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A B S T R A C T   

Urban landscapes are rapid changing ecosystems with diverse urban forms that impede the movement of or-
ganisms. Therefore, designing and modelling ecological networks to identify biodiversity reservoirs and their 
corridors are crucial aspects of land management in terms of population persistence and survival. However, the 
land cover/use maps used for landscape connectivity modelling can lack information in such a highly complex 
environment. In this context, remote sensing approaches are gaining interest for the development of accurate 
land cover/use maps. We tested the efficiency of an object-based classification using open-source projects and 
free images to identify vegetation strata at a very fine scale and evaluated its contribution to landscape con-
nectivity modelling. We compared different spatial and thematic resolutions from existing databases and object- 
based image analyses in three French cities. Our results suggested that this remote sensing approach produced 
reliable land cover maps to differentiate artificial areas, tree vegetation and herbaceous vegetation. Land cover 
maps enhanced with the remote sensing products substantially changed the structural connectivity indices, 
showing an improvement up to four times the proportion of herbaceous and tree vegetation. In addition, 
functional connectivity indices evaluated for several forest species were mainly impacted for medium dispersers 
in quantitative (metrics) and qualitative (corridors) estimations. Thus, the combination of this reproductible 
remote sensing approach and landscape connectivity modelling at a very fine scale provides new insights into the 
characterisation of ecological networks for conservation planning.   

1. Introduction 

Land use changes originating from anthropic activities significantly 
disturb ecosystem dynamics worldwide. They therefore represent one of 
the main threats to biodiversity and associated ecosystem services 
(Benítez-López et al., 2010; McKinney, 2006). These land use changes 
deeply perturb the structure of the landscape and the associated habi-
tats, thus modifying both the landscape composition (i.e., land cover) 
and configuration (i.e., spatial arrangement of land cover) (Fahrig et al., 
2011; Taylor et al., 1993). Specifically, this manifests through the loss, 
degradation and fragmentation of habitats, which are reshaped into 
small isolated patches surrounded by unsuitable habitats (i.e., biogeo-
graphic islands) (Fahrig, 2003; Wilcove et al., 1986). Playing the role of 
refuge, these remaining patches shelter wildlife populations whose 
connectivity across the landscape is crucial to ensure both their main-
tenance and resilience. Indeed, geographical isolation can notably lead 

to an inbreeding mating system and eventually to an extinction vortex 
(Frankham, 2015; Keyghobadi, 2007). 

Resulting in drastic and sustainable habitat modifications, urbani-
zation illustrates the perforation of habitats worldwide and its impact on 
the connectivity of global landscapes (Ramalho & Hobbs, 2012; Sand-
erson & Huron, 2011). In response to human population growth and the 
expansion of human-dominated landscapes, governments have adopted 
environmental measures to promote the reconnection of isolated 
patches with significant biodiversity and thus slow down the collapse of 
populations. These management practices aim to identify and localize 
biodiversity reservoirs and hotspots sheltering significant biodiversity 
and then design and preserve ecological corridors to reconnect these 
areas to each other through an ecological network. Biological pop-
ulations within these fragmented habitats located in urban landscapes, 
for example, adopt specific dynamics (e.g., meta-populations) to cope 
with their changing environment (Hanski & Ovaskainen, 2000). In this 

* Corresponding author. 
E-mail addresses: elie.morin2.0@gmail.com, elie.morin2.0@gmail.com (E. Morin).  

Contents lists available at ScienceDirect 

Ecological Indicators 

journal homepage: www.elsevier.com/locate/ecolind 

https://doi.org/10.1016/j.ecolind.2022.108930 
Received 6 January 2022; Received in revised form 25 April 2022; Accepted 27 April 2022   

mailto:elie.morin2.0@gmail.com
mailto:elie.morin2.0@gmail.com
www.sciencedirect.com/science/journal/1470160X
https://www.elsevier.com/locate/ecolind
https://doi.org/10.1016/j.ecolind.2022.108930
https://doi.org/10.1016/j.ecolind.2022.108930
https://doi.org/10.1016/j.ecolind.2022.108930
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecolind.2022.108930&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Ecological Indicators 139 (2022) 108930

2

case, the persistence of the population is modulated by the balance of 
colonisation and extinction within the available habitat patches. Thus, 
maintaining functional connections among habitats across landscapes is 
crucial for the survival and resilience of populations. As biodiversity is 
increasingly integrated into land use policies, landscape ecologists and 
land managers must make rapid diagnoses and analyses to take 
ecological networks into account. 

Ecological networks implicitly involve ecological processes (e.g., 
foraging, territorial defence, dispersal, migrations) related to resource 
availability and movements for organisms, including several spatial and 
temporal scales (Abrahms et al., 2017; LaPoint et al., 2015). Thus, 
ecological modelling aims to integrate these ecological processes in 
order to estimate and quantify the functional connectivity shaped by the 
landscapes. For two decades, resistance-based models were widely used 
and showed a good correlation with real or measured connectivity (i.e., 
telemetry, gene flows) (Zeller et al., 2018). Pixel resistance values 
represent an organism’s difficulty to move, or more precisely, the will-
ingness, energetic cost and/or survival rate of organisms to cross each 
landscape element (Zeller et al., 2012). The higher the resistance value, 
the more difficult it is to move, thus representing the permeability or 
impedance to move. Many connectivity models exist such as least cost 
modelling (Adriaensen et al., 2003), circuit theory (McRae, 2006; 
McRae et al., 2008) or landscape graphs (Bunn et al., 2000; Urban & 
Keitt, 2001). Among these methods, landscape graphs (combining 
resistance maps and least cost modelling) provide an interesting 
compromise between the data requirements and the capacity to repre-
sent ecological processes (Fagan & Calabrese, 2006). 

