
HAL Id: hal-03781074
https://hal.science/hal-03781074

Submitted on 20 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Spatbox: An Intuitive Trajectory Engine to
Spatialize Sound

Pierre Lecomte

To cite this version:
Pierre Lecomte. The Spatbox: An Intuitive Trajectory Engine to Spatialize Sound. Sound and Music
Computing Conference (SMC-22), Jun 2022, Saint-Étienne, France. �hal-03781074�

https://hal.science/hal-03781074
https://hal.archives-ouvertes.fr

THE SPATBOX: AN INTUITIVE TRAJECTORY ENGINE TO SPATIALIZE
SOUND

Pierre Lecomte
Univ Lyon, Univ Claude Bernard Lyon 1,

CNRS, Ecole Centrale de Lyon, INSA Lyon,
LMFA, UMR5509, 69622 Villeurbanne France
pierre.lecomte@univ-lyon1.fr

ABSTRACT

This paper presents the software part of the spatbox
project 1 : an interface to intuitively generate 3D trajecto-
ries and to spatialize them in real-time on a loudspeaker
array with Ambisonics. Each trajectory is described by
a parametric curve, where each of the coordinates varies
according to a configurable LFO. Depending on the LFO
parameters, many trajectories can be generated. The sim-
ilarity of the interface to that of a synthesizer allows the
user to quickly get to grips with the tool. In particular, it
is possible to create trajectory presets for fixed parameter
configurations. An implementation in the Faust language
is made and a visual feedback tool is introduced. Some
additional features for the trajectory modification are pro-
posed: choice of the coordinate system, trajectory scal-
ing and acceleration, Doppler effect, hold/reset and rota-
tion/translation functionalities.

1. INTRODUCTION

Spatial-, immersive-, or 3D-sound is now being widely
spread to the greatest number. Notably in the cinema with
commercial system such as Dolby Atmos 2 , or in the gam-
ing sector with binaural sound. More recently, popular
music concert are being offered with immersive sound for
large venue, for instance with the L-ISA system 3 from
L-Acoustics. However, the artistic creation of immersive
sound content is still not easily accessible to the ªordi-
naryº musician. This is mainly due to the fact that a lot
of equipment is needed when making 3D sound: a dedi-
cated room with many loudspeakers. Consequently, it is
rather the professional musical industry or artistic creation
centers that occupy this sector. Moreover, the composition
often requires experimentation and reflection to choose the
position of the sources in space and define their trajecto-
ries over time, although a live and improvised spatializa-
tion could open up a whole new creative horizon. From

1 http://www.sekisushai.net/spatbox/
2 https://www.dolby.com/technologies/dolby-atmos/
3 https://www.l-isa-immersive.com/

Copyright: © 2022 Pierre Lecomte . This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

a software perspective, the offer is growing and many so-
lutions allow professionals to create spatial sound content.
One can mention software such as Sound Particles 4 , Ir-
cam/Flux Spat Revolution 5 [1], GRM Tools 6 , Noise Mak-
ers 7 , Blue Ripple 8 , and many others [2]. On the open-
source side: IEM-Plugin-suite 9 , ambitools [3] 10 or Sparta 11

[4] for sound generation and IanniX 12 for trajectory se-
quencing. These software fit well in a 3D audio content
creation process with a Digital Audio Workstation (DAW)
but are not directly designed for live spatialization where
one wishes to improvise the sound trajectories. The use of
hardware interfaces can be a relevant choice for this pur-
pose. To the author’s knowledge, there exist almost no
autonomous interfaces that allow the spatialization of 3D
sound on a loudspeaker array in an intuitive way 13 , apart
from a mixing console used for the diffusion of sound, no-
tably in the practice of electroacoustic music [5, 6].

It is in this context that the spatbox project takes place.
It seeks to make an hardware autonomous interface which
allows the user to instantly place sound on trajectories in
space with a few loudspeakers, by turning a few knobs.
With this instrument, the sounds travel on trajectories gen-
erated in an intuitive way, like creating sound patches on a
synthesizer. As it is a kind of box to spatialize the sound,
the project is called ªspatboxº. In this paper, the algo-
rithms for generating the trajectories and computing the
loudspeaker signals for the spatbox are described. An im-
plementation in the Faust language 14 [7] is made and a
software version of the spatbox is presented. The use of
the Faust language allows to target an embedded system
architecture for the hardware realization of the spatbox.

