reduce the 76 

nutritional condition and growth in adult colonies (Latyshev et al., 1991; Imbs, 2013; 77 

Radice et al., 2019), as well as lower swimming activity and the survival of the larvae 78 

(Figueiredo et al., 2012), which can eventually lead to lower recruitment rates (Conlan et 79 

al., 2017). Hence, the different types of FAs (Saturated Fatty Acids, SFA; 80 

MonoUnsaturated Fatty Acids, MUFA and PolyUnsaturated Fatty Acids, PUFA) could 81 

be a good proxy for larval condition. In general, when FAs are catabolized, SFA and 82 

MUFA are preferentially consumed and PUFA are selectively retained (Rainuzzo et al., 83 

1994; Tocher, 2003). Therefore, the availability of large amounts of certain PUFA is 84 

considered essential for larval development and health status (DeMott & Muller-Navarra, 85 

1997; Wen et al., 2002; Figueiredo et al., 2012). 86 

 Among benthic sessile invertebrates, gorgonians play a paramount role as 87 

ecosystem engineers in many benthic communities around the world (Gili & Coma, 1998; 88 

Wild et al., 2011; Velásquez & Sánchez, 2015), and are considered one of the main three-89 

dimensional constituents of the “marine animal forests” (sensu Rossi, 2013). Gorgonians 90 

exhibit three different strategies for sexual reproduction: (1) broadcast spawning: sperm 91 

and oocytes are released in the water column and fertilization is external, (2) surface 92 

brooding: oocytes/zygotes are retained by mucous material on the surface of the female 93 

colonies during larval development, although it is unclear if fertilization is internal or 94 

external and (3) internal brooding: the oocytes are internally fertilized and the female 95 

colonies retain the zygotes and embryos within their body during their development 96 

(Kahng et al., 2011).   97 

 In the Mediterranean Sea, the non-symbiotic gorgonians Corallium rubrum and 98 

Paramuricea clavata, together with the symbiotic Eunicella singularis, are characteristic 99 

species of shallow benthic communities in coastal areas (Weinberg, 1979a). They are 100 
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gonochoric, releasing lecithotrophic larvae once a year during summer months (Coma et 101 

al., 1995; Santangelo et al., 2003; Ribes et al., 2007). The gorgonians C. rubrum and E. 102 

singularis are internal brooders, whereas P. clavata is a surface brooder (Coma et al., 103 

1995; Santangelo et al., 2003; Ribes et al., 2007). While both C. rubrum and P. clavata 104 

release non-symbiotic ciliated larvae (planulae), E. singularis larvae, such as the adult 105 

colonies, contain Symbiodinium of the clade A’ (Forcioli et al., 2011; Weinberg, 1979b). 106 

The larval competence (i.e., the period during which pelagic larvae are able to settle) is 107 

approximately 8 days for E. singularis, 11 days for P. clavata and 27 days for C. rubrum 108 

(Zelli et al., 2020).   109 

The aim of the present work is to explore the link between energy consumption, 110 

and larval performance in the three most characteristic and widely distributed shallow-111 

water Mediterranean octocoral species. To achieve this objective, FFA were considered 112 

as a proxy for energy consumption, and their content and composition were analysed in 113 

the larvae of the three species just after release. The FFA content was used to quantify 114 

the energy consumed in the pelagic phase, whereas the FFA composition was compared 115 

between larval species to explore different energy requirements, in the light of data on 116 

larval performances (i.e., swimming activity rates and settlement rates) of the three 117 

species. These results can provide clues to understand how the energy used by larvae 118 

relates to their performance.  119 

 120 

Materials and methods 121 

Sampling procedure 122 

 Larvae of P. clavata (surface brooder) were collected at 25-30 m depth by scuba 123 

diving at Punta s’Oliguera in Cap de Creus on June 22nd 2012 (NW Mediterranean, 42º 124 