Graphs build ecological networks from nodes (i.e., habitat patches) 
and edges (i.e., functional connexions) through Euclidean distances or 
least cost paths (LCPs). These edges can be pruned using a cost or dis-
tance value that reflects, for example, the dispersal distance of a target 
organism (Foltête et al., 2012). Moreover, connectivity metrics are 
usually computed from these graphs at different scales (i.e., patch or 
edge, component and/or global level) to quantify functional connec-
tivity and create simulations for landscape management (Foltête et al., 
2014; Pascual-Hortal & Saura, 2006; Rayfield et al., 2011; Saura & 
Pascual-Hortal, 2007). Even though LCPs connecting habitat patches do 
not encompass all possible corridors, they provide reliable functional 
connectivity assessments for terrestrial organisms and thus for conser-
vation (Balbi et al., 2021; Zeller et al., 2018). However, all these 
cartography-based approaches strongly depend on the precision and 
quality of the input spatial information, particularly land cover data-
bases that include and delineate habitat patches and ecological corridors 
and barriers. To this end, satellite and aerial images are analysed using 
geographic information science (GIScience) methods and tools (e.g., 
geographic information system [GIS] tools and remote sensing analyses) 
to determine the characteristics of the landscape and extract natural 
elements such as trees, waterways and gardens. Most studies combine 
existing data from national geographic institutes, although fine-scale 
elements are often under-represented, as they require time-consuming 
manual processing (i.e., manual digitization). In urban landscapes, for 
example, trees and grass, often reduced to small isolated patches, are 
frequently underestimated, thus resulting in a lack of information that 
biases both landscape knowledge and ecological modelling (i.e., con-
nectivity and ecosystem services). However, urban vegetation, and 
especially its different strata, are crucial for fine-scale modelling, as 
these structures are fundamental for studying the movements of or-
ganisms. Indeed, herbaceous vegetation does not play the same 
ecological role as tree vegetation with regard to a wooded species or an 
herbaceous species. Thus, integrating vegetation strata is crucial to 
model biological flows and identify landscape structures (Choi et al., 
2021; Grafius et al., 2017; Tattoni & Ciolli, 2019). 

Remote sensing approaches with very high-resolution (VHR) images 
thus become essential, and among the high-resolution data, airborne 
light detection and ranging (LiDAR) and hyperspectral data provide very 
useful information for land cover/use classification (Casalegno et al., 

2017; Neyns & Canters, 2022; Shahtahmassebi et al., 2021). For 
instance, airborne LiDAR has been used in urban and forest areas to 
provide digital elevation models and digital surface models from a point 
cloud characterizing height of land cover elements. Such information 
helps detect and distinguish the different vegetation strata (i.e., herba-
ceous, shrubby and wooded) specifically within landscapes showing 
high complexity and heterogeneity such as cityscapes (Casalegno et al., 
2017). Even though these spatial data are well known and should be 
more affordable in the future, they are still rare, because they need 
specific materials to be acquired (e.g., drones or airborne platforms) and 
analysed. An alternative approach consists of analysing available VHR 
images using remote sensing tools that combine learning-based and 
geographic object-based image analysis (GEOBIA) methods. GEOBIA is a 
subdiscipline of GIScience that uses remote sensing analyses on satellite 
or aerial images (i.e., raster) to obtain semantic objects (i.e., vector) 
(Blaschke, 2010; Blaschke et al., 2014; Chen et al., 2018; Hay & Castilla, 
2008). The first step (i.e., segmentation) aims to identify and extract 
objects and features (i.e., segments), while the second step (i.e., classi-
fication) consists of assigning each segment to a specific land cover 
category. Many advances have been made to successfully identify and 
distinguish land cover categories from VHR images such as vegetation 
strata (De Luca et al., 2019; Dupuy et al., 2020; Li & Shao, 2013; Puis-
sant et al., 2014; Zhang et al., 2010; Zhou & Troy, 2008). Such methods 
are based on images with common spectral bands (i.e., red, green, blue 
and near infrared [NIR] bands), thus making this method useful and 
affordable in analysing numerous existing spatial data. Beyond the 
extraction of tree and grass vegetation, this methodology applied to a 
VHR image allows for the detection of isolated trees that could pro-
foundly change the landscape description and ecological modelling 
(App et al., 2022; Tiang et al., 2021). However, to our knowledge, no 
empirical study has estimated the improvement of a remote sensing (i.e., 
learning-based and GEOBIA) approach at a fine scale in urban landscape 
connectivity modelling (Wellmann et al., 2020). 

Indeed, based on the VHR images of three French cities, the first 
objective of this study is to develop a remote sensing methodology to 
identify and extract vegetation strata. Then, to consider the significance 
of the results (i.e., feasibility and reliability), we compare the obtained 
vegetation with that found on maps downloaded from existing data-
bases. Nevertheless, we add the vegetation obtained from the remote 
sensing approach (firstly without strata distinction and then with strata 
distinction) to the maps from the existing databases to assess the influ-
ence of data quality (i.e., by adding the remotely sensed vegetation) on 
landscape connectivity modelling. To this end, we analyse and compare 
the landscape structure indices (i.e., landscape composition and 
configuration) of these different maps. Finally, we computed and 
compared the functional ecological indicators (i.e., functional connec-
tivity metrics and models) for several biological and ecological behav-
iours and capabilities. 

By comparing these three levels of resolution data, this study high-
lights that ecological modelling depends on the quality of the land cover 
on which it is based, while a good description of the vegetation is crucial 
to estimate the ecological networks. Furthermore, by relying on open- 
source tools and methodology, this paper draws attention to the bene-
fits of combining two different and complementary disciplines (i.e., GIS 
and landscape ecology) in the design of ecological networks. 

2. Material and methods 

2.1. Study area and global land cover 

The study was conducted in three cities located in the west of France: 
Poitiers (46.58◦ N, 0.34◦ E), Niort (46.32◦ N, 0.46◦ W) and Châtellerault 
(46.81◦ N, 0.54◦ E). The cities are separated by around 100 km and 
exhibit a similar oceanic climate. 