The paper proceeds as follows: In Sec. 2, the choice
of the Ambisonics spatialization approach is argued, the
needed equations are reviewed. The trajectory generation
engine, two examples and several additional features are
presented in Sec. 3. The user interface as well as a vi-
sual feedback tool to view the trajectories are introduced

4 https://soundparticles.com/
5 https://www.flux.audio/project/spat-revolution/
6 https://inagrm.com/fr/store
7 https://www.noisemakers.fr/
8 https://www.blueripplesound.com/
9 https://plugins.iem.at/

10 http://www.sekisushai.net/ambitools/
11 https://leomccormack.github.io/sparta-site/
12 https://www.iannix.org/en/
13 https://blog.bela.io/multichannel-sound-spatialisation/
14 https://faust.grame.fr/

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

454

in Sec.4. Finally, conclusion and future works are done in
Sec. 5.

2. AMBISONICS

There exists many approaches to spatialize sound in space
with a loudspeaker array. Among the most popular are
Vector Base Amplitude Panning (VPAB) [8], Wave Field
Synthesis (WFS) [9] or Higher Order Ambisonics [10],
simply called Ambisonics for the rest of this paper. The
trajectory engine described in Sec. 3 could be independent
of the spatialization technique. However, the main objec-
tive of the spatbox is to provide an autonomous interface
that takes the sound signals to be spatialized and as inputs
and outputs the loudspeaker signals. Therefore the spatial-
ization engine should be embedded.

The choice is made to use Ambisonics in this project for
several reasons. First, the Ambisonics signals flow goes
through encoding, transformation (i.e. spatial audio ef-
fects) and decoding of the sound field [10, Chap. 5]. For
the encoding step, it is possible to encode the source dis-
tance using near-field filters [11], which is an key feature
for a realistic rendering of 3D trajectories. Then, spatial
transformations are possible before the decoding step, for
example reverberation, spatial blur [12] or warping [13]
of the sound scene. These effects can then be integrated
into the spatbox spatialization engine with dedicated con-
trollers, as a master effect on a mixing console. Finally,
the decoding of the sound scene is flexible and can be done
on an irregular loudspeaker array [14] or even in binaural
for a headphone rendering [15]. The control of the spatial
resolution is easily done with the degree of decomposition
on the basis of spherical harmonics and immersive sound
results can be obtained with only less than a dozen loud-
speakers. Thus, it becomes possible to realize a hardware
interface requiring few loudspeakers and thus makes the
project accessible to the largest number of musicians.

In the rest of this section, one recalls the main Ambisonic
equations which are used to encode, decode or directly pan
a virtual source on a loudspeaker array. For a more exten-
sive description, refer to [16] for example.

2.1 Point Source Encoding

Let’s consider a point source, located at a position (rs(t),
θs(t), ϕs(t)) in the spherical coordinate system, where
r ∈]0, ∞[is the radius, θ ∈] − π, π] the azimuth an-
gle, ϕ ∈ [−π/2, π/2] the elevation angle and t represents
the time variable. This source carries a signal s(t). The
ambisonic encoding of this source produces the signals
bl,m(t) of degree l, order m with (l,m) ∈ (N× Z), |m| ≤
l, such that:

bl,m(t) = s(t−rs/c)∗NFl(rs(t), r0, t)
r0
rs
Yl,m(θs(t), ϕs(t)).

(1)
In Equation (1), c ≃ 340 m/s is the sound speed, Yl,m is the
real spherical harmonic of degree l and order m, ∗ is the
convolution operator and NFl are the near-field filters of
degree l [11]. In the current implementation, these filters
are stabilized by Near-Field Compensation (NFC) filters

at a fixed radius r0 = 1 m [3]. When rs < r0, a ªbass-
boostº effect occurs. To limit the latter, which is combined
with an amplification in 1/rs in Equation (1), a minimum
radius rmin = 0.5 m is introduced as the minimal possible
distance for the source. For an encoding up to degreeL, the
corresponding maximal amplification of the s(t) is (L +
1)× 20 log10(r0/rmin) ≃ 6(L+ 1) dB.