17’03’' N; 003º 17’95’' E; Fig. 1). Larvae of the two internal brooder species (C. rubrum 125 
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and E. singularis) are difficult to obtain in situ. For this reason, 5 female colonies of C. 126 

rubrum collected at 25-30 m depth and 5 female colonies of E. singularis collected at 15-127 

20 m depth at Punta s’Oliguera were maintained separately in 8L tank at 20 ± 1.0 °C for 128 

1-2 days until larval release. A chiller (Tank chiller line TK 2000) was used to keep a 129 

constant seawater temperature, and the water was filtered using a biological filter (SERA 130 

fil bioactive 250+UV). Larvae of E. singularis were collected on July 19th 2012 and larvae 131 

of C. rubrum on July 27th 2012.  132 

 For each species, three replicates of 30 different larvae were fixed on pre-133 

combusted GF/F filters, cold shocked with liquid nitrogen and stored at -80°C. Filters 134 

were then freeze-dried for 24h at -110°C and a pressure of 100 mbar. The freezer-dried 135 

material was stored at -20°C for further analyses.  136 

 137 

Free fatty acid (FFA) content and composition in larvae 138 

 FFA content and composition were assessed for the three replicates of each 139 

species according to the method described by Viladrich et al., (2016). Each filter with 30 140 

larvae was dissolved in dichloromethane:methanol (3:1) spiked with an internal standard 141 

(2–octyldodecanoic acid and 5β–cholanic acid) in order to estimate recuperation. The 142 

extraction solvent was eluted through an aminopropyl glass column resulting in 3 143 

fractions (neutral lipids, FFAs and polar lipids). In this study, the FFA fraction was 144 

methylated using a solution of 20% boron trifluoride-methanol reagent heated at 90°C for 145 

1 h. 146 

The methyl esters of FA (FAMEs) were separated and analysed by gas 147 

chromatography with mass spectrometry detection (GC/MS, 7820A GC from Agilent 148 

Technologies) equipped with a DB-5ms Agilent column (60 m length, 0.25 mm internal 149 

diameter and 0.25 μm phase thickness).  Hydrogen was used as a carrier gas at 30 150 
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mL·min–1. The high compound numbers in the samples and the similarity of retention 151 

required a complex method of temperature ramps, with the oven temperature 152 

programmed to increase from 50ºC to 160ºC at 20ºC min–1, from 160ºC to 188ºC at 0.5ºC 153 

min–1, from 188ºC to 229ºC at 20ºC min–1, from 229ºC to 235ºC at 2ºC min–1 and, finally, 154 

from 235ºC to 300ºC at 5ºC min–1. The injector and detector temperatures were 300ºC 155 

and 320ºC, respectively. FAMEs were identified by comparing their retention times with 156 

those of commercial standards of FA (Supelco 37 Component FAME Mix and Supelco® 157 

Mix C4-C24) and were quantified by integrating areas under peaks in the chromatograms 158 

(Chromquest 4.1 software) using calibration curves derived from the Supelco 37 159 

Component FAME Mix. The results are presented in μg FFA larvae-1 and in percentage 160 

of Saturated Free Fatty Acids (free SFA), Mono Unsaturated Free Fatty Acids (free 161 

MUFA) and Poly Unsaturated Free Fatty Acids (free PUFA), besides each FFA 162 

component percentage. 163 

 164 

Statistical analyses 165 

 Differences in FFA content and in percentage of free SFA, free MUFA and free 166 

PUFA between larvae of the different species were tested using a one-way ANOVA. 167 

Before performing the ANOVAs, normality of data residuals and variance homogeneity 168 

were tested using the Shapiro-Wilk and Bartlett tests (functions “shapiro.test” and 169 

“bartlett.test” of the package stats of the R environment, respectively). One-way ANOVA 170 

tests were performed with the function “aov” of the package stats (Chambers and Hastie 171 

1992). 172 

 A correspondence analysis (CA) was used to check for associations among FFA 173 

composition of larvae using the function “ca” of the ca package in the R environment 174 

