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Abstract

In this paper, a multiparametric solution of the stiffness properties of woven

composites involving several microstructure parameters is performed. For

this purpose, non-intrusive PGD-based methods are employed. From offline

pre-computed solutions generated through a full-field multiscale modeling,

the proposed method approximates the multidimensional solution as a sum

of products of one-dimensional functions each depending on a single variable.

The present work aims at providing an accurate approximation of this mul-

tiparametric solution with lower computational cost for dataset generation.

Thus, a comparative analysis of three non-intrusive PGD formulations (SSL,

s-PGD and ANOVA-PGD) is carried out. The obtained results reveal and

demonstrate that the ANOVA-PGD model works well for approximating the
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stiffness properties over the entire parameter space, i.e., along its boundary

as well as inside it, by using only few pre-computed high-fidelity solutions.

Finally, a GUI application is developed to exploit this multiparametric solu-

tion by incorporating other composite weave architectures. This application

could be easily used by engineers and composite designers, to deduce, in

real-time, the macroscopic properties of woven composite for a given set of

microstructural parameters by simply varying the cursors and without any

microstructure generation and meshing nor FE computations using periodic

homogenization.

Keywords: woven composite material, multiscale modeling, geometrical

and material parameters, non-intrusive PGD, multiparametric solution,

mechanical properties.

Introduction

Textile-reinforced composites have been extensively used in a wide variety

of industrial applications, including aerospace, automotive and many other

engineering technologies due to their high stiffness-to-weight ratio, their im-

pact resistance and their reduced production cost (Kumar, 2013; Long, 2006).

This significant increase in the use of textile composites has created a strong

demand not only to study their behavior under different loading conditions,

but also to evaluate the impact of certain factors on their overall response.

This can be achieved through experimental work or numerical studies, as has

been already presented in several works (Hallal et al., 2013; Tikarrouchine

et al., 2021; Miqoi et al., 2021; Zhou et al., 2021). However, numerical sim-

ulations offer a deep understanding of the stress-strain response and provide
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more detailed information about the behavior and the associated mechanisms

which is sometimes difficult to achieve using experiments.

The multiscale modeling approach has been shown to be effective to model

the composite’s behavior due to their ability to consider microscopic hetero-

geneities and to separate the problem into several tasks by modeling each

phenomenon at the most relevant scale. Such implementation has been em-

ployed into linear as well as highly non-linear behavior modeling including

viscoelasticity, viscoplasticity and damage (Tikarrouchine et al., 2018; Praud

et al., 2017b). In general, this approach can be classified into two main cat-

egories. The first one is based on the so-called mean-field approaches, which

are founded on Eshelby’s equivalent inclusion theory (Eshelby, 1957), such

as self-consistent method (Hill, 1965; Mercier and Molinari, 2009) and Mori-

Tanaka scheme (Mori and Tanaka, 1973), for which further developments

and computational approaches can be found in (Barral et al., 2020; Chen

et al., 2022; Chatzigeorgiou et al., 2022). This first type allows deriving the

macroscopic fields by averaging the same quantities of each material phase at

the microscopic scale. Additionally, this approach is characterized by a fast

computation cost but a limited accuracy especially when the matrix phase

requires a nonlinear behavior. The second approach is well-known as full-field

methods in which the homogenization process is performed using Finite El-

ement (Chatzigeorgiou et al., 2016; Tikarrouchine et al., 2019; Praud et al.,

2021a), Boundary Element (Kamiński, 1999), Finite Volume (Chen et al.,

2018; de Sousa Vieira and Marques, 2019) and Fast Fourier Transformation

based-homogenization techniques (Brisard and Dormieux, 2010; Wang et al.,

2018), etc. Compared to semi-analytical models, full-field approaches gen-
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erally provide better predictions of the stress-strain behavior of composites,

but they are computationally expensive.

