
HAL Id: hal-03781090
https://hal.science/hal-03781090

Submitted on 20 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep Q-Learning-Based Dynamic Management of a
Robotic Cluster

Paul Gautier, Johann Laurent, Jean-Philippe Diguet

To cite this version:
Paul Gautier, Johann Laurent, Jean-Philippe Diguet. Deep Q-Learning-Based Dynamic Management
of a Robotic Cluster. IEEE Transactions on Automation Science and Engineering, 2023, 20 (4),
pp.1-13. �10.1109/TASE.2022.3205651�. �hal-03781090�

https://hal.science/hal-03781090
https://hal.archives-ouvertes.fr

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Deep Q-Learning-based Dynamic Management of a
Robotic Cluster

Paul Gautier, Johann Laurent and Jean-Philippe Diguet, Senior Member, IEEE

Abstract—The ever-increasing demands for autonomy and
precision have led to the development of heavily computational
multi-robot system (MRS). However, numerous missions exclude
the use of robotic cloud. Another solution is to use the robotic
cluster to locally distribute the computational load. This complex
distribution requires adaptability to come up with a dynamic and
uncertain environment. Classical approaches are too limited to
solve this problem, but recent advances in reinforcement learning
and deep learning offer new opportunities. In this paper we
propose a new Deep Q-Network (DQN) based approaches where
the MRS learns to distribute tasks directly from experience. Since
the problem complexity leads to a curse of dimensionality, we
use two specific methods, a new branching architecture, called
Branching Dueling Q-Network (BDQ), and our own optimized
multi-agent solution and we compare them with classical Market-
based approaches as well as with non-distributed and purely local
solutions. Our study shows the relevancy of learning-based meth-
ods for task mapping and also highlight the BDQ architecture
capacity to solve high dimensional state space problems.

Note to Practitioners—A lot of applications in industry like area
exploration and monitoring can be efficiently delegated to a group
of small-size robots or autonomous vehicles with advantages
like reliability and cost in respect of single-robot solutions. But
autonomy requires high and increasing compute-intensive tasks
such as computer-vision. On the other hand small robots have
energy constraints, limited embedded computing capacities and
usually restricted and/or unreliable communications that limit the
use of cloud resources. An alternative solution to cope with this
problem consists in sharing the computing resources of the group
of robots. Previous work was a proof of concept limited to the
parallelisation of a single specific task. In this paper we formalize
a general method that allows the group of robots to learn on
the field how to efficiently distribute tasks in order to optimize
the execution time of a mission under energy constraint. We
demonstrate the relevancy of our solution over market-based and
non-distributed approaches by means of intensive simulations.
This successful study is a necessary first step towards distribution
and parallelisation of computation tasks over a robotic cluster.
The next steps, not tested yet, will address hardware in the loop
simulation and finally a real-life mission with a group of robots.

Index Terms—MRS, Task Distribution, Robotic Cluster, Multi-
Agent Systems, Reinforcement Learning, Deep Q-Learning.

I. INTRODUCTION

THE robust and flexible nature of multi-robot systems
(MRS) makes them particularly suitable for critical tasks

in dynamic and uncertain environments such as search and

Paul Gautier and Johann Laurent are with Lab-STICC, UMR6285 CNRS,
Université Bretagne Sud, Lorient, France. e-mail:{firstname.lastname}@univ-
ubs.fr

Jean-Philippe Diguet is with CROSSING, IRL2010 CNRS, Adelaide,
Australia, email: Jean-Philippe.Diguet@cnrs.fr

Manuscript received April 19, 2005; revised August 26, 2015.

rescue (SAR) missions. A MRS requires precise coordination
of the robots to efficiently distribute the work, leading to two
well-known problems: multi-robot tasks allocation (MRTA)
[1] and online planning [2]. These two problems have been
the subject of substantial attention and many solutions have
been proposed. During a mission (e.g SAR), a MRS must
detect and analyze the environment uncertainty at run-time in
order to meet security and precision requirements. It relies
on algorithms with an increasing complexity that are required
to improve detection, analysis and decision-making with a
growing sensor infrastructure. In this regard the quantum leap
in computer-vision performance is highly significant [3].

However these new and growing computation-intensive
tasks represent a major obstacle to the development of MRS.
Indeed, despite the improvement in the processing and storage
capacities of embedded systems, the computing resources of
mobile systems remain inherently limited. The distribution of
these computing tasks is the problem we address in this study.

Two approaches have been proposed to overcome this
computing limitation. The first one relies on a computing
server, that can be based on a ground or cloud-robotic
implementation, to offload computation-intensive tasks [4].
Unfortunately, this method is heavily dependent on system
capacity to communicate with the server and may result in
incompatible processing latency when response time is critical.
This solution is particularly impractical in a SAR context
where the MRS must evolve autonomously to compensate for
the loss or lack of communications structures.

The second approach introduces the concept of Robotic
Cluster to speed up complex computational tasks such as
SLAM as detailed in [5], [6]. This work clearly shows the
possibility of taking advantage of the computational resource
multiplicity to parallelize a complex task by mean of load
balancing over a cluster of interconnected robots.

By extending this work to several independent tasks, we
propose to create a system where the pooling of resources
improves the processing ability of each single robot to perform
complex tasks. If we consider a set of processing tasks to be
executed by the MRS, the new issue to solve is an alloca-
tion problem of shared resources where response time and
processing cost become the main constraints. This question is
a variation the MRTA problem considering processing tasks
(MRpTA) [7].

In this paper, we study the distribution problem of the par-
allelization of complex computing tasks over a MRS evolving
in a changing context. As a typical case, we consider the
evolution of SAR missions. MRS are designed with state
of the art embedded systems, which are based on hetero-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

geneous sensors and multicore architecture equipped with
GPUs and dedicated co-processors, and therefore complex to
model. In addition, SAR missions take place in dynamic and
uncertain environments requiring adaptation and resilience to
compensate for the lack of information (unknown obstacles,
target location and intermittent communications) as well as for
sudden changes (failure, real-time detection).

Based on these observations, we consider reinforcement
learning (RL) to solve the distribution problem. RL has been
successfully applied to many fields such as power manage-
ment, server task scheduling and communications optimization
and was recently boosted by the success of Deep Q-Learning
on games such as Alpha Go [8]. These successes were the
result of the combination of RL and neural networks that
allow the handling of large-scale continuous environment
and thus opening up many new possibilities. Our problem
requires dealing with a high-dimensional discrete action space
and it is challenging since the number of actions, that must
be explicitly represented, increases exponentially with the
dimensionality of the actions [9]. Recently several solutions
have been proposed such as branching networks, cooperative
multi-agent or sequential prediction. In this work, we explore
the viability of a solution based on Branching Dueling Q-
Network (BDQ) to solve a distribution problem of MRpTA
parallelization considering a SAR mission. We address the
following questions:

• How can the parallelization of computing tasks over
multiple robots improve the system performances?

• In a fully decentralized system, can robots learn how to
effectively manage parallelization of computing tasks ?

Our study results in the three subsequent contributions:

• We show that deep RL can be successfully applied to
solve the problem of the parallelization of processing
tasks over a robotic cluster (MPpTA) in a distributed way
without requiring additional centralization.

• We model a realistic MPpTA problem for a MRS com-
posed of Unmanned Surface Vehicles (USV) conducting
a SAR mission, which allows us to run extensive simu-
lations.

• We use auctions for job allocation and compare two
candidate approaches capable of dealing with high-
dimensional discrete action space problems: a dedicated
BDQ and two versions of a multi-agent method. In addi-
tion our results also include a classical market-based and
a fully local baseline methods. We show the advantage of
adopting BDQ and highlight the limits of the multi-agent
approach when the number of agents increases.