Poitiers has a population of 131,499 inhabitants (2017 census), the 
altitude varies from 65 to 144 m, the average annual temperature is 
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11.5 ◦C, and the average annual precipitation is 687 mm. This city is an 
important historical metropolis in the west of France that is crossed by a 
motorway and a high-speed line (train). The long-established historic 
centre of Poitiers features a high density of housing and buildings, while 
the peripheral areas have experienced rapid urbanization since the 
1950 s. The broader landscape also includes semi-natural areas such as 
forests, wetlands, open fields, and an urban natural park (along the river 
Le Clain) that spans Poitiers and aims to preserve and promote natural 
areas in the urban landscape (e.g., grasslands, wetlands). 

Niort has a population of 72,894 inhabitants (2017 census), the 
altitude varies from 2 to 77 m, the average annual temperature is 
12.5 ◦C, and the average annual precipitation is 867 mm. Niort, an 
important historical city in the region, has experienced serious urban 
sprawl since 1950 and currently features both old and recent urban 

areas. The city is crossed by a green corridor alongside the river Sèvre 
Niortaise, composed of forest areas, permanent meadows and wetlands. 

Châtellerault has a population of 40,721 inhabitants (2017 census), 
the altitude varies from 42 to 134 m, the average temperature is 12.5 ◦C, 
and the average annual precipitation is 734 mm. This smaller city, 
crossed by a motorway, is composed of a less dense urban area compared 
to the other two cities. It has industrial and suburban areas as well as 
semi-natural habitats such as forest areas, wetlands and open fields. 

2.2. Production of the raw map 

An initial description of the land cover in the study areas was ob-
tained at a high resolution (1:5000) by combining existing databases 
using QGis v.3.10 (Quantum GIS Development Team, 2019) (Fig. 1b). As 

Fig. 1. Study area showing the locations and land cover/use classifications of Poitiers, Niort and Châtellerault.  

E. Morin et al.                                                                                                                                                                                                                                   



Ecological Indicators 139 (2022) 108930

4

numerous studies are based on similar maps (i.e., resolution and 
description), we use this raw map as a reference map for comparisons 
with the enhanced maps obtained using the remote sensing approach. 

This raw map was obtained using the BD TOPO vector database of 
the French National Geographic Institute (IGN) to acquire the tree 
vegetation (scattered and rare patches in cities), buildings, water bodies 
and transport infrastructure. Furthermore, the agricultural plot bound-
aries were obtained by downloading the vector data Registre Parcellaire 
Graphique (RPG) from 2017. In parallel, we used the French land cover 
maps (OSO) from 2016, 2017, 2018 and 2019 based on the Sentinel-2 
image time series (Inglada et al., 2017) to identify, for each agricul-
tural plot, annual croplands (at least 3 out of 4 years of annual crop-
land), temporary grasslands (2 or 3 years of grassland), permanent 
grasslands (4 years of grassland) and vineyards. Finally, the urban areas 
(i.e., continuous urban fabric, discontinuous urban fabric, industrial and 
commercial units, road surfaces) were obtained from the French land 
cover map (OSO) from 2017. 

2.3. Multispectral data 

The French IGN provided the orthophotos for the three cities. The 
images were acquired using a digital camera between 2017/10/11 and 
2017/10/15 for Poitiers and Châtellerault and on 2018/05/19 for Niort. 
The on-board sensors provided multispectral data including three 
spectral bands with a spatial resolution of 0.5 m: a green channel, a red 
channel and a NIR channel. They were projected into the Lambert-93 
(EPSG: 2154) projection based on the RGF93 geoid (IAG GRS 1980 
ellipsoid). These false colour composites (RGB = NIR/Red/Green) were 
used for object-based classifications. 

2.4. Land cover classification 

We analysed these multispectral data using an object-based classifi-
cation with a learning step to detect and extract grass and tree patches 
within the study areas. For this purpose, we used the open-source Orfeo 

Fig. 2. Workflow of the main steps of the object-based classification process from the false colour composite.  
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Toolbox library (Grizonnet et al., 2017). The workflow used for the 
object-based image analysis is summarised in Fig. 2. The main steps are 
pre-processing (including feature extraction), segmentation, classifica-
tion (including the learning step) and accuracy assessments. This remote 
sensing approach only considers artificial areas (including buildings, 
impervious surfaces and bare soil) and vegetation strata, which are 
mainly lacking from existing databases. 

2.4.1. Segmentation 
The first step of the object-based analysis was to identify and extract 

objects or segments. Segments are groups of adjacent pixels that show 
similar radiometric information corresponding to a semantic meaning 
(Blaschke et al., 2014). We used the LargeScaleMeanShift function, which 
uses a smoothing step to facilitate the segmentation procedure. This 
application executes four steps: i) the MeanShiftSmoothing algorithm 
facilitates the segmentation by smoothing the image; ii) the LSMSSeg-
mentation algorithm is the segmentation step; iii) the LSMSSmallRe-
gionsMerging algorithm removes all segments smaller than a given size 
(in pixels) by merging them into a similar neighbouring object; and iv) 
the LSMSVectorization algorithm converts the segmentation into a vector 
file and calculates the mean and standard deviation of each raster band 
inside segments (Grizonnet et al., 2017). Based on the empirical tests 
used to obtain the best segmentation and avoid over- or under- 
segmentation, we chose a spatial radius of 5 pixels, a range radius of 
28 pixels, and a minimum segment size of 60 pixels for the Large-
ScaleMeanShift algorithm. The high range radius value provided strong 
smoothing, particularly to avoid over-segmentation at the grass/shadow 
interface. Finally, the 60-pixel threshold corresponded to the crown of 
smaller isolated trees. 

2.4.2. Feature extraction 
To assign the target categories to each segment, spectral and texture 

features were added. We computed the normalized difference vegetation 
index (NDVI) (Rouse et al., 1973) that is commonly used in remote 
sensing applications to detect vegetation. Brightness was also calculated 
as the mean of the three bands (NIR, Red and Green). To improve the 
classification accuracy, we identified and removed shadow segments 
showing a mean value of brightness below 65 for Poitiers and Châtel-
lerault and 70 for Niort according to the histogram of brightness (Zhou 
et al., 2009). 