(Nenadic & Greenacre, 2007). Before performing the CA, FFA compounds that 175 

represented less than 2% of the total concentration were eliminated and percentages 176 
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recalculated so that the sum was equal to 100%. After this transformation, the CA was 177 

performed on a cross table containing 13 FFA compounds and 9 samples of larvae (3 per 178 

species).  179 

 180 

Results 181 

Free fatty acid (FFA) content in larvae  182 

 FFA content was 0.098 ± 0.015 μg per larvae (mean ± SD) for C. rubrum, 0.045 183 

± 0.005 for P. clavata and 0.125 ± 0.07 for E. singularis (Fig. 2a). ANOVA results 184 

showed significant differences between C. rubrum and P. clavata (one-way ANOVA, 185 

p<0.005;), whereas no differences were observed between E. singularis and C. rubrum 186 

or P. clavata larvae, possibily due to the high variability of the E. singularis values (one-187 

way ANOVA, p>0.1; Fig. 2a). ANOVA on free SFA, expressed as a percentage of total 188 

fatty acids, did not show significant differences between species (one-way ANOVA, 189 

p>0.5; Fig. 2b), being 18.39 ± 4.37 % for C. rubrum, 14.45 ± 1.48 % for P. clavata and 190 

26.98 ± 11.60 % for E. singularis (mean ± SD). The percentage of free MUFA was 191 

significantly higher in C. rubrum (65.61 ± 6.32 %) than in P. clavata and E. singularis 192 

larvae (31.21 ± 15.26 % and 26.77 ± 17.40, respectively) (one-way ANOVA, p<0.05; 193 

Fig. 2b), while free PUFA percentage was significantly higher in P. clavata and E. 194 

singularis (54.33 ± 13.87 % and 46.26 ± 6.17, respectively) than in C. rubrum larvae 195 

(15.98 ± 2.08 %) (one-way ANOVA, p<0.01; Fig. 2b).  196 

 197 

Free fatty acid (FFA) composition in larvae  198 

 The first two dimensions explained 86% of the total variance of the CA. As it can 199 

be observed in the biplot, Dimension 1 (44% of total inertia) separates C. rubrum larvae 200 

from those of P. clavata and E. singularis based on the FFA descriptors (Fig. 3). 201 

Dimension 2 (42% of total inertia) shows that there are also differences between P. 202 
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clavata and E. singularis larvae, indicating that larvae from the three species displayed 203 

distinct FFA compositions (Fig. 3). Samples of C. rubrum larvae, which all lay very close 204 

to one another, are characterized by the presence of 18:1(n-9). P. clavata samples form a 205 

second and less compact group, with 20:4(n-6), 20:5(n-3) and 22:6(n-3) as dominant FFA. 206 

Finally, the samples of E. singularis larvae are widely spread on the biplot and associated 207 

to different FFA, with 18:3(n-3), 18:4(n-3), 20:2(n-6), 16:1 and 16:0 being the principal 208 

markers. 209 

 210 

Discussion 211 

 This study shows, for the first time, that FFA content and composition could be 212 

used to understand lecithotrophic larvae performance. Until now, FFA portion in coral 213 

larvae had been largely neglected, probably due to their low concentration (Figueiredo et 214 

al., 2012; Conlan et al., 2017). However, our results underscore the importance of FFAs 215 

during the larval period of C. rubrum, P. clavata and E. singularis, despite their low 216 

concentrations (< 0.12 µg per larva; Fig. 2a).  217 

According to our results, C. rubrum larvae had a 2-fold higher FFA content than 218 

P. clavata, whereas the FFA content in E. singularis was highly variable (± 57 %). Since 219 

FFA are the main sources of energy for ATP production, these values represent a measure 220 

of larvae energetic consumption (Gurr et al., 2002). Moreover, as seawater temperature 221 

at the time of release was the same for the three species (Viladrich et al., 2016), the 222 

influence of temperature on the observed variability can be excluded, and larval energetic 223 

consumption can be related to the active movement of the larvae (Okubo et al., 2008). 224 