The rest of this paper is organized as follows, Sec. II
discusses relevant work on MRTA, SAR and RL. Sec. III
explains our problem modeling. Sec IV presents our approach
to solve it. Sec. V describes our experimentation set-up.
Experimental results are discussed in Sec. VI. Finally, we
conclude and introduce our future work.

II. RELATED WORK

A. Multi-robot systems and drones background

1) Multi-robot tasks allocation problem: Robots in our
system are independent so we have no direct control over the
tasks they perform. Our problem is thus not exactly a MRTA
one. But we control the task parallelization so we can rephrase
is as “which robots should speed up which tasks?”, which is
close to a MRTA problem.

The literature provides many examples of MRTA prob-
lems applied to different contexts. For the sake of theorizing
and globalization, Gerkey and Mataric [1] have proposed
a taxonomy for these problems. Based on their definition,
our architecture is multitasking, single-robot, instantaneous
assignment (MT-SR-IA). However it is closer to MT-MR-IA
(multi-robots) since tasks must be distributed over multiple
robots to be executed more efficiently. In this decentralized
context, we propose to use a market-based approach [1] [10].

In our case, a drone starting a new task can sell jobs to
workers in order to maximize task efficiency by means of
distribution. Sequential single item auctions are commonly
used to solve task allocation problem [11]. Although effective,
it is not suitable when offers must be allocated by block
or when a global view of the market is needed to put in
competition both supply and demand. So we opt for double
auctions similar to stock exchange where all available job
offers are on one side and all capacity offers on the other
side. The bids on each side are in competition allowing
simultaneous selection of both the most critical jobs and the
most appropriate drones without requiring multiple bidding
rounds. These auctions are conducted through an auctioneer
which determines the price and therefore the job distribution.

2) Search and rescue mission: Although our work is not
directly based on pre-existing SAR work, it is inspired by
several works for the definition of tasks such as online
planning [12], target search [13] and LSAR [14].

3) Drone energy consumption models: Defining an energy
consumption model is difficult for two reasons. First, the
energy consumption comes from both the embedded system
(computing resources, WiFi and sensors) and the drone en-
gine. Second, the power consumption of the drone propulsion
strongly depends on the environment and speed. Additionally,
the consumption of the embedded system depends on the
processing and communication loads. Therefore, it appears
very unlikely to come out with a model that will be both
accurate and generic. However our study concerns the distri-
bution principle so realistic models are sufficient to perform
fair comparisons between different solutions.

Regarding the embedded system, we use as reference, the
very complete study presented in [15]. For the drone, we
consider small autonomous vessels. We choose the widely
used Heron USV and use the characteristics of its engine [16].

4) Reinforcement learning and robotics: Reinforcement
learning has been successfully applied to a wide variety
of robotic problems such as grasping [17], [18], obstacle
avoidance [19] and path planning [20].

However, its application to multi-agent systems remains
limited and complex due to the non-stationary environment

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

introduced by simultaneous learning agents [21]. Recently,
several RL-based approaches have been proposed to solve
various decentralized MRS problems such as exploration [22],
collaborative decision-making [23] and MRTA [24]. These
solutions rely on a partial or total centralization of learning.
Our approach relies on the continuous training of a smart
auctioneer which is not attached to a particular drone and
can be simply secured with backups on one or more other
drones. Compared to our work, [22], [23] address different
problems than MR(p)TA and [24] assumes single-task robots
with delayed allocation and does not consider robotic clusters
or task parallelization. Finally our solution is meant to support
high dimensional action spaces.

B. Deep Reinforcement Learning

By learning through experiences, reinforcement learning
(RL) offers a flexible and adaptive approach. Our RL solu-
tion must learn to conduct auctions (by filtering and sort-
ing bids) in order to find the right balance between distri-
bution/acceleration, computational load and autonomy. The
objective is to let the AI adapt its policy according to the area
while accommodating the uncertainty related to the task gen-
eration. Unlike other RL implementations in SAR domain, our
approach proposes to (partially) coordinate the MRS without
resorting to centralization or increasing communications.

1) Principles and Q-Learning: In RL, the agent observes
at each time step, the environment’s state st and chooses an
action at. This action modifies the environment, which then
proceeds to the next state st+1. Then, the agent receives a
reward rt according to the quality of its choice. The learning
aim of the agent is to maximize the cumulative value of future
rewards as illustrated in Fig 1.

One of the most popular reinforcement learning methods is
Q-Learning, which chooses its actions by means of Q-values.
Q-Learning uses a table to store all Q-values of all possible
{state, action} pairs. This Q-table is updated using the Bellman
equation (eq. 1) and the action selection is usually done with
an ε-greedy policy.

Q(s, a) = Q(s, a) + α[y −Q(s, a)] (1)

where y denotes the temporal difference target:

y = r(s, a) + γmax
a′

Q(s′, a′) (2)

with:

• r(s, a), the reward of action a in the state s
• γ, the discount factor in [0,1]
• α, the learning rate
• maxa′ Q(s′, a′), the optimal possible Q-value for state s′

Although effective, tabular Q-learning cannot be used for
high dimensional state space problems. The Deep Q Network
(DQN) method, which replaces the Q-table with a deep neural
network (DNN), has been introduced [25] to overcome this
problem.

2) Deep Q-Network: A Deep Q-Network (DQN) architec-
ture uses a DNN of parameters θ as a function approximator
to estimate Q-values as shown in Fig. 1.

The network is trained by minimizing a loss function
sequence which evolves at each iteration i :

Li(θi) = Es,a,r,s′
[
(yi −Q(s′, a′; θi))

2
]

(3)

with :
yi = r + γmax

a′
Q(s′, a′; θi−1) (4)

State Environment

Agent Qπ(s, a; θ)

Reward

Action

Observed state

1Fig. 1. Reinforcement learning diagram with DQN: The agent observes the
state of the environment, takes an action and then receives a reward.

However, using a DNN leads to instability of the algorithm
[25] requiring the use of another network of parameters θ−

to calculate the target (eq. 5). In addition, in order to break
the correlation between consecutive samples, it is necessary
to resort to a experience replay mechanism [26] that can be
prioritized [27].

yi = r + γmax
a′

Q(s′, a′; θ−) (5)

But, instability is not the only challenge facing the DQN.
3) Double Deep Q-Network and Dueling Architecture:

Both Q-learning and DQN suffer from a problem of overes-
timation of action values [28]. Double DQN (DDQN) solves
this issue by using the target network when evaluating [29]
leading to :

yi = r + γQ(s′, arg max
a′

Q(s′, a′; θi); θ
−) (6)

In 2016, Wang et al. [30] have proposed a dueling ar-
chitecture, called Dueling Double Deep Q-Network (3DQN),
which explicitly separates the representation of state values
and (state-dependent) action advantages as shown in Fig.2. The
combination of streams is made by a special aggregating layer
which produces the estimate of state-action value function via
the Eq. 7. Compared to DDQN, this architecture learns the
state-value function more efficiently and is less vulnerable to
sudden policy switch.

Q(s, a; θ, α, β) = V (s; θ, β)+(
A(s, a; θ, α)− 1

A
∑
a′

A(s, a′; θ, α)

)
(7)

Although capable of dealing with high dimensional state
space problems, these methods suffer from the same limitation
as Q-Learning for high dimensional action spaces.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

State

Shared
network θ

β

α

V (s; θ, β)

A(s, a; θ, α)

Q(s, a; θ, α, β)

1Fig. 2. Dueling Double Deep Q-Network has a common network from which
two streams arise in order to separately estimate the state value V (s) and the
advantages for each action A(s, a). Their aggregation is carried out by a
special layer which produces Q(s, a) values for each action.