Nevertheless, textures were calculated from the brightness band. 
They have been used to enhance the classification accuracy by dis-
tinguishing vegetation strata or urban objects (Dorigo et al., 2012; Feng 
et al., 2015; Marceau et al., 1990; Murray et al., 2010; Neyns & Canters, 
2022; Shahtahmassebi et al., 2021; Wood et al., 2012). For example, 
whereas grass showed a smoother or more regular aspect, trees had a 
more irregular aspect (Appendix A). According to Gonzalez and Woods 
(2002), textures describe the smoothness, coarseness and regularity of an 
image. They are characterized by a grey-level co-occurrence matrix 
(Haralick et al., 1973; Nixon & Aguado, 2002), which represents the 
spatial homogeneity around each pixel based on a given size of moving 
window. Variations in grey levels are quantified in the matrix and used to 
compute the textures. Haralick textures are categorized into three types 
of measures in which the textures are highly correlated: statistics mea-
sures, contrast measures and orderliness measures. Moreover, Hall-Beyer 
(2017) showed that two measures from the same group can highlight 
different information: visual edges or patch interiors (Appendix A). Thus, 
using the HaralickTextureExtraction algorithm, we computed four tex-
tures with a window size of 7 × 7 pixels: Energy (orderliness measure – 
patch interior information), Correlation (statistics measure – patch inte-
rior information), Contrast (contrast measure – visual edge information) 
and Entropy (orderliness measure – visual edge information). 

The average value within segments was extracted for all spectral 
bands and textures. The standard deviation was used for the green band 
and textures, because grass segments show less variability than tree 
segments (Table 1). 

2.4.3. Random forest classification 
Random forests, introduced by Breiman (2001), are frequently used 

in remote sensing because of their accuracy, robustness, capacity to 
manage large input variables and few parameters to tune (Feng et al., 
2015; Ma et al., 2017; Puissant et al., 2014). This learning method 
combines classification and regression trees (CART; (Breiman et al., 
1984) as well as a bagging-based method. As a set of decision rules, a 
classification score is calculated from the classification results of several 
randomized decision trees. After the empirical tests, for the three cities, 
we chose a value of 250 trees for each forest and a value of 4 for the 
depth of the trees corresponding to a third of the number of the predictor 
variables (Rodriguez-Galiano et al., 2012). 

To improve the classification accuracy, we used a stratified sub-
sample followed by a cross-validation process as suggested by Dupuy 
et al. (2020). We divided the training data into five equal subsets to 
produce five different classifications: four subsets are used as the 
training dataset and one subset as the validating dataset, and then each 
subset was used as a validating vector. Finally, the five classifications 
were merged by majority voting. 

To estimate the performance of the classifications, we computed the 
overall accuracy and Cohen’s kappa for the global performance of the 
classification. The precision, recall and F-score (which is the harmonic 
mean of precision and recall) were computed for each class. These 
metrics, calculated for each of the five validated subsets, were averaged, 
while the standard deviation was calculated. 

2.4.4. Training and validating vectors 
Choosing the training and validating polygon is an important step as 

classification models rely on it. The selected segments must represent 
statistical variations for each category across the entire study area. 
Based on the photointerpretation, polygons were sampled from the 
segmentation for the three target categories: artificial areas, grass and 
trees (Table 2). Artificial areas contained buildings, roads, bare soils and 
other impervious surfaces; grass contained meadows, lawns, herbaceous 
wastelands and herbaceous fallows; trees contained tall trees, shrubs, 
wooded wastelands and wooded fallows. They were selected across all 

Table 1 
Information type calculated within each segment and used for the learning step.  

Raster Information type Mean SD 

Near infrared Spectral X  
Red Spectral X  
Green Spectral X X 
NDVI Spectral X  
Energy Texture X X 
Entropy Texture X X 
Correlation Texture X X 
Contrast Texture X X  

Table 2 
Number of polygons per class for the learning step in each study area.  

City Category Number of polygons 

Poitiers    
Artificial areas 1134  
Grass 350  
Trees 376  
Total 1860 

Niort    
Artificial areas 1370  
Grass 626  
Trees 698  
Total 2964 

Châtellerault    
Artificial areas 1260  
Grass 480  
Trees 700  
Total 2440  

E. Morin et al.                                                                                                                                                                                                                                   



Ecological Indicators 139 (2022) 108930

6

the study areas (Appendix B) to avoid spatial autocorrelation, which can 
bias the evaluation of classification performance (Mannel et al., 2011). 

2.5. Comparison of the three vegetation maps 

To test the contribution of the data quality to the modelling, we 
constructed three maps for each city (Fig. 1). The first is the previously 
described map that compiles the available data from different databases 
and is known as the raw map (RM) (Fig. 1b). To construct the second 
map, known as the Very High-Resolution vegetation map (VHRvm), 
grass and tree segments identified using the object-based image analysis 
were merged into the same category as the global vegetation. This global 
vegetation map was added to the RM, which conserves the vegetation 
patches of the first map (Fig. 1c). The third map, known as the Very 
High-Resolution stratified vegetation map (VHRsvm), was constructed 
from the RM elements, although grass and tree segments were distin-
guished and described from the object-based classification (Fig. 1d) for 
which we accessed the accuracy. To facilitate the landscape analyses 
with efficient computing, all land cover maps were converted into a 
spatial resolution of 3 m. 

2.6. Landscape connectivity analysis 

2.6.1. Structural connectivity analysis 
As the structural connectivity analysis was only carried out on the 

vegetation patches within the urban context, we used an urban mask 
corresponding to the urban fabric of the OSO map (Fig. 1). We calculated 
and compared the proportion of grass and trees as well as the number 
and mean size of the grass and tree patches for the three maps of each 
city. The Hanski index, implemented in Chloe v.4.0 (Boussard & Baudry, 
2017), was calculated for grass and trees using following the formula: 
∑

p1

∑

p2
e− d*ap2/nb(p)

where d is the inter-patch distance (km) and a is the area (ha) of the 
second patch. 