2.2 Sampling Ambisonic Decoder

The decoding step on a loudspeaker array consists in calcu-
lating the signals of the loudspeakers from the ambisonic
signals bl,m. Many strategies exist for this step. A review
can be found in [10, chapt. 4] for example.

In this paper one uses the Sampling Ambisonic Decoder
(SAD) technique. The loudspeaker signals are obtained
from the simple source continuous formulation [16] sam-
pled in the direction of the loudspeakers as:

gn(t) =
rn
rmax

L∑

l=0

wmax-rE ,l,LNFCl(rn, t)∗

l∑

m=−l

Yl,m(θn, ϕn)bl,m

(
t− rmax − rn

c

)
. (2)

In Equation (2), n stands for the n−th loudspeaker in
an array of N loudspeakers. The ambisonics signals are
weighted with max-rE weights, denoted wmax-rE ,l,L in or-
der to maximize the energy vector rE , improving high fre-
quency localization [17]. Note that the near-field effect of
each loudspeaker is compensated with NFC filters. More-
over, the amplitude is scaled to rn/rmax where rmax is the
maximal distance among the N loudspeakers and the sig-
nal is delayed by the corresponding propagation distance
relative to rmax. This ensures that all loudspeakers have the
same gain and delay at origin when playing the same sig-
nal. The choice of the decomposition degree L (i.e. Am-
bisonic order), is generally related to the number of loud-
speaker N , such that N ≥ (L+ 1)2.

2.3 Equivalent Panning Law

By combining Equations (1) and (2), and using the addition
theorem of spherical harmonics, an equivalent panning law
is derived [16] as:

gn(t) = s

(
t− rs + rmax − rn

c

)
rn
rmax

r0
rs

L∑

l=0

(2l + 1)wmax-rE ,l,L ∗ NFCl(rn, t) ∗ NFl(rs(t), r0, t)

Pl(cos(γn(t))), (3)

where Pl is the l-th Legendre polynomial, and γn(t) =
cos(ϕs(t)) cos(ϕn) cos(θs(t) − θn) + sin(ϕs(t)) sin(ϕn)
is the angle between the source and the n-th loudspeaker.
This formulation allows obtaining the loudspeaker signals
with much fewer computation than the formalism with en-
coding and decoding steps. This is a good point for ef-
ficient implementation, especially when making the au-
tonomous hardware interface by using an embedded sys-
tem with low computing power. However the use of such

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

455

panning law no longer allows the use of spatial ambisonic
effects before decoding. In addition, if the loudspeakers
are not arranged in a ªregular wayº around the origin, re-
duced loudness at the location of poor loudspeaker cover-
age will be noticeable [10, p. 72].

3. TRAJECTORY ENGINE

The aim of the spatbox trajectory engine is to generate the
signals rs(t), θs(t) and ϕs(t) in the Eqs (1) or (3), i.e. the
trajectory that the source follows over time. There are an
infinite number of possible trajectories and as many equa-
tions to describe them. One therefore constrain this prob-
lem in the following way:

• The trajectories are described in a parametric way
so that the user can generate a multitude of them by
varying the parameters.

• A maximum of trajectories should be generated with
a minimum of parameters. Indeed, as the final goal
is to make an hardware interface, the minimum num-
ber of controllers are desired.

The problem is then to find how to describe the trajectories
in a parametric way and which parameters to associate to
them. A proposal for a solution to this problem is made in
the following Sec. 3.2. The current implementation of this
engine is made with the Faust language. The ambisonic
layer is made with ambitools10 [3].

3.1 Parametric Equation

Let be a trajectory that represents all the positions (rs(t),
θs(t), ϕs(t)) that the source takes over time. This trajec-
tory is expressed in a parametric way as follows, where the
parameter is the time t:

rs(t) =
√
xs(t)2 + ys(t)2 + zs(t)2

θs(t) = arctan(ys(t)/xs(t))

ϕs(t) = arcsin(zs(t)/rs(t))

(4)

In Equation (4), the functions xs(t), ys(t) and zs(t) are
the trajectory coordinates functions in the Cartesian co-
ordinate system. The choice of the coordinate system is
left to the user for each trajectory to generate. Thus, ei-
ther the signals, rs(t), θs(t), ϕs(t) in spherical coordinates
are directly generated, or the signals xs(t), ys(t), zs(t)
in Cartesian coordinates are generated and then converted
with Equation (4).