4) High dimensional discrete action spaces: The number
of actions, that must be explicitly represented, grows expo-
nentially with action dimensionality. Indeed, for an environ-
ment with an N -dimensional action space and nd discrete
sub-actions for each dimension d,

∏N
d=1 nd actions must

be represented [9]. Several solutions are proposed to solve
this problem from autoregressive network [31] to cooperative
multi-agents [21]. In this work, we use the recently developed
BDQ architecture introduced in [9], which is a variant of the
dueling architecture. This solution divides the advantage part
into several sub-branches (one per dimension) while sharing
the state value part across the sub-branches. This approach
achieves a linear increase of the number of network outputs,
does not require prior information nor raise convergence
issues. An example of this architecture can be found in Fig.6.

III. METHOD DEFINITION

A. Mission presentation

A MRS composed of homogeneous USVs and organized as
a robotic cluster must conduct a SAR mission in an area. It
must complete every mission task as fast as possible before
any USV runs out power. To reach this goal, the MRS must
share its resources by distributing the tasks over the cluster.
In a first approach, we focus on tasks that can by distributed,
namely we only consider complex computational tasks that
can benefit from robotic clustering. But USVs also run local
tasks, such as navigation control and obstacle avoidance, that
impact CPU/GPU load and so available computing resources.
Therefore, the computing resources are split into local and
distributed parts and the task mapping method only considers
the second one.

Since our problem crosses multiple complex research fields
such as distributed High Performance Computing (HPC), SAR
and power optimization, we make some assumption to focus
on our specific question.

1) Area Definition: An area represents a zone of the
mission environment and determines the conditions the MRS
faces. Each area is defined by several features with values
between 0 and 1 representing the environment state as well as

the mission progress as described in Table I. Some parameters
are fixed and characterize the area while the others evolve
according to the tasks completed by the USVs.

TABLE I
AREA CHARACTERISTICS

Types Not. Descriptions Fixed

Hazard H Represents the environmental conditions
and directly influences tasks efficiency Yes

ROI
density D Illustrates the region of interest (ROI)

and influences tasks efficiency Yes

Exploration E Reflects the current exploration level No

Search S The current search level which cannot
exceed the exploration level No

Rescue R
Shows the current rescue progress in this

area which cannot exceed the search level.
The mission end when this value reach 1.

No

Path
planning P

Represents the necessity to re-evaluate path
planning after several USVs movements.

Its speed evolution depend on a factor λP
No

Merging M
Depicts the data to be merged due to
tasks completion. The merging rate

depend on a factor λM
No

The need for path planning (Np) increases each time a robot
starts a new job requiring motion. The value is updated at the
end of the cycle according to Eq. 8.

Npt = Npt−1 + λP
∑
i∈ωt

ji (8)

with: ωt the new jobs starting at cycle t requiring movement.
The need for merging (Nm) increases each time a mission

task is completed according to Eq. 9.

Nmt = Nmt−1 + λM
∑
i∈Γt

Ti (9)

with Γt the set of completed mission tasks at cycle t.
Areas are independent of each other and the MRS is

deployed in one area at a time.
2) MRS: The multi-robot system involves n homogeneous

USVs deployed simultaneously in the area. They can com-
municate with each other, but they evolve autonomously
without exchanging information about their states. To limit
the bandwidth use, communications only take place during
auctions or when distributing tasks. Each USV is defined by
the following characteristics:

TABLE II
SUMMARY OF USV CHARACTERISTICS

Characteristics Description Type

ID The USV ID Integer

Processing unit The current use rate of the USV
processing (CPU + GPU) Float

Memory The current use rate of the USV memory Float
Battery The available USV battery Float

Specific path Assert if the USV is currently
following a specific path Boolean

Speed The current USV speed Float

Server jobs The list of server jobs currently
performed by the USV List

Worker jobs The list of worker jobs currently
performed by the USV List

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

One of the USVs performs the function of auctioneer which
seems to lead to the creation of a single point of failure (SPoF).
In our first approach not using reinforcement learning, the
problem does not arise because the auctioneer does not carry
a specific capacity so any USV can handle this function and
it is quite possible to change auctioneers between auctions.
For the others approaches, this is not as straightforward since
the auctioneer keeps a periodically updated neural network.
A simple and inexpensive solution to alleviate the SPoF risk
is to appoint a backup USV that can take over in case of
the auctioneer failure. The backup USV keeps a copy of the
network which is periodically transmitted by the first one.

3) Time definition: Our use cases being simulated, the time
is discretized as a succession of iterations ti with a fixed ∆ of
continuous time. It means that updates of tasks, robots, area
states are performed at the end of each iteration in this order.
Moreover it is common that a set of tasks can start in each
iteration.

Minimizing the number of iterations required to complete
the mission is one of the two objectives of the MRS that must
manage to efficiently perform a serie of tasks.

B. Tasks

1) Task definition: The mission progresses with the com-
pletions of tasks and the nature of this evolution depends on
the type of task. Our approach considers five types split into
two categories: mission tasks and regular tasks. The mission
tasks include exploration, search and rescue types which are
directly necessary for mission completion. There is a chain of
dependencies between these tasks. It is necessary to explore
before searching and to research before rescuing. The regular
tasks consist of path planning and merger types that must be
performed regularly to limit penalties. The difficulty lies in
maximizing the effectiveness of certain task types at the right
time. Each task is divided into jobs to allow its parallelization.
The task type affects the job characteristics which are defined
in Table IV. Regardless of their type, tasks can (should) be
distributed to improve the system efficiency.

2) Task distribution and generation: Task parallelization
(distribution), obtained by allocating worker jobs, is the pri-
mary mechanism to increase tasks efficiency. All distributions
are carried out according to a Master-Slave paradigm described
by Camargo-Forero et al. [35] and require at least one server
job and worker jobs. Processed Data can either be stored at
worker or server level as illustrated in Fig. 3.

The target distributed system is such that task generation
and task distribution are independent, the first one is driven by
mission requirements and the second one by the optimization
of computing tasks. Indeed, we expect USVs of a decentralized
system to be as autonomous as possible to limit communica-
tion and speed up the decision process. Periodically, each USV
attempts to start a new task based on its local understanding of
mission progress. The start of a task depends on a probability
that varies with the relevance (possible efficiency) of the task
type at the present time according to the current area values.
These probabilities are calculated at each time step and are
given in Table III with E, S, R, P, M being the current values

Server

Worker Worker Worker

Data Data Data

Server

Worker Worker Worker

Data

Paradigm n.1 Paradigm n.2

1
Fig. 3. Worker/Server paradigm: Communications only between a worker
and the server. Processed Data can be stored at worker (1) or server level (2).

of exploration, search, rescue, path planning need and merging
need respectively. There is also a probability (pNone = 0.1) of
not starting a task illustrating the need to wait for a more
convenient time.

3) Task effect: Each task completion affects the correspond-
ing area characteristic. In the case of a task directly necessary
for the mission (exploration, search, rescue), its completion
increases the value of the corresponding attribute. Dependen-
cies between types must be respected otherwise the task will
have a limited impact or even be counter productive. On the
other hand, in the case of a path planning or merger type task,
the task completion reduces the value of the associated need
and therefore the penalty incurred. The magnitude effect of
completing a task depends on the number of workers assigned
to it, the area states at the beginning and the end of the task.
We formalize the completion effects of tasks with the realistic
models presented in Table III. Other models can be chosen
without loss of generality for the task management method. In
this table tn is the new value, tc the current value, ts the value
when the task starts, w the number of worker jobs participating
in the task, µ1 the gain for necessary tasks, µ2 the gain for
the other tasks and P the penalty defined as follows:

P = (1−Np2) + (1−Nm2) (10)

In addition to the computing power, a task may require a
movement of the USV that increases its energy consumption.