Therefore, on the basis of FFA content, we would expect C. rubrum larvae to be highly 225 

mobile, whereas P. clavata quite passive, and E. singularis larval motility high and also 226 

highly variable. Measurements of larval swimming activity frequency (i.e. percentage of 227 
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time during which active swimming or crawling behaviour is displayed by larvae) for the 228 

three species are in accordance with the values of FFA content measured, with 77% 229 

activity for C. rubrum (Martinez-Quintana et al., 2015), 5% for P. clavata and 20-90% 230 

for E. singularis (Guizien et al., 2020). Therefore, energy consumption  may be a good 231 

proxy to estimate coral larvae swimming activity frequency. 232 

 As previously highlighted, the energy used depends on the specific metabolic 233 

requirements (Viladrich et al., 2016, 2017; Grinyó et al., 2018), and therefore, a detailed 234 

study of the FFA composition during the larval stage in different species may also help 235 

understanding the mechanisms underlying larval performance. In E. singularis, the high 236 

quantity of FFA 18:4(n-3) (Fig. 3) support the hypothesis that the Symbiodiniaceae are 237 

transferred from the mother colonies to the larvae, as previously proposed by Weinberg 238 

and Weinberg (1979). This fatty acid, in fact, is a robust tracer of the photosynthetic 239 

activity of symbiotic dinoflagellates (Papina et al., 2003; Treignier et al., 2008; Pupier et 240 

al., 2021), since it cannot be synthesized de novo by heterotrophs (Volkman et al., 1989; 241 

Dalsgaard et al., 2003). Therefore, the presence of 18:4(n-3) indicates a surplus of energy 242 

which can increase survival rates and the competency of larvae (Ben-David-Zaslow & 243 

Benayahu, 1998; Harii et al., 2010; Figuereido et al., 2012). Interestingly, this is in line 244 

with the lack of genetic structuring at large spatial scales observed for this species 245 

(Costantini et al., 2016). The high variability of this FFA (18:4(n-3)) observed in E. 246 

singularis larvae could be caused by the number of symbionts per larva, which varies 247 

according to the supply from mother colonies (Gaither & Rowan, 2010; Roth et al., 2013). 248 

Nevertheless, not all the symbiotic larvae obtain an energy surplus from symbiosis, as 249 

showed by Kopp et al., (2016) and Mies et al., (2017). Future studies should focus on the 250 

role of Symbiodiniaceae in E. singularis larvae energetic budget. Finally, large amounts 251 

of 18:3(n-3) in E. singularis larvae could explain the higher recruitment rates of this 252 
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species with respect to C. rubrum and P. clavata (Bramanti et al., 2005; Linares et al., 253 

2008; Linares et al., 2012) since this marker may have beneficial effects on larval 254 

settlement, following a trend already observed in bivalve and polychaete larvae (Pawlik 255 

& Faulkner, 1986; Jonsson et al., 1999; da Costa et al., 2011).  256 

 In the case of C. rubrum, our results suggest that the nutritional status of the adult 257 

colonies may directly affect the viability of the larvae due to a non-selective transfer of 258 

the most conspicuous FA, as previously suggested for different marine organisms (Qian 259 

& Chia, 1991; Harland et al., 1993; Dalsgaard et al., 2003; Figuereido et al., 2012). In 260 

fact, 18:1(n-9) is the main component for both C. rubrum larvae (62%) and maternal 261 

colonies (30%) (Fig. 3) (Viladrich et al., 2016), and it has been associated to detritus 262 