It is obvious that woven-fabric composites response is considerably af-

fected by various factors that can be defined at different stages including the

properties of constitutive phases and manufacturing parameters. Therefore,

understanding the influence of these factors on the macroscopic properties of

textile-reinforcement composites is of tremendous importance for more effi-

cient employ of these materials according to the application needs. Several

studies have been conducted over the past decades to investigate this im-

pact on the homogenized properties of various textile composites, including

woven composites that are manufactured by weaving process. Recently, the

influence of yarn’s angle on the local as well as on global behavior of wo-

ven composite, which can be induced by the manufacturing process such as

shaping or performing, has been investigated in (Liang et al., 2020, 2019). In

(Erol et al., 2017), the impact of yarn properties and weave architecture on

the macroscopic response of 2D woven fabric composites have been studied.

Nevertheless, correctly defining the optimal choice of these parameters re-

mains a challenging task especially for this class of composite due to the large

number of the microstructural parameters and the related combinations that

should be taken into account, leading hence to prohibitive cost of numerical

simulation and to numerous experimental characterization. Thus, a Model

Order Reduction (MOR) technique such as Proper Generalized Decomposi-

tion (PGD) is required, specifically, when many parameters are manipulated

and a fast calculation is required for a real-time decision during the pre-desing

or materials selection stages.
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Based on the separated form of the unknown field, Proper Generalized De-

composition has become one of the most efficient approaches of MOR dealing

with the curse of dimensionality (Ammar et al., 2006, 2007; Chinesta et al.,

2010, 2011b,a). PGD has been used in different multiparametric problems

involved in science and engineering fields, by assuming each parameter as an

extra-coordinate of the problem. It has led to construct computational vade-

mecum and virtual charts allowing the optimization and real-time simulation

of complex problems (Chinesta et al., 2013; Ammar et al., 2014; Courard

et al., 2016; Lu et al., 2018; Sancarlos et al., 2021b). This is achieved by

providing, once and for all, in an offline stage, a global solution involving all

the variables, e.g., space, time and parameters, to later access, on the fly, to

the solution for any new parameter instance, in an online phase. However,

due to its a priori formulation, this approach is considered very intrusive

to be implemented into industrial applications that utilize commercial soft-

ware. Therefore, several studies have been conducted to circumvent or avoid

the above difficulty by constructing the multidimensional solution in a non-

intrusive manner (Germoso et al., 2020; Leon et al., 2019; Zou et al., 2018).

As a possible way to minimize this implementation effort, some authors have

proposed to pre-compute the high-fidelity solution for a set of parameter

values, in order to interpolate them later using the separated representation

of the parametric solution (Borzacchiello et al., 2019; Ibáñez et al., 2018;

Sancarlos et al., 2021a). Other works have focused on coupling the commer-

cial software with an external code that performs the decomposition as well

as the assembly of the global solution using classical PGD framework (Zou

et al., 2018).
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Despite the recent parametric studies of woven composites, most of them

do not perform a global solution in which we can get the engineering proper-

ties for any set of parameter values without repeating the multiscale compu-

tation. In this work, with the help of non-intrusive PGD-based methods, a

multiparametric solution of the overall mechanical properties of woven com-

posite is performed involving ten parameters chosen at different scales. More

specifically, the aim is to achieve an accurate approximation of this multipara-

metric solution using few high fidelity solutions. Thus, three non-intrusive

PGD formulations have been applied and compared to each other in order to

obtain a trade-off between accuracy and the amount of data generated in the

offline phase. This multiparametric approximation could then be used for

real-time prediction of the overall mechanical properties of woven composites

when the value of one or more inputs changes without going through mul-

tiscale computations. It might be employed as a decision tool to select the

best material configuration for a specific application in terms of stiffness or

overall response. It can also be useful for solving inverse design problems in

which we can get the microstructure characteristics of the composite material

with a given set of desired macroscopic effective properties.

The remainder of this paper is arranged as follows: in Section 1.1, a

set of microstructural parameters which has an impact on the mechanical

properties of woven composite, is presented. The creation of the microstruc-

ture and the mesh generation process are detailed in Section 1.2. Therefore,

the multiscale modeling approach based on the periodic homogenization is

briefly reviewed in Section 1.3. In Section 2, the theoretical background of

three non-intrusive PGD techniques, i.e., Sparse Subspace Learning (SSL),

6
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Sparse Proper Generalized Decomposition (s-PGD) and ANOVA-PGD has

been introduced. The last Section presents a comparative analysis of these

techniques in terms of accuracy as well as the amount of data generated in

the Offline stage.