C. Energy consumption model

We consider the two sources of energy consumption.
The first one is related to the embedded system including
CPU/GPU computing resources, sensors and WiFi. It increases
with the computing load and task distribution according to
energy-proportional computing techniques such as dynamic
voltage and frequency scaling (DVFS). The second one is the
engine and increases exponentially with the USV speed.

1) Embedded system: We distinguish the processing and
the communication parts. The computing resource model is
extremely complex for new heterogeneous system-on-chip
(SoC) since it must include partially correlated parts (multi-
core CPU, GPU, RAM, etc.). In addition, the increased load of
these components has several implications such as increasing
the operating frequency and the activation of more cores. Our
study required a realistic high-level model compliant with
simulation time. So we built our model according to study [15]

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

TABLE III
TASK MODEL: EFFECT AND PROBABILITY OF EACH TASK TYPE ON THE MISSION

Type Effect Probability Category Example

Exploration Etn = Min
(
Etc + µ1 × w × P

H
, 1

)
p(E) =

{
1− E
0 if specific path Mission Maps the area using a LIDAR to

identify critical section [6].

Search Stn = Min
(
Stc + µ1 × w × P

D
, Ets

)
p(S) = E − S Mission Examines critical section using

computer vision to finds targets [13].

Rescue Rtn = Min
(
Rtc + µ1 × w × P

H +D
, Sts

)
p(R) =

{
S −R
0 if specific path Mission Circle around the target, diagnose and

calculate the required actions [32]

Path planning Min (Max(Np− µ2 × w, 0), 1) p(Np)Max(0, Np) Regular Reassess USVs movements to avoid
collisions and enhance efficiency [33].

Merger Min (Max(Nm− µ2 × w, 0), 1) p(Nm) = Max(0, Nm) Regular Fusion new data to update the mission
and prevent research overlapping [34].

TABLE IV
JOBS MAIN CHARACTERISTICS

Characteristics Descriptions Types

Processing The job processing requirement Server
Worker

Memory The job memory requirement Server
Worker

Execution time The time during
which the job must be executed

Server
Worker

Specific path Indicates if the job requires that
the USV follows a specific path

Server
Worker

Number Defines the maximum workers
number for the task Worker

that provides regression models based on real measures with
different mobile SoC. We made the following assumptions on
power management policy to get tractable models:

1) Clock frequency and number of cores: an additional core
is activated each time the clock frequency reaches its
maximum and the frequency then returns to its minimum.

2) CPU and GPU use: we consider a global model where
both are correlated, so ρ is the CPU and GPU use rate.

3) We introduce a multiplier scaling factor to models of [15]
to adjust them to observations made on a Jetson TX2.

The final model is given by the following equation (mW):

CC(ρ) = 0.68ρ2 + 42.62ρ+ 1485.93 (11)

2) Engine model: Our engine consumption model corre-
sponds to the consumption of the USV ’Heron’ developed by
the Clearpath company and presented in Fig. 4. The informa-

Fig. 4. Heron USV from the company Clearpath [16]

tion provided by the manufacturer [16] allowed us to model
the USV consumption according to its speed. We assume the

speed is constant in an operating mode that depends on each
task.

After including the Wifi power consumption, that we assume
linear with the number of jobs ω according to [15], we obtain
the following global power consumption model where ρ, ω
and ν are the computational load, the number of jobs and the
USV speed respectively (mW).

CT (ρ, ω, ν) = 0.68ρ2 + 42.62ρ+ 1000ω+

3485.93 + 22.918e1.127ν
(12)

IV. SOLUTION DEFINITION

We propose two kinds of approaches to solve this problem,
both rely on auctions to perform the job allocation.

A. Auctions

1) Auction mechanism: Whenever a USV wants to start
a new task, it starts a server-type job and sends job worker
requests to the auctioneer as shown in Fig.5. Each request
takes the form of a bid where the price means the com-
putational need of the task. An offer is published for each
possible worker job. At the same time, each USV transmits its
ability to accept a worker-type job in the form of a bid whose
valuation corresponds to its available computational resources.
Since a USV can execute several jobs simultaneously, it sends
several bids with decreasing values in order to ensure that
it is still able to execute the job. In addition to a valuation
linked to computing resources, each bid has a second valuation
representing the state of its owner’s battery and the job types
concerned. It is then up to the auctioneer to match supply
and demand. Conventionally, double auctions take place in
a non-cooperative environment where the auctioneer role is
to set a sale price that satisfies both buyers and sellers. In
our case, the environment is totally cooperative and the price
only represents computing capacities/requirement. A simplistic
approach therefore consists of sorting supply and demand to
match a maximum of bids. Of course, this solution is not
without consequence since it monopolizes computing and en-
ergy resources which could be spent on more efficient/relevant
tasks. On the other hand, if the system is not using its full
capacity, it is wasting time. The auctioneer must therefore
strike balance between task efficiency and maximization of
the computing resources use.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Start

server job

Generate bids Generate bids

Send bids Send bidsCollects bids

Discards bids

Sorts bids

Cancel

server job
Announces

the winners

Start

worker job

1Fig. 5. Auction principle: each USV starting a new task (orange) generates
all needed worker-type offers and sends them to the auctioneer (blue).
Simultaneously, all USVs (cyan) communicate their computing-capacity offers
to the auctioneer that conducts the auctions and communicates the results to
the MRS. Finally, tasks without enough workers are canceled (dashed).

2) Auction objectives: The use of auctions and the mar-
ket serves four purposes. First, auctions allow an efficient
distribution of worker jobs among USVs without requiring
explicit coordination from the server or workers. Second,
by making possible to classify offers by price, least loaded
USV become favored, which contributes to computational load
balancing within the system. Third, the USVs communicate
their current battery state, so their energy levels can be taken
into consideration to ensure whole system energy balance. Last
but not least, the double auction system allows the auctioneer
to have a global vision of the new tasks allowing disqualifying,
temporally preventing or promoting certain task types. In
summary, the decentralized system manages to exercise some
control over the autonomous task selection mechanism. Of
course, this control comes with limitations because the system
cannot force the start of a task type and disqualification
induces a waste of time.

However, determining the correct bid pairing requires the
system to be able to understand the relationship between the
task type, the task efficiency and the dynamic mission state.

B. Deep reinforcement learning auctions

We expect to learn how to define at each auction how
many tasks of each type must be kept and which minimum
energy level a USV must have to participate in the auction.
However, the problem complexity leads to the existence of
a high dimension action space. Indeed, there are five types
of tasks and two auction listings which add up to seven
dimensions. Since each dimension has up to nine levels, a
total of

∏N
d=1 nd = 1 166 886 possible actions need to be

considered which leads us to use a BDQ architecture.

1) Branching approach: Our BDQ architecture described in
Fig.6 uses a common network from which a branch emerges
for each action dimension as well as one to estimate the state
value function. For each action dimension the corresponding
action value is obtained by combining state value and advan-
tage values through a special aggregation layer. Similary to
[9], we test several aggregation formulas and obtain the best
performances by locally subtracting the average advantage of
each branch from its sub-action advantages, before summing
them with the state value as follows:

Qd(s, ad) = V (s) +

A(s, ad)−
1

n

∑
a′d∈Ad

Ad(s, a
′
d)

 (13)

with:
• d and action dimension and d ∈ {1, ..., N}
• |Ad| = n discrete sub-actions
• The state s
• A sub-action ad ∈ Ad
The TD target for the BDQ updates can be calculated in

different ways. We tested the three propositions of [9] and
like the authors, we get better performance by averaging rather
than maximizing with the following equation :

y = r +
1

N

∑
d

γQ−d (s′, arg max
a′d∈Ad

Qd(s
′, a′d)) (14)

Although showing promising results, the BDQ approach re-
main under explored. In this study we will assess its perfor-
mances against another method that can handle high dimen-
sional discrete action spaces, the multi-agent solution.