(Schultz & Quinn, 1973; Fahl & Kettner, 1993), which is the main food source for this 263 

species (Tsounis et al., 2006). This non-selective transfer of lipids from maternal colonies 264 

to larvae may result in a dependence of recruitment on the nutritional condition of the 265 

mother colonies (Lasker, 1990; Yoshioka, 1996; Dunstan & Johnson, 1998), which in 266 

turn is affected by environmental conditions (Rossi & Tsounis, 2007). Indeed, the high 267 

spatial and temporal variability of recruitment rates observed in C. rubrum (Garrabou & 268 

Harmelin, 2002; Santangelo et al., 2012) may be partially explained by the spatial and 269 

temporal variability of environmental conditions. Moreover, the high variability of 270 

recruitment rates could also be related to the low free PUFA content in C. rubrum larvae 271 

(Fig. 2b), since PUFA are mainly devoted to growth and resistance to stress conditions, 272 

thus enhancing larval metamorphosis and survival (Bell & Sargent, 1996; Pond et al., 273 

1996; Sargent et al., 1997; Albessard et al., 2001; Rossi et al., 2006; Figuereido et al., 274 

2012; Conlan et al., 2017). Therefore, small changes in the energy storage reserves of 275 

mother colonies may have serious consequences on the following generations. 276 
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 Interestingly, some FFAs may be key to understand the resilience of some species 277 

after thermal stress episodes. Previous studies showed higher recruitment rates of P. 278 

clavata after a mass mortality events caused by increased temperature, if compared to C. 279 

rubrum and E. singularis (Coma et al., 2006; Cupido et al., 2009; Santangelo et al., 2015). 280 

High recruitment rates after disturbances are associated to high resilience, attributed 281 

either to the high reproductive output of local P. clavata survivors (Cupido et al., 2009), 282 

or to migration from distant populations (Padron et al., 2018). However, it is possible that 283 

such high recruitment rates in P. clavata could also be concurrently favoured by the 284 

presence of the FFAs 22:6(n-3), 20:4(n-6) and 20:5 (n-3) (Fig. 3), which are key 285 

components of lipids for larval performance. Indeed, 22:6(n-3) is known to influence 286 

membrane fluidity and permeability, which can have a positive impact on enzyme 287 

activity, immune functions and adaptation to heat stress, among many other cellular 288 

processes (Dratz & Holte, 1992; Hall et al., 2000; Bergé & Barnathan 2005; Kneeland et 289 

al., 2013). Furthermore, the FFA 20:4(n–6) and 20:5(n-3) are essential fatty acids for 290 

larval development, which have been related to the production of biologically active 291 

eicosanoids under stress or unfavourable conditions (Sargent et al., 1999), supporting the 292 

immune system functioning and osmoregulation (Chapelle, 1986; Mazorra et al., 2003). 293 

 The present results are thus in accordance with the literature on larval performance 294 

of the studied species. The FFA content in larvae might then be used to predict the 295 

swimming activity frequency of different sessile invertebrate species, and their 296 

composition might also give a more detailed understanding of the mechanisms underlying 297 

larval performances. This new approach paves the path for a new approach to the study 298 

of early life-history stages of lecithotrophic larvae. 299 
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Figures 691 
 692 
Fig. 1 Location of the study area in NW Mediterranean (a, b) and sampling sites on the 693 

eastern coast of Cap de Creus (c). C.r, E.s and P.c indicate the position of the Corallium 694 

rubrum (25-30 m depth), Eunicella singularis (15-20 m depth) and Paramuricea clavata 695 

(25-30 m depth) populations, respectively. 696 
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Fig. 2 Free fatty acid content (mean ± SD) in Corallium rubrum larvae (white), Eunicella 699 

singularis larvae (grey), and Paramuricea clavata larvae (dark grey) expressed as (a) μg 700 

larvae-1 and (b) percentage of Saturated Fatty Acids (SFA), MonoUnsaturated Fatty 701 

Acids, (MUFA) and PolyUnsaturated Fatty Acids (PUFA). N = 3. 702 
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Fig. 3 Correspondence analysis (CA) biplot illustrating the ordering of the studied larvae 704 

in the first two dimensions with regard to their free fatty acid composition (black points). 705 