This index increases when the size of the patches increases and the 
distance between them decreases, thus reflecting the quality of the 
structural connectivity. 

Moreover, choropleth maps were built to quantify the spatial gain of 
the tree vegetation surface (ha) and the loss of impervious surfaces (ha) 
from RM to VHRsvm using a 500 × 500 m grid with QGis v.3.10 (Ap-
pendix C) (Quantum GIS Development Team, 2019). Applied to the 
three cities, these choropleth maps allow the visualization of spatial 
variations in land use, resulting from the different mapping approaches 
used to construct the VHRsvm and RM. 

2.6.2. Functional connectivity analysis 
We used graph theory to investigate the contribution of the land 

cover description/resolution resulting from the different mapping ap-
proaches in the computations of the functional connectivity parameters 
(Urban & Keitt, 2001) using Graphab 2.6 (Foltête et al., 2012). 
Combining the concept of landscape resistance (i.e., resistance maps) 
and LCPs (Adriaensen et al., 2003; Spear et al., 2010), this approach 
identifies functionally connected habitats according to the dispersal 
distance of a target organism. To implement this approach, we simulated 
virtual forest species with ecological requirements consistent with tree 
habitats. We focussed on forest habitats using habitat patches larger 
than 1 ha. To create resistance maps, we identified five categories of cost 
values: 1 = habitat or very suitable surfaces, 10 = suitable surfaces, 100 
= neutral surfaces, 1,000 = unsuitable surfaces and 10,000 = very un-
suitable surfaces (Sahraoui et al., 2017) (Appendix D). In parallel, we 
created seven different species with seven maximum dispersal distances: 
50, 100, 200, 500, 1,000, 1,500 and 2,000 m. Even though these resis-
tance values can correspond to real species, the term virtual species is 
used here, because the models were not validated using biological data. 

In practice, these distances make it possible to test a wide range of 
behaviour and dispersal capacities of forest organisms. The seven 
maximum dispersal distances were converted into a cost distance 
(Conversion distance function) from each VHRsvm (Appendix E). For 
each of the three maps and three cities, seven landscape graphs (i.e., 
planar graphs) were constructed using the seven cost distances. These 
cost distances were used to prune the edges of the planar graphs and thus 
test how the landscape shapes the movement of forest species with low 
dispersal capabilities (e.g., 50 m) such as forest ground-dwelling ar-
thropods and those with medium dispersal capabilities (e.g., 2,000 m) 
such as forest songbirds. From the resulting graphs, we obtained the 
number of components (i.e., a subunit of the global graph in which 
patches are connected) indicating the degree of connectivity, or 
conversely, the degree of fragmentation of habitat patches (i.e., the more 
isolated the patches are, the more components there are). To investigate 
the contribution of the map resolution at this fragmentation level, the 
number of habitat patches was divided by the number of components. 
Moreover, the probability of connectivity (PC) metric was computed at 
the global (i.e., whole graph level) and local scale (i.e., edge level) 
(Saura & Pascual-Hortal, 2007). This index reflects the probability that 
two individuals taken at random within the study area can reach each 
other. It is calculated using the following formula: 
∑n

i=1

∑n

j=1
aiajp*

ijA
2
L  

where ai and aj are the area of patches i and j, AL is the total landscape 
area and p*ij is the maximum of probability movement between these 
patches calculated using the function: 

pij = e(− αdij)

where α describes the intensity of decreasing the probability of disper-
sion, d is the distance and p describes the dispersion using a value of 0.05 
for the maximum dispersal distance (used in this study for all graphs). 

Finally, to illustrate differences between the ecological corridors 
from different maps, the network of corridors was constructed with the 
corridor function using a maximum dispersal distance fixed at 2,000 m as 
an example. All the functional paths or areas that can be crossed be-
tween patches were modelled by a cumulative cost function. LCPs were 
also compared between maps by showing the cumulative resistance of 
each path and their dPC value (Appendix F). The cumulative resistance 
describes the difficulty to move using the corridor. The dPC identifies 
the contribution of an element k to the overall habitat availability and 
connectivity within the landscape using a removal method to calculate 
the percentage of variation in PC (dPCk) (see also Duflot et al., 2018; 
Saura & Pascual-Hortal, 2007) from the formula: 

dPCk =
PC − PCremove,k

PC
× 100  

3. Results 

3.1. Segmentation 

The segmentation step provided semantic objects from the false 
colour composite (Fig. 3). Tests showed that the smoothing step was 
important to limit over-segmentation and, for example, to avoid the 
creation of small segments at the grass/shadow interface that had 
similar spectral and texture characteristics to the tree segments. Due to 
the acquisition date of the images of Poitiers and Châtellerault, shadows 
were larger than in the images of Niort. For Poitiers, Niort and Châtel-
lerault, segmentation provided about 940,000, 570,000 and 500,000 
segments, respectively, from which 167,000, 43,000 and 52,000 shadow 
segments were filtered and removed for the classification step. 
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3.2. Analysis of accuracy assessments 

The classifications showed good global results with an overall ac-
curacy of 95.20% (±0.86), 96.72% (±4.61) and 98.10% (±1.26) and a 
Cohen’s kappa of 0.90 (±0.04), 0.94 (±0.08) and 0.95 (±0.01) for 
Poitiers, Niort and Châtellerault, respectively. 

At the class level, Fig. 4 showed accuracy assessments for each 
category (mean ± SD). Classifications showed similar trends in the three 
cities regardless of the categories involved. 