3.2 Low Frequency Oscillators as Trajectory
Coordinates Functions

To express the time variations of (xs(t), ys(t), zs(t)) or
(rs(t), θs(t), ϕs(t)), i.e. the trajectory coordinates func-
tions in Equation (4), one chooses to use Low Frequency
Oscillators (LFO)s. LFOs are commonly used in synthe-
sizers to modulate the parameters of the sound patch. Used
here as coordinate generators, they can produce a multitude
of different trajectories in three dimensions. A LFO is usu-
ally a periodic function that oscillates around 0 and that can

be characterized by its frequency f , waveform, amplitude
a, phase or duty cycle p:

LFO(t) = a× waveform(f, p, t) (5)

The phase/duty cycle p ∈ [0 1] is set as a fraction of the
waveform unit period. The frequency f of the LFO is
kept low as it represents the cyclic variations of the corre-
sponding coordinate signal, and high speed can be reached
with only a few Hertz. In the current implementation,
f ∈ [0 1] Hz, and the user sets one LFO per coordinate
: LFOxs

(t), LFOys(t), LFOzs(t) or LFOrs(t), LFOθs(t),
LFOϕs

(t).

Bounds When assigned to the Cartesian coordinates
LFOxs

(t), LFOys(t) or LFOzs(t) ∈ [−a, a] with a ∈
[0, 1]. When assigned to the spherical coordinates,
LFOrs(t) ∈ [−a + 1 + rmin, a + 1 + rmin], LFOθs(t) ∈
[−aπ, aπ] and LFOϕs

(t) ∈ [−aπ/2 , aπ/2].

Waveforms Six different waveforms are proposed in the
current implementation, as shown in Tab. 1 over two peri-
ods. Note that for the square wave, the user sets the duty

ID Name Waveform

0 Sawtooth

1 Sawtooth 2

2 Sine

3 Triangle

4 Square

5 Noise

Table 1. The six waveforms for the LFOs used as trajectory
coordinates functions. The waveform are shown over two
periods.

cycle instead of the phase. The noise waveform is gener-
ated with a sample-and-hold technique where a sample is
hold during one period. The phase parameter in this situa-
tion sets the instant during the period when a new sample
is hold.

3.3 Trajectory Generation Principle

To generate a trajectory patch, one proceeds as follows
(see Fig. 3 for a graphical user interface view). First, one
chooses the coordinate system between Cartesian or spher-
ical. Then one sets each LFO waveform for each coordi-
nates and finally one sets the LFO parameters : amplitude,
frequency, phase. Following this procedure, two examples
of trajectory are given:

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

456

Helix In Cartesian coordinates, a parametric Helix tra-
jectory around the z−axis can be expressed with LFOs as
follows:

xs(t) = a0 sin(2πf0t+ p0)

ys(t) = a1 sin(2π(f0t+ p0 + 0.25))

zs(t) = a2 sawtooth(f2, p, t)

(6)

The first LFOxs
(t) is a sinewave with amplitude a0, fre-

quency f0 and phase p0, The second LFOys(t) is a co-
sine wave with respect to xs(t), obtained from a sinewave
waveform where the phase is set to p1 = p0 + 0.25. Its
amplitude is a1. With f1 = f0, the horizontal trajectory is
an ellipse of semi-axis a0 and a1. For the third LFOzs(t),
a sawtooth waveform of frequency f2, amplitude a2, phase
p2 sets the pitch of the Helix. This trajectory is visible in
red in Fig. 1 and the corresponding patch parameters are
shown on the left side of Fig. 3.

Flower In spherical coordinates, a flower-shaped trajec-
tory centered at origin in the horizontal plane can be de-
scribed as follows:

rs(t) = a0(sin(2π(f0t+ p0)) + 1) + rmin

θs(t) = a1sawtooth(2πf1t+ p1)

ϕs(t) = 0

(7)

The first LFOrs(t), produces a sinusoidal variation of rs(t)
with minimal radius rmin, while the second LFOθs(t) is a
sawtooth, which produces a linear increase in azimuth an-
gle. The third LFOϕs

(t) is set to null amplitude and phase
such that the trajectory stays on the horizontal plane. This
trajectory is visible in cyan in Fig. 1 and the corresponding
patch parameters are shown on the right side of Fig. 3.