1. Parametric computational homogenization for woven compos-

ites

1.1. Parametric representation

Woven composites are known to exhibit a complex anisotropic behavior

arising from the geometrical arrangement of their microstructure along with

the properties of their constituents, namely the woven reinforcement and the

matrix. Classical woven reinforcements are usually obtained from an orthog-

onal interlacing of weft and warp yarns themselves composed of numerous

fibres oriented along the 1st and 2nd directions, respectively. Several weav-

ing patterns of woven fabrics are commonly employed in various industrial

applications such as plain weave, twill weave (balanced/unbalanced) or satin

weave. They are not characterized only by their different ways of weaving but

also by their distinct features like stability, drape and smoothness. Therefore,

the mechanical properties of woven composites are significantly affected by

their microstructure and different macroscopic responses can be obtained by

changing the geometry of the fabric reinforcement and the weaving pattern

as well as the properties of the constituents and their nature (glass, carbon

reinforcement, thermoplastic, thermoset or ceramic matrix, ...).

The present work focuses on woven composites with plain weave reinforce-

ments, which are obtained by passing each weft yarn over and under each
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warp yarn, with each row alternating. Based on this architecture, Figure 1

shows that the microstructure geometry and the properties of its constituents

are defined by a set of ten independent parameters that represents: the fi-

bre Young’s modulus Ef , the fibre Poisson’s ratio νf , the matrix Young’s

modulus Em, the matrix Poisson’s ratio νm, the weft intra-yarn fibre vol-

ume fraction cf1, the warp intra-yarn fibre volume fraction cf2, the weft yarn

width a1, the warp yarn width a2, the gap between two adjacent yarns c and

the fabric thickness h. Note that the gap between two adjacent yarns c is

considered to be the same for the weft and warp yarns. Moreover, both yarns

are also assumed to have a thickness equal to one half of the fabric thickness

h, whereas 10% of h is added to define the matrix domain’s thickness.

All these parameters are set in a vector p = {p1 p2 · · · p10}T whose

members contain each one of the previously mentioned quantities as listed

in Table 1. Each one of these parameters is associated with a range of

values set between a minimum and maximum. All of theses ranges define

the boundary of the 10-dimensional parametric space Ωp = Ωp1 × Ωp2 ×
· · ·×Ωp10 , covering a wide spectrum of woven composites that are commonly

encountered in engineering applications, such as glass or aramid fibres with

epoxy or polyester matrices, or many other configurations.

It is worthwhile to mention that, although the yarns are composed of

numerous unidirectionally oriented fibres embedded in the matrix, as shown

in Figure 1a. They are considered in the present approach as an equiv-

alent transversely isotropic homogeneous medium whose apparent stiffness

properties are analytically calculated by means of the well-known Mori-

Tanaka sheme (Micro-homogenization), from the fibres and matrix prop-
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(a) Material parameters of the microstructure.

(b) Geometric parameters of the microstructure.

Figure 1: Parametric representation of the microstructure of the woven composite. (a)

Material parameters of the microstructure, namely: the fibre Young’s modulus Ef , the

fibre Poisson’s ratio νf , the matrix Young’s modulus Em, the matrix Poisson’s ratio νm,

the weft intra-yarn fibre volume fraction cf1 and the warp intra-yarn fibre volume fraction

cf2. The apparent stiffness properties of the yarns are analytically calculated from the

fibres and matrix properties, namely: Ef , νf , Em and νm, as well as cf1 and cf2. (b)

Geometric parameters of the microstructure, namely: the weft yarn width a1, the warp

yarn width a2, the gap between two adjacent yarns c and the fabric thickness h.

erties, namely: Ef , νf , Em and νm, as well as the intra-yarn fibre volume

fractions cf1 and cf2. Therefore, this results in five independent elastic con-

stants for the yarn, namely: Ek
L, E

k
T , G

k
LT , ν

k
LT and νk

TT , where the subscript

L and T denote the longitudinal and transverse directions, whereas the su-
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Table 1: Microstructural parameters of the woven composite. Each one of these parameters

is associated with a range of values set between a minimum and maximum, covering a wide

spectrum of woven composites that are commonly encountered in engineering applications.