2) Multi-agent approach: It is considered to overcome
the high dimensional action space problem by dividing the
learning agent into independent sub-agents dealing with sub-
dimensions of the problem. The combination of the resulting
sub-actions constitutes the agent’s action. Unlike the BDQ
approach branches, sub-agents do not share a common state
value and therefore must be coordinated using a team reward.

a) Standard architecture: The agent is divided into as
many sub-agents as the action space of our problem has sub-
dimensions. It results in seven independent 3DQNs (one per
sub-agent) as illustrated in the Fig. 7. However, the multi-agent
approach has only been successfully tested for two sub-agents
and convergence problems are expected with the increase in
the number of sub-agents [36].

b) Tuned architecture: In order to overcome the possible
convergence issue, we propose a second approach with a
reduced number of sub-agents. To achieve this, the sub-
dimensions are grouped by type. Thus, a sub-agent deals with
the actions relating to the mission tasks, a second with the
regular tasks and the last agent handles the management of
the energy. This results in an architecture with three sub-
agents as illustrated in Fig. 8. This clustering provides a
better understanding to the sub-agent by making them directly
responsible for part of the problem. In addition, we were able
to disqualify some irrelevant actions sub-combinations. For
example simultaneously trying to maximize the exploration,
search and rescue tasks does not make sense since the MRS
does not have sufficient resources.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Action29

State

Shared
network
4 × 256

6
4

6
4

6
4

6
4

64

3
2

3
2

3
2

3
2

32

A1(s, a1)

A5(s, a5)

A6(s, a6)

A7(s, a7)

Q1(s, a1)

Q5(s, a5)

Q6(s, a6)

Q7(s, a7)

V (s)

... ...

argmax

argmax

argmax

argmax

1Fig. 6. BDQ architecture: A common network leads to eight branches where seven correspond to the action dimensions and the last one calculates the state
value to be aggregated to each other branches to obtain the action values for each dimension. The combination of all sub-actions defines the global action.

Action

State 3DQN
θ1

3DQN
θ7

Q1(s, a1)

Q7(s, a7)

... ...

argmax

argmax

1Fig. 7. Standard architecture : The learning agent is made up of seven inde-
pendent 3DQNs each dealing with a problem sub-dimension. The combination
of their choices forms the action taken by the agent.

Action

State

3DQN
θ1

3DQN
θ2

3DQN
θ3

Q1(s, a1)

Q2(s, a2)

Q3(s, a3)

argmax

argmax

argmax

1Fig. 8. Optimized architecture: The learning agent is composed of three
independent 3DQNs each dealing with a clustering of problem sub-dimension.
Each sub-agent produces a sub-combination of actions, the combination of
which forms the action taken by the agent.

V. EXPERIMENTAL SETUP

We have developed a simulator to compare the different
approaches, efficiently explore most of the parameters and

evaluate the relevancy of our solution before a future real
deployment.

A. Experimental Set Up

Our simulator is coded in python 3.8.5 and the learning
and deployment parts of our RL methods rely on the widely
used Tensorflow (with Keras), open source ML framework.
Our simulator can handle a wide variety of missions depending
mainly on the parameters used to define the area, the MRS
and the tasks. In this study we had to reduce the number of
parameters explored, and therefore, fix some of them in order
to highlight the relevant key points.

To assess our method viability in real conditions, we tested
the inference and learning times on an embedded architecture
adapted to mobile robots. The Jetson TX2 is a power-efficient
(< 15W) computing device suitable for Embedded AI. Since
it is very popular on mobile robot, it will serve as a reference.
As shown in Table V, the results of our BDQ approach (other
solutions provide comparable times) are fully compliant with
the computing power available on the target small USV.

TABLE V
INFERENCE AND LEARNING TIME BY ARCHITECTURE :

Configuration Emulator Nvidia Jetson TX2

Components Intel Xeon Silver 4114 (x2)
Nvidia GTX 1080 TI

ARM Cortex-A57
Nvidia Denver 2

GPU Pascal

Hardware

20 cores at 2.2 GHz
64 GB of DDR4

3584 cores CUDA
11 GB of GDDR5X

4 cores at 2 GHz+
2 cores at 2Ghz

8 GB of LPDDR4
256 cores CUDA

Inference
(BDQ/MA-T) 3.9/5.3 ms 10.4/14.5 ms

Experience replay
(batch of 32) 517/728 ms 2918/3947 ms

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

B. Settings

The main fixed parameters are listed in Table VI. In this
first approach, the system is homogeneous and therefore all
USVs have the same capacities.

TABLE VI
ENVIRONMENT SETTINGS : LIST OF FIXED PARAMETERS.

Parameters Values

MRS size 20
Battery power capacity 325 W.h

Iteration duration 3 min
Maximum workers number 5

Number of iterations required to complete a task 4
Number of iterations between auctions 2

µ1 0.01
µ2 0.025
λP 1
λM 1

Table VII shows the main learning parameters used by our
RL solutions. They were determined by trial and error. For
all the results presented, the RL approaches were previously
trained on 40 missions and no learning is carried out during
the evaluation.

TABLE VII
LEARNING SETTINGS

Types Values

BDQ Multi-agent

Learning rate : α 10−3 10−3

Discount factor: γ 0.95 0.90
Target network update frequency : c 40 iterations 40 iterations

Memory size 256 256
Batch size 32 32

C. Task set

Table VIII shows the different job computational prerequi-
sites depending on the task type and the set used. The use of
multiple sets allow us to observe the solution efficiency when
facing imbalance. Indeed, if on average each set requires as
much CPU as memory, sets 2 and 3 introduce phases where a
resource becomes more valuable (e.g. at the beginning, when
exploration is necessary, memory become the most requested
resource). In addition, regardless of the set used, a server job
requires 10 % of CPU and memory.

TABLE VIII
TASK SET : PREREQUISITES FOR EACH JOB

Types Set n.1 Set n.2 Set n.3

CPU RAM CPU RAM CPU RAM

Exploration 0.3 0.3 0.2 0.4 0.1 0.5
Search 0.3 0.3 0.4 0.2 0.5 0.1
Rescue 0.3 0.3 0.3 0.3 0.3 0.3

Path planning 0.3 0.3 0.35 0.25 0.4 0.2
Data synchronization 0.3 0.3 0.25 0.35 0.2 0.4

VI. RESULTS

The results are the average obtained over 1000 missions.
The terms ‘BDQ’, ‘MA-T’, ‘MA-S’ and ‘Market’ denote the
following approaches: the BDQ architecture, the tuned multi-
agent (3 sub-agents), the standard multi-agent (7 sub-agents)
and the static market. We adopt a question-based method to
analyze the results. Before comparing these two solutions, we
want to ensure the relevance of the use of a robotic cluster
compared to a local solution.
� Does the distribution of tasks within the robotic cluster

increase the mission success rate?

A. Local vs distributed

For comparison purpose we first introduce a local solution
that obviously cannot parallelize its tasks within the cluster.
However, this solution can parallelize tasks locally without
requiring any server-type job and without generating any addi-
tional energy consumption from communications. We observe
that the local solution is unable to successfully complete a
single mission. Distribution is therefore necessary.
� Does task distribution allow a faster mission completion?