Artificial areas and grass were well detected with F-scores of 94.6%, 
97.24% and 99.8% for the urban segments and F-scores of 95.8%, 
96.54% and 95.64% for the herbaceous segments for Poitiers, Niort and 
Châtellerault, respectively. Despite the good results for trees, more 
contrasting performances were obtained with slightly lower F-scores: 
85.52%, 86.58% and 83.46% for Poitiers, Niort and Châtellerault, 
respectively. Artificial areas were the best-detected category; more 
variation was found for the classification of Poitiers in which these areas 
are slightly over-detected (i.e., precision of 94%). Grass had high metric 
values for each city, showing less variability in its performance between 
cities (i.e., average values) and within cities (i.e., standard deviation). 
However, grass was possibly over-detected and under-detected, because 
trees and grass can be mistaken for each other. Indeed, trees had lower 

values of precision and recall, meaning that trees were over-detected 
(containing true grass segments) and under-detected (true tree seg-
ments were classified as grass segments). In addition, the three classes 
revealed stronger differences for the classification of Niort in which 
grass and trees showed more spectral differences compared to those of 
Châtellerault and Poitiers (showing very close image characteristics) 
(Appendix G). 

3.3. Landscape connectivity analysis 

3.3.1. Structural connectivity 
Due to the lower resolution of the RM, urban vegetation at the very 

fine scale was not well detected and identified in the studied areas that 
measured 4136.66 ha for Poitiers, 3199.86 ha for Niort and 1918.57 ha 
for Châtellerault (Fig. 1b). As previously stated, this results from the 
high heterogeneity and complexity of urban landscapes as well as the 
small area occupied by features such as small isolated trees. The struc-
tural connectivity varied among maps and cities but showed similar 
patterns for the three cities in terms of RM, VHRvm and VHRsvm 
(Fig. 5). Overall, the object-based classification of VHR images improved 
the characterization of the total vegetation surface. Compared to RMs, 
VHRsvm increased the vegetation areas by about four times (Fig. 5a). 

Fig. 3. False colour composite (RGB = NIR/Red/Green) (a) for Poitiers (1), Niort (2) and Châtellerault (3) and segmentation results (b).  

Fig. 4. Accuracy assessment of the final classification (average value ± SD) for each study area.  
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For example, while grass proportions varied from 4.28% to 6.04% for 
RMs, they ranged from 14.03% to 14.44% for VHRsvm. This trend was 
also found with the tree proportions. Only large patches such as parks 
were detected in RMs, while VHRvm and VHRsvm identified lawns, 
shrubs and other small vegetation elements. Indeed, our remote sensing 
approach allowed us to detect fragmented and small isolated patches 
resulting in an exponential increase in the number of patches (Fig. 5b, c). 
As expected, Poitiers, which has the largest urban area, showed the 
highest gains in terms of the number of patches, followed by Niort and 
then Châtellerault. Moreover, newly detected vegetation patches in 
VHRvm and VHRsvm were smaller, as evidenced by the mean patch size 
decreasing by three to five times for Niort and Châtellerault (Fig. 5c), 
and to a lesser extent, for Poitiers. Agricultural plots (i.e., meadows) 
explain the high mean patch size in Niort and Châtellerault. 

The Hanski connectivity index, which increases as the patches 
become larger and geographically closer, increased within VHRsvm for 
grass and tree patches and showed a strong increase for grass patches 
within VHRvm (Fig. 5d). Despite the decrease in the mean patch size, 
these results showed that the inter-patch distance strongly decreased in 
the grass patches within both VHRvm and VHRsvm as well as for tree 
patches within VHRsvm. Regarding the spatial variations of trees and 
urban areas between RMs and VHRsvm, the greatest changes in choro-
pleth maps were mainly observed around the urban core of each city 
within residential areas, for example (Appendix C). 

3.3.2. Functional connectivity 
The VHRsvm detected new habitat patches (i.e., greater than 1 ha) in 

each study area compared to RMs (and VHRvm): 24 new habitat patches 
for Poitiers, 15 for Niort and 35 for Châtellerault (Table 3). 

Fig. 6a indicates variations in the PC metric at the global scale for the 
seven maximum dispersal distances for each map. Based on the surface 

of the habitat patches and their reachability across the landscape, the 
connectivity index increases with the maximum dispersal distance for all 
the landscape graphs, as expected. VHRsvm showed the highest func-
tional connectivity for each city. Lower PC values were found for the 
VHRvm- and RM-based landscape graphs, which had more similar PC 
values. The functional connectivity of VHRvm-based graphs was slightly 
better than that of RM-based graphs for distances greater than 500 m for 
Poitiers and Niort but not for Châtellerault in which PC values were very 
similar for all distances. Regarding the functional connectivity among 
cities, Châtellerault showed the highest values of PC ranging from 2.07 
× 10-3 to 3.69 × 10-3, followed by Poitiers with values from 3.45 × 10-4 

to 1.18 × 10-4 and Niort with values from 4.53 × 10-5 to 1.29 × 10-4. 
When focussing on the degree of fragmentation, the ecological networks 
were more fragmented for RMs, VHRvm showed more connections be-
tween habitat patches, and VHRsvm were the least fragmented networks 
(Fig. 6b). 

Fig. 5. Structural connectivity indices focussed on grass and tree vegetation from the three land cover/use maps for each of the three cities: landscape proportion of 
grass and tree areas (a), number of grass and tree patches (b), mean size of grass and tree patches (c) and Hanski connectivity index for grass and trees (d). 

Table 3 
Number of forest patches larger than 1 ha for raw maps (Raw), very high- 
resolution vegetation maps (VHRvm) and very high-resolution stratified vege-
tation maps (VHRsvm).  

Zone Map No. patches 

Poitiers Raw 156 
Poitiers VHRvm 156 
Poitiers VHRsvm 180 
Niort Raw 85 
Niort VHRvm 85 
Niort VHRsvm 100 
Châtellerault Raw 135 
Châtellerault VHRvm 135 
Châtellerault VHRsvm 170  
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However, there were fewer differences between the maps for short 
distances (i.e., < 500 m). Regarding the corridor modelling, these de-
grees of fragmentation were also observed (Fig. 7). VHRvm showed 
more extended corridors with a higher quality compared to those of 
RMs. VHRsvm revealed even more widely distributed corridors of a 
higher quality, especially within the urban cores. In addition, modelled 
LCPs showed strong differences between maps for an identical 
maximum dispersal distance (i.e., 2,000 m). An identified corridor 
within RMs had lower cumulated resistance values within VHRvm and 
VHRsvm, and new corridors were identified by enhancing the descrip-
tion of vegetation for these two maps (Appendix E). Furthermore, the 
contribution of LCPs in the landscape graphs also changed with the map 
quality (Appendix F). 