Figure 1. Example of two trajectories generated with the
spatbox and visualized on the 3D visualizer: A helix in red
and a flower-shaped trajectory in cyan. The green points
correspond to the position of the loudspeakers.

Through these two simple examples, one can realize the
great variety of trajectory patches that can be made by
varying waveforms, frequency, amplitude and phase ratio
between each LFOs. Since LFOs are periodic functions

(except for the ªnoiseº waveform), the resulting trajecto-
ries are also periodic as long as the patch parameters are
not moved. As a result, they could fit well with a repeti-
tive sound signal as found in electronic music for instance.
Note however that it is quite simple to make the trajec-
tory evolve over a long period of time or to modulate it, by
slightly varying a frequency ratio between the LFOs.

3.4 LFOs Synchronization

One can notice, from the Helix trajectory example, that the
phase relationship between the LFOs is critical to define
the trajectory properly. Since the phase at the origin is de-
fined independently for each LFO, it is crucial to keep a
synchronization between the LFOs when the frequency or
phase parameters of one of them is changed. To achieve
this, in the current implementation, as soon as one of these
parameters moves, all LFOs are reset to t = 0 to keep their
synchronization. Consequently the source returns to the
beginning of the trajectory while the user is changing the
monitored parameters. Note that a very fast random posi-
tion change effect can be produced in this way, using the
noise waveform: Indeed, as the LFO is reset, a new value
for the noise is produced, which results in an immediate
change of the assigned coordinates.

3.5 Forbidden Sphere

As explained in Sec. 2.1, a minimum radius is introduced,
rmin, below which the source cannot go, to avoid exces-
sive signal amplification (or even a singularity if rs = 0).
Therefore, the signal rs(t) is compared to rmin and equal-
ized to it if found to be smaller. Consequently, a forbidden
sphere of radius rmin is defined and it surrounds the origin.
The source can never enter inside it. If the trajectory en-
counters this sphere, it ªslidesº over it as θs(t) and ϕs(t)
continue to evolve. An example of such situation is shown
in Fig. 2.

Figure 2. Example of an elliptic trajectory which encoun-
ters the forbidden sphere. As the radius rs(t) ≥ rmin for
all t, the source slides over the forbidden sphere.

3.6 Extra Features

This section presents some additional features to interact
with the sound or the trajectories generated by the LFOs.

Doppler Effect A delay, which corresponds to the prop-
agation time rs/c to the origin (see Equations (1) and (3))
is eventually applied to the signal s(t). When the source
moves, this delay also varies and can produce a Doppler

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

457

effect. This results in changing the pitch of the signal s(t),
which can be an unwanted effect. Therefore, the applica-
tion of this delay is left as an option to the user. Note that
a playability problem may occur if the propagation delay
is too large. For example, if the user places the source at
10 m while playing on a keyboard, it will take about 29 ms
before the sound is heard.

Hold and Reset A hold function allows to stop the os-
cillation of the LFOs and to maintain them at their current
value. Consequently, the source pauses on its trajectory.
As soon as the hold is released, the source continues mov-
ing on its trajectory. In the same way, a reset function
brings the source back to the beginning of its trajectory
when activated.

Scale and Speed The amplitude of the LFOs is chosen
by the user with a parameter a ∈ [0 1] as mentioned in
Sec. 3.2. A scale function allows to multiply the LFOs am-
plitude by an additional scaling factor. This scales up the
whole trajectory. For Cartesian coordinates this function
is realized by multiplying each LFO by the scale factor.
For spherical coordinates, only the LFO assigned to rs(t)
is multiplied by this scale factor. In the same way, a speed
function can multiply each LFO frequency by a factor, re-
sulting in an acceleration of the source on its trajectory.

Rotation and Translation The coordinate system in
which the trajectories are expressed is centered on the ori-
gin. However, a rotation feature is available and allows to
rotate the coordinate system around the z, y and x axes
with yaw, pitch and roll angles respectively. As well, a
translation can be made along the x, y and z axes. As a
result, the trajectories can be rotated and translated.