We increase the power capacity of the local solution (3.25
kW.h) by a factor of 10 to be able to compare the completion
speeds. Figure 9 shows the completion speeds of the different
solutions according to the task set used. The local solution
presents a completion speed close to the distributed approaches
for set 1, but it turns out to be totally ineffective for the other
two sets highlighting the relevance of distribution. In addition,
we observe a greater disparity (45 % more iterations needed
for the slowest mission) suggesting a poor reliability. The lack
of results for ‘MA-S’ with the sets 2 and 3 is addressed later.

The distribution advantage is clear and the local approach
will not be considered henceforth. We then observe that the
market solution completion times outperform BDQ for all sets.
� Does a solution ability to quickly complete a mission

induces a high success rate ?

B. Success rate

Figure 10 displays the failure rates of the four solutions
depending on the task set used. The results show that ‘BDQ’
and ‘MA-T’ offer much better performance with a failure
rate up to more than 30 times lower for set 1. Although
offering better results than the static approach, the solution
‘MA-S’ still fails more than 50 % of these missions. When
an unbalanced set is used, the mission appears more difficult
to complete and the performance gap between the solutions
is reduced. The solution ‘MA-S’ is unable to complete a
single mission suggesting, as expected, some convergence
issue. Nevertheless, the other RL approaches remain much
more effective (31.8 % and 19. % failures against 77.8 %).
It is worth mentioning that the ’MA-T’ approach outperforms
the ‘BDQ’ one for the set n.3.

Figure 11 shows the failure rates of the ‘BDQ’ and ‘Market’
solutions based on the initial power capacity with task set 1.
The results confirm the dynamic advantage conferred by the
learning capacity. Indeed, this approach makes the system

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

127.9
138.4

111 114.5

135.4
149.61 154.27

N.C

143.22

327.61

149.61 154.27

N.C

143.22

327.61

100

130

160

190

220

250

280

310

340

370 Set n.1 Set n.2 Set n.3

It
er
a
ti
o
n
s
n
u
m
b
er

BDQ

MA-T

MA-S

Market

Local

1Fig. 9. Average completion speeds vs task set: rectangles indicate maximum and minimum values while numbers are the average values.

TABLE IX
NUMBER OF TASKS EXECUTED PER TYPE (OPTIMAL SOLUTION: 40 FOR MISSION TASKS)

Type Set n.1 Set n.2 Set n.3

BDQ MA-T MA-S Market BDQ MA-T MA-S Market BDQ MA-T MA-S Market

Exploration 50 45.9 50.4 49.1 49 47.6 N.C 51.8 50 51.8 N.C 50.2
Search 53.7 52.4 55.1 53.8 49.6 55 N.C 55.6 59.9 60 N.C 54.2
Rescue 49.6 48.6 48.8 48.8 50 50.7 N.C 50.9 50.3 46.2 N.C 49

Path planning 66.1 54 62.3 72 55.3 56 N.C 71.7 56.4 55.5 N.C 70.4
Merging 79.6 102 71.3 108.5 69 70 N.C 89.6 71.2 72.1 N.C 91

2.6%
4.8%

58%

71.6%

11%

16%

100%

73.2%

31.8%

19.5%

100%

77.8%

0

10

20

30

40

50

60

70

80

90

100

Set n.1 Set n.2 Set n.3

F
ai
lu
re

ra
te

(%
)

BDQ MA-T MA-S Market

1Fig. 10. Failure rate vs task set

more reliable by displaying a failure rate of 0 % for an initial
battery power capacity greater than 325 W.h. Furthermore, the
USVs from the BDQ solution with 25 W.h less initial power
are as efficient as from the classical market approach.
� Does a high success rate mean maximized resource use?

C. Computing load

Figure 12 shows the average load rates (CPU and memory)
of the MRS during a mission. The results of the ’MA-S’
solution are missing for sets n.2 and n.3 because it failed to
complete them. We note the following three points. First, the
RL solution uses less resources than the market-based with
the ’MA-T’ being the most parsimonious. Second, the use
of unbalanced sets restricts the systems ability to mobilize

53.3%

98.8%

44.4%

91.4%

2.6%

71.6%

0%

43.4%

0%

20.1%

0

10

20

30

40

50

60

70

80

90

100

300 312.5 325 337.5 350

F
ai
lu
re

ra
te

(%
)

Power capacity
BDQ Market

1Fig. 11. Failure rate vs initial battery level for task set 1

their resources which explains the reduction in the overall
performance.
� Does the observed high resource usage by the market

approach reflects poor task efficiency?

D. Task efficiency

Table IX shows the number of tasks executed on average.
The mission task efficiency is optimal when it is performed
with five workers, without penalty and respecting the depen-
dency chain. In this case, only 40 tasks are needed in each
category to complete the mission. With a number of executed
tasks ranging from 45.9 to 60, the solutions show an efficiency
rate varying from 87.1 % to 66.7 % for an average of 78
%. The static market approach does not suffer for mobilizing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

73% 73%

68% 68%

79% 79%

89% 89%

59% 59%

53% 54%

N.C N.C

65% 66%

53%
55%

51%
53%

N.C N.C

62%
64%

0

10

20

30

40

50

60

70

80

90

100

BDQ MA-T MA-S Market BDQ MA-T MA-S Market BDQ MA-T MA-S Market

Set n.1 Set n.2 Set n.3
A
ve
ra
g
e
lo
a
d

CPU Memory

1Fig. 12. Resource usage of each approach according to the task set used.

more resources. Indeed, this approach offers similar efficiency
rate (average of 77.7 %), but perform more regular tasks
explaining the use of more resources. However, the regular
tasks do not require movement and therefore have little effect
on the system energy consumption. Although showing similar
performance, the ‘BDQ’ and ‘MA-T’ solutions focus on
different regular tasks. Indeed, the ‘BDQ’ approach performs
22,4 % more path planning tasks and the 22 % fewer merging
tasks indicating the use of different strategies. Things change
when using unbalanced sets and these two approaches show
a similar execution number for regular tasks. In addition to
constraining the resources mobilization, the difficulty induced
by these sets reduces the number of viable strategies leading
to this similarity. Finally, the ’MA-S’ solution displays the
best efficiency rate for its mission tasks while performing the
fewest regular tasks. This efficient and rational behavior does
not reflect a lack of convergence. In this context, how can the
observed performance differences be explained ?
� Does the high failure rate of the ‘Market’ approach and

the ‘MA-S’ approach inability in completing the missions
for the sets n.2 and n.3 come from poor distribution of
energy demanding tasks?

E. Energy management

We can analyze the distribution of energy-consuming tasks
by observing the remaining power capacity of USVs’ batteries.
Figure 13 shows the battery levels (min, max and avg) at
the end of a mission depending on the solution and the task
set used. On the one hand, we clearly see the failure causes
of the ‘MA-S’ solution, which prove unable to distribute
the energy-consuming tasks. On the other hand, the ‘Market’
solution does not present any fault in its distribution. Indeed,
if the ‘Market’ levels prove to be slightly lower, its allocation
mechanism seems efficient. Indeed, the disparities displayed
are low and similar to those of the ‘BDQ’ and ‘MA-T’
approaches attesting to a good distribution.