4. Discussion 

This study shows that the remote sensing methods used in this study 
are a reliable approach to detect isolated and scattered patches of 
vegetation and distinguish vegetation strata from VHR images. We also 

show that the quality of the land cover description influences the 
ecological process modelling (such as ecological corridors) and that the 
combination of the vegetation strata obtained from our remote sensing 
approach with maps from existing databases greatly improved the 
quality and representation of land covers. 

4.1. The Object-based classification from VHR images : an effective 
approach for mapping very fine scale elements in urban contexts 

Our study showed the importance of considering the GEOBIA 
approach in landscape connectivity modelling. Classifications showed 
good results with high kappa values and F-scores, which were expected 
based on a small number of land cover classes (i.e., 3) as well as the use 
of texture analyses (Dorigo et al., 2012; Feng et al., 2015; Neyns & 
Canters, 2022). The NIR channel (included in the NDVI) was crucial in 
order to reliably distinguish vegetation from non-vegetation areas 
(Puissant et al., 2014), although the true-colour aerial imagery (i.e., RGB 
channel) may also be used in urban areas to conduct object-based 
classification (Baker et al., 2018). Relatively low F-score values for 

Fig. 6. Functional connectivity indices focussed on urban woodland habitats (larger than 1 ha) for the raw maps (light grey), very high-resolution vegetation maps 
(dark grey) and very high-resolution stratified vegetation maps (black). Evolution of the probability of connectivity according to several maximum dispersal distances 
(a). Number of patches divided by the number of components (b). 
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trees mainly stem from the confusion between complex structures such 
as gardens with isolated small bushes, which correspond to the transi-
tion between grass and trees categories (Puissant et al., 2014). 

Regarding the methodology and notably the object-based classifi-
cation that is widely used in remote sensing urban green spaces studies 
(Neyns & Canters, 2022; Shahtahmassebi et al., 2021), we carefully 
considered several crucial steps to achieve good results when LiDAR 
data are not available. First, the smoothing step of the segmentation was 
important in terms of the mean shift segmentation. While the smoothing 
step did not improve segmentation in the study of DeLuca et al. (2019), 
our tests showed that the absence of the smoothing step generates an 
over-segmentation, thus creating small segments with low compactness. 
In this case, these small segments at the grass/shadow interface could 
lead to the detection of false tree segments. In our case, the segments 
obtained were quite compact and corresponded to more meaningful 
objects. However, attention must be paid to the segmentation and over- 
segmentation should be preferable than under-segmentation to achieve 
a good classification accuracy (Gao et al., 2011; Jian Yang et al., 2015; 
Smith, 2010; Stumpf & Kerle, 2011). As the parameters depend on the 
characteristics and proximity of pixels, the values of the Large-
ScaleMeanShift algorithm could be different for another image resolution 
(Chen et al., 2018). In addition, the date (day and hour) of the image 
strongly influences the results (De Luca et al., 2019; Wulder et al., 2008). 
Images taken in autumn (i.e., Poitiers and Châtellerault) showed larger 
shadows than those taken in spring (i.e., Niort). Moreover, due to the 
phenology of the herbaceous vegetation, grass and trees had more 
similar spectral values in the images of Poitiers and Châtellerault 
compared to Niort. The best classification accuracy is obtained when the 
intra-class variation of the categories is low, and the inter-class variation 
is high. Thus, the identification of vegetation strata was easier for the 
classification of Niort compared to Poitiers and Châtellerault. 

4.2. Implications of urban green space detection on landscape 
connectivity 

While some landscape ecology studies use high-quality maps with 
LiDAR (an expensive and time-consuming method) (Grafius et al., 2017; 
Jensen et al., 2009), none focusses on object-based image analysis and 
its considerable ability to yield a land cover map able to model a high- 
quality landscape connectivity at a small scale (App et al., 2022; Balbi 
et al., 2021; Casalegno et al., 2017; Choi et al., 2021; Grafius et al., 2017; 
Zhou & Troy, 2008). Our study showed that existing databases are useful 
but can suffer from a lack of information at a very fine scale or in the 
urban landscape when considering vegetation (Puissant et al., 2014). In 
comparison, VHRvm revealed complex landscapes by multiplying the 
detected vegetation (regardless strata) by about four times and identi-
fying smaller and fragmented vegetation patches. Moreover, VHRvm 
showed a slightly higher proportion of total vegetation compared to 
VHRsvm. As in Puissant et al. (2014), this excess vegetation is due to tree 
vegetation vectors provided in the official French database (IGN BD 
Topo) for which the details and precision (due to the detection threshold 
used) did not accurately match the processed orthophoto. However, 
VHRvm do not distinguish vegetation strata and can bias the assessment 
of landscape indices (Casalegno et al., 2017). For example, the Hanski 
connectivity index for grass showed very high values in VHRvm 
compared to VHRsvm due to the overestimated grass areas and their 
proximity. Thus, ecological studies analysing landscapes that do not 
distinguish vegetation strata should consider these potential impacts on 
the assessments of ecosystem services or landscape connectivity. 
Therefore, the object-based classification involved in VHRsvm improved 
the detection of urban vegetation and notably small and isolated trees, 
thus revealing additional scattered habitat patches. Tree alignments, 
which are characteristic of the urban environment, were mapped, as 
were trees or shrubs within gardens. Indeed, choropleth maps showed 
that the information gap mainly occurred in residential areas where 