Parameter Description Min. value Max. value unit

p1 Fibre Young’s modulus Ef 50 000 100 000 MPa

p2 Fibre Poisson’s ratio νf 0.2 0.4 -

p3 Matrix Young’s modulus Em 500 5 000 MPa

p4 Matrix Poisson’s ratio νm 0.2 0.4 -

p5 Weft intra-yarn fibre volume fraction cf1 0.3 0.7 -

p6 Warp intra-yarn fibre volume fraction cf2 0.3 0.7 -

p7 Weft yarn width a1 0.8 4.5 mm

p8 Warp yarn width a2 0.8 4.5 mm

p9 Gap between two adjacent yarns c 0.1 0.4 mm

p10 Fabric thickness h 0.2 0.6 mm

perscript k = 1, 2 stands for the weft and warp yarns, respectively.

1.2. Mesh generation of the unit-cell

To perform computational homogenization on woven composites, a finite

element mesh of the composite unit-cell, which represents the smallest repet-

itive unit element of the microstructure, is required. Many works have been

undertaken to deal with the microstructure generation of woven composites,

leading to the development of several dedicated tools, such as WiseTex (Ver-

poest and Lomov, 2005) or TexGen (Lin et al., 2011). In the present work,

a python script attached to the software TexGen is developed to automat-

ically generate a finite element mesh of the woven unit-cell for a given set

of geometrical parameters (p7, p8, p9, p10). Figure 2 shows some examples of

unit-cell’s mesh generated by the developed python script and TexGen for

arbitrary sets of parameters.
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13

2

Figure 2: Examples of unit cell (The entire unit cell and the Yarns) that can be generated

through TexGen by varying different geometrical parameters for instance the weft yarn

width a1, the warp yarn width a2, the gap between two adjacent yarns c and the fabric

thickness h)

It is worth noticing that the yarn are transversely isotropic and therefore

their behavior strongly depends on a certain material orientation, which is

defined in each yarn element in such a way that the fibre direction L is always

oriented along the middle line of the yarns.

1.3. Computational homogenization

When considering a full-field multiscale approach such as periodic homog-

enization, it is essential to define a proper connection between the microscopic

and macroscopic scales. This connection is usually established by averaging

the microscopic stress and strain over the unit-cell’s domain B (Hill, 1967;

Mura, 2013; Nemat-Nasser and Hori, 2013). Accordingly, it yields for the

macroscopic stress and strain:

σ =
1

V

∫

B

σ(x) dV, (1a)
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ε =
1

V

∫

B

ε(x) dV, (1b)

respectively, where V represents the volume of the unit-cell’s domain B.

Within the unit-cell, the assumption of periodicity implies that it yields

for the displacement u, the following additive form:

u(x) = ε · x+ u′(x) + u0, ∀x ∈ B (2)

where the first term, i.e., ε ·x depicts an affine part, the second term, i.e., u′

stands for a periodic fluctuation, while u0 represents an eventual rigid body

motion. Since u′ is a periodic function, it takes the same values at each pair

of opposite points x+ and x− on the unit-cell’s border ∂B:

u′(x+) = u′(x−), ∀x+,x− ∈ ∂B (3)

Moreover, due to its periodic aspect, the part of the strain produced by u′

vanishes once averaged, which renders the whole strain average well equal to

the macroscopic strain as expressed in (1b). By inserting (2) into (3), the

periodicity conditions can be reformulated in terms of u instead of u′, while

involving the macroscopic strain tensor ε:

u(x+)− u(x−) = ε · (x+ − x−), ∀x+,x− ∈ ∂B (4)

which represents the Periodic Boundary Conditions (PBCs) applied to the

unit-cell. Therefore, the PBCs enable setting any macroscopic strain state

to the unit-cell whereas the macroscopic stress can be recovered through the

scale transition relationship (1a) once the unit-cell problem solved. From a

practical point of view, when used in the finite element method, the PBCs

are applied to meshed unit-cell by introducing the six components of ε as

12
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additional degrees of freedom that are connected to the unit-cell’s borders

through kinematic constraint equations. For more details regarding this as-

pect, readers are referred to (Michel et al., 1999; Praud, 2018).