The reason why the market approach fails to deliver good
results is not straightforward. Indeed, its behavior seems
relevant since tasks are perform efficiently while distributing

the energy intensive ones. Admittedly, it performs more regular
tasks, but they do not involve any specific movement and
therefore the consumption is low. In addition, these executions
are not carried out to the detriment of mission tasks since
their observed efficiency indicates good distribution. Finally,
this solution makes multiple small inaccuracies that only a
dynamic and adaptive approach can detect and avoid. On
a final note, it would be tempting to estimate that these
differences in results arise from the arbitrary choice of starting
battery capacity. However, as shown in Fig. 11, the BDQ
solution manages to provide better results with 25 W.h less
power capacity (starting at 300 W.h) ruling out this hypothesis.

VII. CONCLUSION

In this study, we investigated the use of reinforcement
learning as an overlay to a market-based approach for the
management of a robotic cluster. The case study is a search
and rescue context. Managing a robotic cluster is complex
since any use of resources impacts the other cluster members.
In addition, the amount of available resources depends on
the load of each member and therefore inevitably fluctuates
during the mission. The high dynamic degree of the problem
is simulated with the following four points:

1) A dependency chain between mission tasks conditioning
the relevance of their execution.

2) A dynamic penalty that evolves according to the actions
taken by the system.

3) A task selection mechanism, based on dynamic probabil-
ities about drone local understanding of the mission state,
with no direct control from the system.

4) A strong energy constraint drives the mission success.

The results obtained by simulation show the contribution
of reinforcement learning to auction conduct. Indeed, learning
considerably improves the performances by reducing the fail-
ure rate (from 69 % to 40 % according to the task set). It then
becomes possible to use learning to make either the system
more reliable or to use drones with lower battery capacity. As
shown, the highly dynamic nature of this problem makes the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

31.75

25.3

42.75

17.05 17.79
16.26

N.C

14.46 14.61 14.1

N.C

12.54

0

10

20

30

40

50

60

70

80

90

100

Set n.1 Set n.2 Set n.3

B
a
tt
er
y
re
m
a
in
in
g
p
ow

er
(W

.h
)

BDQ

MA-T

MA-S

Market

1Fig. 13. Distribution of USVs energy after successful missions: rectangles indicate maximum and minimum values while numbers are the average values.

design of an efficient static solution very complex since many
uncertain and evolving parameters must be considered.

However, the complexity of the problem leads to a curse
dimensionality making the use of classical Deep Q-learning
methods impossible. In order to overcome this limitation,
we resorted to two little explored methods: the new BDQ
architecture and the multi-agent division. These two solutions
have comparable performance, but the multi-agent approach
suffers from several limitations. Indeed, as expected, this
approach encounters difficulties in converging with the in-
crease in number of sub-agents . We solved this problem
by clustering together sub-dimensions (having each sub-agent
process several sub-dimensions). However, although efficient
in our case, this method should face difficulties to converge
with the increase in sub-dimension number or fall again into
a curse of dimensionality with the increase in possible action
per sub-dimension or/and larger clusterings.

Overall, the BDQ method appears more suitable since it is
perfectly scalable (for both increase in sub-dimensions and
in action number by sud-dimension), does not suffer from
convergence issue (due to the common state value) and, unlike
grouping, does not require specific problem knowledge.

The proposed architecture of the Deep Q-learning solution
is a new BDQ type that scales with the dimensionality issue
and makes possible the estimation of the Q-values for each
sub-dimension.

Despite a growing need to locally distribute the computa-
tional load of MRS, the robotic cluster paradigm has been
barely explored. Therefore we believe that our promising
results can promote this idea. It will pave the way for future
improvements based on the following future works.

First, an S&R type mission environment turns out to be
highly complex and we had to simplify it to run the thousands
of simulations that were required by our study. The next step
is to consider spatial modeling making it possible to link the
USVs and tasks to positions. Secondly, the approach must
be tested with the deployment of a real USVs but prior a
real deployment, a hardware-in-the-loop simulation should be
performed with a dynamic 3D environment such as Gazebo.

REFERENCES

[1] B. P. Gerkey and M. J. Matarić, “A Formal Analysis and Taxonomy of
Task Allocation in Multi-Robot Systems,” The International Journal of
Robotics Research, vol. 23, no. 9, pp. 939–954, Sep. 2004. [Online].
Available: http://journals.sagepub.com/doi/10.1177/0278364904045564

[2] A. Torreño, E. Onaindia, A. Komenda, and M. Štolba, “Cooperative
Multi-Agent Planning: A Survey,” ACM Computing Surveys, vol. 50,
no. 6, p. 32, Nov. 2017.

[3] X. Feng, Y. Jiang, X. Yang, M. Du, and X. Li, “Computer vision algo-
rithms and hardware implementations: A survey,” Integration, vol. 69,
pp. 309–320, 2019.

[4] M. Afrin, J. Jin, A. Rahman, A. Rahman, J. Wan, and E. Hossain,
“Resource allocation and service provisioning in multi-agent cloud
robotics: A comprehensive survey,” IEEE Communications Surveys &
Tutorials, vol. 23, no. 2, pp. 842–870, 2021. [Online]. Available:
https://ieeexplore.ieee.org/document/9360855/

[5] A. Marjovi, S. Choobdar, and L. Marques, “Robotic clusters:
Multi-robot systems as computer clusters,” Robotics and Autonomous
Systems, vol. 60, no. 9, pp. 1191–1204, Sep. 2012. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0921889012000632

[6] B. D. Gouveia, D. Portugal, D. C. Silva, and L. Marques, “Computation
Sharing in Distributed Robotic Systems: A Case Study on SLAM,”
IEEE Trans. Automat. Sci. Eng., vol. 12, no. 2, pp. 410–422, Apr.
2015. [Online]. Available: http://ieeexplore.ieee.org/document/6913567/

[7] P. Gautier, J. Laurent, and J.-P. Diguet, “Comparison of Market-
based and DQN methods for Multi-Robot processing Task Allocation
(MRpTA),” in 2020 Fourth IEEE International Conference on Robotic
Computing (IRC). Taichung, Taiwan: IEEE, Nov. 2020, pp. 336–343.
[Online]. Available: https://ieeexplore.ieee.org/document/9287887/

[8] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap,
F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis,
“Mastering the game of Go without human knowledge,” Nature,
vol. 550, no. 7676, pp. 354–359, Oct. 2017. [Online]. Available:
http://www.nature.com/articles/nature24270

[9] A. Tavakoli, F. Pardo, and P. Kormushev, “Action Branching
Architectures for Deep Reinforcement Learning,” arXiv:1711.08946
[cs], Jan. 2019, arXiv: 1711.08946. [Online]. Available:
http://arxiv.org/abs/1711.08946

[10] X. Jia and M. Q. Meng, “A survey and analysis of task allocation algo-
rithms in multi-robot systems,” in 2013 IEEE International Conference
on Robotics and Biomimetics (ROBIO), Dec. 2013, pp. 2280–2285.