Fig. 7. Network of corridors (functional paths/areas between habitat patches) modelled for a maximum dispersal distance of 2,000 m for each map within Poitiers 
(P), Niort (N) and Châtellerault (C). 
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gardens contain trees and lawns. Coarse cartographies do not describe 
such areas, although these patches strongly enhance structural connec-
tivity (App et al., 2022; Shahtahmassebi et al., 2021). We identified 
more wooded habitat patches (>1 ha), which consequently influence 
functional connectivity modelling. The identification of new habitat 
patches and effective corridors enhanced habitat quantity and avail-
ability by improving the ecological connectivity estimations (i.e., PC 
values). Thus, compared to RMs, VHRvm (including global vegetation) 
induced a slightly higher PC value for Poitiers and Niort, and to a lesser 
extent, for Châtellerault. Overall, greater differences in PC values be-
tween the maps for Poitiers and Niort were likely due to their high urban 
density and diversity, whereas Châtellerault is a smaller city with a 
much higher proportion of habitat areas that are less sensitive to urban 
fragmentation. It can be difficult to see global patterns in the connec-
tivity modelling, because the urban entities (e.g., terraced houses, de-
tached houses, major road verges) have complex forms that lead to a 
very high diversity of permeability influencing the movements of or-
ganisms (Grafius et al., 2017). Interestingly, greater differences in PC 
values and the degree of fragmentation were found for medium dispersal 
distances (i.e., >500 m). Hence, the resolution of the input data used in 
the connectivity modelling within the urban landscape changed the 
results, mainly for medium dispersers (e.g., songbirds). The remotely 
sensed vegetation strata incorporated in VHRsvm added habitat patches, 
thus reducing the distance between them. Moreover, the global average 
distance of the surrounding patches around each patch was probably 
about 500 m, which could explain these results. Above all, the landscape 
resistance strongly decreased by identifying tree alignments or shrubs 
(App et al., 2022; Balbi et al., 2019, 2021; Choi et al., 2021; Grafius 
et al., 2017). For example, VHRvm that only change the landscape 
permeability by identifying the global vegetation concomitantly showed 
a decrease in habitat fragmentation. 

Undoubtedly, the results obtained for functional connectivity are 
strongly influenced by the methods and parameters involved when 
constructing both the land cover and resistance maps. Among these 
parameters, a relevant spatial resolution is crucial to describe contin-
uous elements such as roads when building resistance maps. Such a high 
spatial resolution plays an important role in landscape connectivity and 
biodiversity assessments in urban and rural landscapes (App et al., 2022; 
Barr et al., 2021; Tiang et al., 2021). Indeed, the movement of organisms 
depends on their perception of the landscape, which affects their 
dispersal behaviour (App et al., 2022; Baguette & Van Dyck, 2007; Balbi 
et al., 2021; Bélisle, 2005), therefore small elements such as isolated 
trees can trigger the organisms’ willingness to move. Thus, the detection 
of fine-scale elements in the landscape and a better estimation of the 
quality of the landscape matrix through remote sensing methods could 
lead to better modelling of landscape connectivity in urban landscapes. 
It will be interesting to test how much estimation of real connectivity (i. 
e., telemetry, gene flow) is correlated to ecological networks produced 
from different map resolutions in urban landscapes. 

4.3. Implications and suggestions for conservation in land planning 

Biodiversity conservation in urban land planning aims to conciliate 
anthropic and biodiversity distribution by incorporating natural spaces 
that allow cities to be more permeable to biodiversity and thus more 
sustainable. To meet the current urban challenges, it is crucial to inte-
grate and combine remote sensing, urban ecology and urban planning 
approaches to design more sustainable and functional cities (Wellmann 
et al., 2020). As a consequence, landscape modelling is a useful tool to 
estimate ecological networks and test the impact of different scenarios 
on ecological connectivity in land planning (Drielsma et al., 2022; 
Sahraoui et al., 2021). As highlighted in this study, this type of 
ecological modelling depends on the resolution, quality and description 
of land cover, which can sometimes suffer from a lack of information, 
notably in terms of urban vegetation. Thus, the combination of a remote 
sensing approach at a very fine scale and landscape connectivity 

modelling provides efficient land cover map leading to more realistic 
ecological networks. Landscape modelling of suitable habitat patches 
combined with their LCPs is relevant and useful for land managers, as it 
provides them with a prioritisation of areas to conserve or rehabilitate 
(Balbi et al., 2021; Sahraoui et al., 2021). For instance, stakeholders 
should focus their conservation efforts on corridors with higher resis-
tance values (difficult paths to cross) or those that are more important in 
the modelled ecological networks (i.e., high dPC value) (Duflot et al., 
2018). Furthermore, landscape graphs can provide an understanding of 
functionally connected habitats by identifying both connected and iso-
lated geographic areas. As our results showed that map quality and 
resolution strongly impacted the connectivity indices, attention should 
be paid to the ecological networks based on low-quality land cover 
maps, which may lead to inaccurate conclusions regarding conservation 
planning. 

Combining these affordable methods of remote sensing and urban 
ecology based on open-source projects and data is a powerful approach 
for conservation planning. Therefore, as each city is unique, land plan-
ners should integrate such methodology to analyse complex social- 
ecological-technological issues and challenges (Wellmann et al., 2020). 

5. Conclusion and perspectives 

Working at a small scale can be problematic, because the digitali-
zation of landscape elements is time-consuming and needs human re-
sources. In this study, the objective was to test the influence of remote 
sensing products as supporting information to detect urban vegetation in 
landscape modelling. This study supports the fact that free existing 
imagery and open-source projects represent powerful data and tools for 
landscape connectivity modelling at a very fine scale. Remote sensing 
methods such as object-based classifications or even simple methods (e. 
g., NDVI to detect global vegetation) are useful to improve knowledge 
about urban areas. Therefore, as supported by our results, the quality of 
land cover can strongly impact the connectivity indices, which quantify 
the landscape structure and functional connectivity and thus determine 
the importance of each corridor in terms of land management. The 
identification of small elements by remote sensing is crucial for land-
scape management in rapidly changing areas (e.g., cities) in order to 
consider spatial and temporal dynamics in landscape analysis. Thus, 
based on such remote sensing methods, future works should focus on 
aerial photographs archives to reconstruct the past landscape and to 
understand ecological processes such as the changes in landscape con-
nectivity over time. 
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