In the context of linear elasticity, the macroscopic stiffness tensor C can

be recovered through a perturbation analysis, i.e., by computing the macro-

scopic stress resulting from the six elementary macroscopic strain states.

With the help of the Voigt notation, it yields for the elementary strain states:




ε(11) =
{
ε11 = δ ε22 = 0 ε33 = 0 2ε12 = 0 2ε13 = 0 2ε23 = 0

}T

ε(22) =
{
ε11 = 0 ε22 = δ ε33 = 0 2ε12 = 0 2ε13 = 0 2ε23 = 0

}T

ε(33) =
{
ε11 = 0 ε22 = 0 ε33 = δ 2ε12 = 0 2ε13 = 0 2ε23 = 0

}T

ε(12) =
{
ε11 = 0 ε22 = 0 ε33 = 0 2ε12 = δ 2ε13 = 0 2ε23 = 0

}T

ε(13) =
{
ε11 = 0 ε22 = 0 ε33 = 0 2ε12 = 0 2ε13 = δ 2ε23 = 0

}T

ε(23) =
{
ε11 = 0 ε22 = 0 ε33 = 0 2ε12 = 0 2ε13 = 0 2ε23 = δ

}T

,

(5)

where δ is a real value. The simplest way is to take δ = 1. Figure 3 shows,

for one example of generated woven composite unit-cell, the deflection modes

obtained for each of these elementary macroscopic strain states. Thus, the

Cijkl component of the macroscopic stiffness tensor C can be recovered by

computing the ij component of the stress tensor obtained for the kl elemen-

tary strain state, divided by δ:

Cijkl =
σij(kl)

δ
ij, kl = 11, 22, 33, 12, 13, 23 (6)

The arrangement of the woven microsructure leads to orthotropic stiff-

ness properties such that C can be expressed from nine independent elastic

constants, namely: E1, E2, E3, G12, G13, G23, ν12, ν13 and ν23, according to

13
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Figure 3: Deflection modes of the unit cell for each of the elementary macroscopic strain

states ε(11), ε(22), ε(33), ε(12), ε(13), and ε(23).

the following relationship:

C−1
=




1
E1

−ν12
E1

−ν13
E1

0 0 0

1
E2

−ν23
E2

0 0 0

1
E3

0 0 0

1
G12

0 0

1
G13

0

sym. 1
G23




(7)

Therefore, based on the above equation, the elastic constants of the woven

composite are identified from the computed stiffness tensor. They are after-

wards stored in an output vector w:

w = {E1 E2 E3 G12 G13 G23 ν12 ν13 ν23}T (8)
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Micro-Homogenization

Macro-Homogenization

properties
Create the geometry and 
mesh for unit cell using 

TexGen

Microstructural parameters :

warp yarn mechanical
:

weft yarn mechanical
properties :

Effectives Properties of woven composite:

Figure 4: Schematic illustration of data generation process using multiscale modeling,

from microstructural parameters (input values) to the overall mechanical properties of

woven composite (output values).

2. Non-intrusive PGD

As summarized in Figure 4, the estimation of the macrospcopic stiffness

properties of woven composites depends on a numerical process involving

homogenization techniques as well as the use of several software like TexGen

and a finite element solver, Abaqus/Standard in the present case. Although,

this numerical process is relatively quick and can easily be automated, a few

dozen of minutes are still necessary to obtain a result. Such a computational

cost is sufficiently important to hamper its use towards for simulation-based

engineering, which may be limited in some way by the need to evaluate several

configurations for different parameter values in order to achieve a satisfactory

solution. This can make the design and the optimization process very time

consuming. To overcome these limitations, it is proposed to use the concept of

15
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non-intrusive PGD to set up a multiparametric approximation based on pre-

computed solutions at certain points of the parametric space. Non-intrusive

PGD methods are particularly convenient for this purpose as it only employs

data that may be independently obtained from standard numerical processes,

e.g., finite element simulations. This is in contrast with classical PGD-based

methods that require specifically adapted numerical processes or solvers. The

main idea behind such as technique is to approximate the solution as a finite

sum of products of one-dimensional functions :

w(p1, ..., pN) ≈
M∑

i=1

N∏

j=1

W i
j (pj) (9)

where N and M refer to the number of variables and the number of modes

(the terms of the sum), respectively, while W i
j denotes a one-dimensional

function that depends only on the variable pj. For the reader interested

in PGD-based approaches, more accurate information could be found in

(Chinesta et al., 2011b,a) and the references therein.