Corallium rubrum in white, Eunicella singularis in grey, and Paramuricea clavata in 706 

dark grey. 707 
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Electronic Supplementary Material 718 
 719 
 720 
Table. 1. Mean values and standard deviation (SD) of Free Fatty Acid (FFA) markers 721 

and Saturated (SFA), MonoUnsaturated (MUFA) and PolyUnsaturated Fatty Acids 722 

(PUFA) for Corallium rubrum, Eunicella singularis and Paramuricea clavata larvae. 723 



 

25 

 724 

 Corallium rubrum Eunicella singularis Paramuricea clavata 

 Mean SD Mean SD Mean SD 
C12:0 0.04 0.07 0.12 0.01 0.07 0.06 
C13:0 0.00 0.00 0.02 0.03 0.00 0.00 
C14:1(n-5) 0.00 0.00 0.04 0.06 0.00 0.00 
C14:0 0.50 0.13 0.57 0.17 0.49 0.06 
C15:1(n-5) 0.00 0.00 0.05 0.08 0.00 0.00 
C15:0 0.23 0.07 0.27 0.07 0.10 0.09 
C16:1(n-7) 0.66 0.22 5.73 1.56 1.01 0.05 
C16:0 10.12 2.82 12.12 2.33 6.57 1.05 
C17:1(n-7) 0.00 0.00 0.00 0.00 0.00 0.00 
C17:0 0.51 0.10 0.37 0.13 0.18 0.16 
C18:3(n-6) 0.00 0.00 1.08 0.70 0.00 0.00 
C18:4(n-3) 2.37 0.80 1.75 2.71 0.14 0.12 
C18:2(n-6)  4.30 0.94 0.73 0.82 9.44 3.88 
C18:3(n-3) 5.39 1.22 17.29 14.82 2.40 1.11 
C18:1(n-9) 62.44 6.70 19.09 16.57 27.86 14.71 
C18:1(n-7) 0.00 0.00 0.00 0.00 0.00 0.00 
C18:0 3.92 0.84 3.49 0.74 2.95 0.45 
C20:4(n-6) 1.69 0.09 8.42 6.14 25.89 9.93 
C20:5(n-3) 0.49 0.43 1.54 0.80 3.32 0.58 
C20:3(n-6) 0.59 0.52 2.16 0.39 3.23 1.42 
C20:4(n-3) 0.00 0.00 0.24 0.14 0.57 0.14 
C20:2(n-6) 0.49 0.09 5.51 1.43 0.27 0.23 
C20:1(n-9) 0.75 0.04 1.06 0.31 0.50 0.44 
C20:0 0.17 0.02 0.12 0.03 0.08 0.07 
C21:0 0.35 0.05 0.41 0.26 0.62 0.58 
C22:5 0.00 0.00 0.08 0.08 0.14 0.12 
C22:6(n-3) 0.00 0.00 2.15 1.93 4.59 1.36 
C22:4 0.30 0.09 0.22 0.28 0.29 0.25 
C22:5(n-x) 0.00 0.00 0.05 0.09 0.00 0.00 
C22:2(n-6) 1.08 0.10 0.35 0.20 0.96 0.69 
C22:1(n-9) 0.00 0.00 0.60 0.07 0.63 0.55 
C22:0 0.67 0.05 8.59 14.16 1.46 1.32 
C23:0 0.94 0.33 0.45 0.27 0.97 0.39 
C24:PUFA 0.36 0.09 2.58 1.29 3.43 0.62 
C24:1(n-9) 0.69 0.08 0.45 0.15 0.88 0.32 
C24:0 0.94 0.12 0.45 0.11 0.96 0.47 
              
SFA 18.39 4.37 26.98 11.60 14.45 1.48 
MUFA 65.61 6.32 26.77 17.40 31.21 15.26 
PUFA 15.98 2.08 46.26 6.17 54.33 13.87 