4. USER INTERFACE

This section introduces the spatbox software user interface.

4.1 Graphical User Interface

In its current version, the spatbox is only available as a
software, either as a standalone tool or as a plugin, de-
pending on the architecture targeted during the Faust com-
pilation. The number of source to spatialize, it set for the
compilation. An example of graphical user interface for
2 sources is visible on Fig. 3 for a Linux Alsa standalone
application. For each source, 3 menus, 17 rotary knobs, 2
buttons and 1 checkbox allow creating a trajectory patch.
The Doppler effect can be activated and the sound volume
be adjusted with a check box and a gain knob respectively.
Note that it is to be expected that the volume of the source
will naturally increase or decrease as the source moves
closer or further away. The controllers labels ª0º, ª1º and
ª2º correspond to the coordinates x, y, z or r, θ ϕ respec-
tively, depending on the choice of the coordinate system
between Cartesian of spherical. For the LFO bank menu,
the correspondence between the identification number and
the waveform is shown in Tab. 1. Meters of the coordinate
signals allow seeing the current value of each coordinate in

the spherical system. The values of these meters are trans-
mitted by Open Sound Control (OSC) message to the 3D
visualizer presented in the following section.

4.2 Visual Feedback

Although trajectory patch generation can be intuitive, it is
very difficult to rely solely on one’s auditory system to ac-
curately localize the position of sources and monitor the
trajectories. Indeed, in addition to the limitation of hu-
man spatial perception, the localization performances can
be degraded depending on the ambisonic resolution and
the loudspeaker array. See for example the listening tests
reported in [10] for further reading on this topic. There-
fore, it seems essential for the user to have a visual feed-
back to monitor the trajectories he produces. The latter is
made with the Processing 15 language [3]. An illustration
is shown in Figs. 1 and 2. It consists of a 3D view of a
dummy’s head, centered at the origin and looking in the
direction of positive x-axis. The proportions are preserved
and the dimensions are in meters. The loudspeakers are
represented by green dots whose size and color can change
depending on the signal level in dBfs. The successive posi-
tions of the sources are received via OSC messages by the
Faust application presented in Sec. 4.1. They are kept in a
First In First Out (FIFO) memory buffer which keeps only
the last 500 positions (this value can be changed). The tra-
jectories are drawn by connecting the successive positions
with lines. The current position of the source is material-
ized by a colored ball. The user can move, zoom and pan
the camera to improve its perspective visualization.

5. CONCLUSION AND FUTURE WORKS

In this paper, the spatbox project was introduced as a
tool for intuitive spatialization on a loudspeaker array.
The LFO-based trajectory generation engine was presented
along with several additional features to interact with the
sound and the trajectories. The periodic character of the
generated trajectories leads to the idea of synchronizing
the frequency of the LFOs to a metronome, for example a
MIDI clock. This is the topic of future work. An imple-
mentation in the Faust language has been made as well as a
visual feedback tool to observe the trajectories. Currently,
the spatbox exists only in a software form although a MIDI
interface can already be connected to associate physical
controllers to the interface parameters. A hardware version
is currently being designed and built. It targets an embed-
ded system platform such as Teensy 16 , Bela 17 or Rasp-
berry Pi 18 . On these platforms, recent audio interfaces are
getting multichannel: up to 6 inputs and 8 outputs on the
Teensy and Rasberrypi and even up to 16 outputs on the
Bela. Thus, this will allow the spatbox to become a musi-
cal instrument on its own, capable of receiving audio sig-
nals as input and spatializing them in real time on a array
of up to 16 loudspeakers. The visual feedback tool seems

15 https://processing.org/
16 https://www.pjrc.com/teensy/
17 https://bela.io/
18 https://www.raspberrypi.com/

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

458

Figure 3. Graphical user interface for a standalone Linux Alsa application. Two sources are spatialized and their trajec-
tory patch is set with the different controllers. The corresponding trajectories are visible on Fig. 1: The red trajectory
corresponds to Source 0 and the cyan trajectory to Source 1.

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

459

however essential to the user and an embedded version of
it is currently under study, although it is already possible
to drive it on a computer with OSC messages. Once the
hardware interface is available, it is planned to conduct a
feedback study with musicians. Code and documentation
for this project are available online 1 .