[11] S. Koenig, C. Tovey, M. Lagoudakis, E. Markakis, D. Kempe,
P. Keskinocak, A. Kleywegt, A. Meyerson, and J. Sonal, “The Power
of Sequential Single-Item Auctions for Agent Coordination,” in Proc.
of the 21st National Conference on Artificial Intelligence and the 18th
Innovative Applications of Artificial Intelligence Conference. Boston,
Massachusetts, USA: AAAI Press, Jul. 2006, pp. 1625–1629. [Online].
Available: http: //www.aaai.org/Library/AAAI/2006/aaai06-266.php

[12] Z. Beck, L. Teacy, and A. Rogers, “Online Planning for Collaborative
Search and Rescue by Heterogeneous Robot Teams,” in Proceedings of
the 2016 International Conference on Autonomous Agents & Multiagent
Systems, May 2016, pp. 1024–1033.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

[13] C. Wu, B. Ju, Y. Wu, X. Lin, N. Xiong, G. Xu, H. Li,
and X. Liang, “UAV Autonomous Target Search Based on
Deep Reinforcement Learning in Complex Disaster Scene,” IEEE
Access, vol. 7, pp. 117 227–117 245, 2019. [Online]. Available:
https://ieeexplore.ieee.org/document/8787847/

[14] E. T. Alotaibi, S. S. Alqefari, and A. Koubaa, “LSAR: Multi-
UAV Collaboration for Search and Rescue Missions,” IEEE
Access, vol. 7, pp. 55 817–55 832, 2019. [Online]. Available:
https://ieeexplore.ieee.org/document/8695011/

[15] C. Yoon, S. Lee, Y. Choi, R. Ha, and H. Cha, “Accurate power
modeling of modern mobile application processors,” Journal of Systems
Architecture, vol. 81, pp. 17–31, Nov. 2017. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S1383762117301947

[16] CLEARPATH, “Heron user manual,” 2020. [Online]. Available:
www.generationrobots.com/media/clearpath heron usermanual.pdf

[17] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser,
“Learning synergies between pushing and grasping with self-supervised
deep reinforcement learning,” in IEEE/RSJ Int. Conf.s on Intelligent
Robots and Systems (IROS), 2018, pp. 4238–4245, ISSN: 2153-0866.

[18] S. Joshi, S. Kumra, and F. Sahin, “Robotic grasping using deep rein-
forcement learning,” in IEEE 16th Int. Conf. on Automation Science and
Engineering (CASE), 2020, pp. 1461–1466, ISSN: 2161-8089.

[19] P. Wenzel, T. Schön, L. Leal-Taixé, and D. Cremers, “Vision-based
mobile robotics obstacle avoidance with deep reinforcement learning,”
in 2021 IEEE International Conference on Robotics and Automation
(ICRA), 2021, pp. 14 360–14 366, ISSN: 2577-087X.

[20] L. Jiang, H. Huang, and Z. Ding, “Path planning for intelligent robots
based on deep q-learning with experience replay and heuristic knowl-
edge,” IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 4, pp. 1179–
1189, 2020, conference Name: IEEE/CAA Journal of Automatica Sinica.

[21] A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus,
J. Aru, J. Aru, and R. Vicente, “Multiagent Cooperation and
Competition with Deep Reinforcement Learning,” arXiv:1511.08779
[cs, q-bio], Nov. 2015, arXiv: 1511.08779. [Online]. Available:
http://arxiv.org/abs/1511.08779

[22] J. Hu, H. Niu, J. Carrasco, B. Lennox, and F. Arvin, “Voronoi-based
multi-robot autonomous exploration in unknown environments via deep
reinforcement learning,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 12, pp. 14 413–14 423, 2020, conference Name: IEEE
Transactions on Vehicular Technology.

[23] Y. Xiao, J. Hoffman, T. Xia, and C. Amato, “Learning multi-robot de-
centralized macro-action-based policies via a centralized q-net,” in 2020
IEEE International Conference on Robotics and Automation (ICRA),
2020, pp. 10 695–10 701, ISSN: 2577-087X.

[24] B. Park, C. Kang, and J. Choi, “Cooperative multi-robot task allocation
with reinforcement learning,” Applied Sciences, vol. 12, no. 1, p. 272,
2021. [Online]. Available: https://www.mdpi.com/2076-3417/12/1/272

[25] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing Atari with Deep
Reinforcement Learning,” arXiv:1312.5602v1, Dec. 2013, arXiv:
1312.5602v1. [Online]. Available: https://arxiv.org/abs/1312.5602v1

[26] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis,
“Human-level control through deep reinforcement learning,” Nature,
vol. 518, no. 7540, pp. 529–533, Feb. 2015. [Online]. Available:
http://www.nature.com/articles/nature14236

[27] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized
Experience Replay,” arXiv:1511.05952 [cs], Feb. 2016, arXiv:
1511.05952. [Online]. Available: http://arxiv.org/abs/1511.05952

[28] H. V. Hasselt, “Double Q-learning,” in Advances in Neural Information
Processing Systems, 2010, pp. 2613–2621.

[29] H. van Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learning
with Double Q-learning,” arXiv:1509.06461 [cs], Dec. 2015, arXiv:
1509.06461. [Online]. Available: http://arxiv.org/abs/1509.06461

[30] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and
N. de Freitas, “Dueling Network Architectures for Deep Reinforcement
Learning,” arXiv:1511.06581 [cs], Apr. 2016, arXiv: 1511.06581.
[Online]. Available: http://arxiv.org/abs/1511.06581

[31] L. Metz, J. Ibarz, N. Jaitly, and J. Davidson, “Discrete Sequential
Prediction of Continuous Actions for Deep RL,” arXiv:1705.05035
[cs, stat], Jun. 2019, arXiv: 1705.05035. [Online]. Available:
http://arxiv.org/abs/1705.05035

[32] C. Yang, D. Wang, Y. Zeng, Y. Yue, and P. Siritanawan,
“Knowledge-based multimodal information fusion for role recognition
and situation assessment by using mobile robot,” Information

Fusion, vol. 50, pp. 126–138, 2019. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S1566253517302038

[33] J. Wang, W. Chi, C. Li, C. Wang, and M. Q.-H. Meng, “Neural rrt*:
Learning-based optimal path planning,” IEEE Trans. on Automation
Science and Engineering, vol. 17, no. 4, pp. 1748–1758, 2020.

[34] Y. Yue, P. Senarathne, C. Yang, J. Zhang, M. Wen, and D. Wang,
“Probabilistic fusion framework for collaborative robots 3d mapping,”
in 21st Int. Conf. on Information Fusion (FUSION), 2018.

[35] L. Camargo-Forero, P. Royo, and X. Prats, “Towards high
performance robotic computing,” Robotics and Autonomous
Systems, vol. 107, pp. 167–181, Sep. 2018. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S092188901830232X

[36] L. Matignon, G. J. Laurent, and N. Le Fort-Piat, “Independent rein-
forcement learners in cooperative Markov games: a survey regarding
coordination problems,” The Knowledge Engineering Review, vol. 27,
no. 1, pp. 1–31, Feb. 2012.

Paul Gautier is an Assistant Professor at the Uni-
versity Bretagne Sud and works at the CNRS Lab-
STICC. His research interests include robotic clus-
ter, machine learning in robotics and reinforcement
learning. He received the Ph.D. degree in computer
science from the University Bretagne Sud, France,
in 2021.

Johann Laurent is an Associate Professor at the
University Bretagne Sud and works at the CNRS
Lab-STICC (Laboratoire des Sciences et Techniques
de l’Information, de la Communication et de la Con-
naissance). His research interests include software
consumption estimation for embedded systems and
IA tools for cyber physical systems. He received a
Ph.D. in electronics from the University Bretagne
Sud, France, in 2002 and his Habilitation à Diriger
les Recherches in 2015.

Jean-Philippe Diguet is a CNRS director of re-
search. He has been A/Prof. at UBS University,
research visitor at IMEC/Belgium and UQ/Australia,
invited Prof. at Tohoku Univ./Japan and USP/Brasil.
At Lab-STICC he has led the team method and tools
for SoC and embedded system (MOCS) from 2008
to 2016 and then the ICT and Drones program. Since
2021 his is the director of CROSSING, an Interna-
tional CNRS Lab in Adelaide, Australia dedicated
to Human/Automous-Agents teaming. His research
work focused initially on various aspects of SoC and

embedded system design including self-adaptation and now addresses different
levels of embedded and distributed intelligence.