6. REFERENCES

[1] T. Carpentier, M. Noisternig, and O. Warusfel,
ªTwenty years of Ircam Spat: Looking back, looking
forward,º in 41st International Computer Music Con-
ference (ICMC), 2015, pp. 270±277.

[2] J. D. Mathew, S. Huot, and B. F. Katz, ªSurvey and
implications for the design of new 3D audio produc-
tion and authoring tools,º Journal on Multimodal User
Interfaces, vol. 11, no. 3, pp. 277±287, 2017.

[3] P. Lecomte, ªAmbitools: Tools for Sound Field Syn-
thesis with Higher Order Ambisonics - V1.0,º in Inter-
national Faust Conference, Mainz, 2018, pp. 1±9.

[4] L. McCormack and A. Politis, ªSPARTA & COM-
PASS: Real-time implementations of linear and para-
metric spatial audio reproduction and processing meth-
ods,º in Audio Engineering Society Conference: 2019
AES International Conference on Immersive and Inter-
active Audio. York: AES, 2019, pp. 1±12.

[5] J. Harrison, ªSound, space, sculpture: Some thoughts
on the ‘what’,‘how’and ‘why’of sound diffusion,º Or-
ganised Sound, vol. 3, no. 2, pp. 117±127, 1998.

[6] J. Prager, L’ Interprétation Acousmatique - Fonde-
ments Artistiques et Techniques de l’interprétation Des
Œuvres Acousmatiques En Concert (in French), un-
published ed., 2012.

[7] Y. Orlarey, D. Fober, and S. Letz, ªFAUST: An efficient
functional approach to DSP programming,º New Com-
putational Paradigms for Computer Music, vol. 290,
2009.

[8] V. Pulkki, ªVirtual sound source positioning using vec-
tor base amplitude panning,º Journal of the Audio En-
gineering Society, vol. 45, no. 6, pp. 456±466, 1997.

[9] A. J. Berkhout, D. de Vries, and P. Vogel, ªAcoustic
control by wave field synthesis,º The Journal of the
Acoustical Society of America, vol. 93, no. 5, pp. 2764±
2778, 1993.

[10] F. Zotter and M. Frank, Ambisonics - A Practi-
cal 3D Audio Theory for Recording, Studio Produc-
tion, Sound Reinforcement, and Virtual Reality, ser.
Springer Topics in Signal Processing. Cham, Switzer-
land: Springer, 2019.

[11] J. Daniel, ªSpatial sound encoding including near field
effect: Introducing distance coding filters and a viable,
new ambisonic format,º in Audio Engineering Soci-
ety Conference: 23rd International Conference: Sig-
nal Processing in Audio Recording and Reproduction.
Helsingùr: AES, 2003, pp. 1±15.

[12] T. Carpentier, ªAmbisonic spatial blur,º in Audio Engi-
neering Society Convention 142. Berlin: AES, 2017,
pp. 1±7.

[13] H. Pomberger and F. Zotter, ªWarping of 3D ambisonic
recordings,º in Proc. of the 3rd Int. Symp. on Ambison-
ics & Spherical Acoustics, Lexington, 2011.

[14] F. Zotter and M. Frank, ªAll-round ambisonic panning
and decoding,º Journal of the Audio Engineering Soci-
ety, vol. 60, no. 10, pp. 807±820, 2012.

[15] M. Noisternig, A. Sontacchi, T. Musil, and
R. Holdrich, ªA 3d ambisonic based binaural
sound reproduction system,º in Audio Engineering
Society Conference: 24th International Conference:
Multichannel Audio, The New Reality. AES, 2003,
pp. 1±5.

[16] P. Lecomte, P.-A. Gauthier, C. Langrenne, A. Berry,
and A. Garcia, ªA Fifty-Node Lebedev Grid and Its
Applications to Ambisonics,º Journal of the Audio En-
gineering Society, vol. 64, no. 11, pp. 868±881, 2016.

[17] J. Daniel, J.-B. Rault, and J.-D. Polack, ªAmbisonics
encoding of other audio formats for multiple listening
conditions,º in Audio Engineering Society Convention
105. San Francisco: AES, 1998, pp. 1±29.

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

460