In this work, three non-intrusive PGD techniques have been investigated

and evaluated to obtain an accurate approximation of the parametric solu-

tion using lower computational cost in the offline step. Indeed, Sparse Sub-

space Learning (SSL) (Borzacchiello et al., 2019), Sparse Proper Generalized

Decomposition (s-PGD) (Ibáñez et al., 2018) and ANOVA-PGD (Sancarlos

et al., 2021a) have been performed and compared in terms of accuracy and

robustness. They are used to predict the mechanical properties of 2D woven

composite taking into account the microstructural parameters listed above.
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2.1. Sparse Subspace Learning (SSL)

Sparse Subspace Learning (SSL) consists in using a hierarchical basis in a

sparse grid space to approximate the unknown solution. It utilizes the Gauss-

Lobatto-Chebychev collocation points pi(k) = (p
i(k)
1 , ..., p

i(k)
10 ) associated with

polynomial function ζ
i(k)
j , where i denotes the point index, k refers to the

level of approximation and j represents the variable index. It is used here to

approximate each component w of the nine mechanical properties of woven

composite.

At the first level (k=0), each component w can be approximated from w0

using 210=1024 collocation points pi(0) = (p
i(0)
1 , ..., p

i(0)
10 ), i = 1, ..., 1024 :

w(p1, ..., p10) ≈ w0(p1, ..., p10) =
1024∑

i=1

γi

10∏

j=1

ζ
i(0)
j (pj) (10)

where γi = w(pi(0)) represents the high fidelity solution of the woven com-

posite obtained by the multiscale modeling at the collocation point pi(0).

The one-dimensional function can be expressed using Lagrange polyno-

mial as follows:

ζ
i(k)
j (pj) =

∏

l ̸=i

(pj − p
l(k)
j )

(p
i(k)
j − p

l(k)
j )

(11)

where k refers to the level of approximation, j is the index variable and l

refers to the index of the value of the parameter pj. For instance, for the first

level (k=0), p
l(0)
j stands for the lower and upper bounds of the parameter pj.

The process of enriching the approximation proceeds by adding surpluses

to the solution as the hierarchical approximation level is raised. Therefore,

at the second level (k=1), the approximation of w can be updated by adding

more sampling points (5120 samples) and expressed as:

w(p1, ..., p10) ≈ w0(p1, ..., p10) + w1(p1, ..., p10) (12)

17
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with w1 is given by:

w1(p1, ..., p10) =
5120∑

i=1

γ̃i

10∏

j=1

ζ
i(1)
j (pj) (13)

where γ̃i = w(pi(1))−w0(p
i(1)) is the gap between the predicted and reference

values of the macroscopic property at the sampling point pi(1). This gap is

also called the surplus and its norm can be used as an error indicator to stop

or continue the enrichment process.

It is worth noting that the current technique always guarantees an ex-

act solution at all sampling points. Also, the enrichment process does not

disturb this solution in the previous hierarchical levels. In other words, the

approximate solution remains unaffected at the previous sampling points.

Thus, at each level, the added term equals zero in all points that have been

used in the preceding levels, for instance, at level 1, w1(p
i(0)) = 0. On the

other hand, the improvement of the approximation requires a huge number

of pre-computed solutions. Therefore, more than 15 000 collocation points

are required to approximate the parametric solution at the 3rd level.

2.2. Sparse Proper Generalized Decomposition (s-PGD)

Sparse Proper Generalized Decomposition is an alternative procedure for

constructing a sparse approximation in a high-dimensional space from a lim-

ited dataset. It is developed to circumvent the drawbacks of the previous

method by dealing with the curse of dimensionality as well as the non-

structured datasets. It is also based on the concept of separate variables

as depicted in Eq. (9).

As the problem under study involves ten parameters, it is assumed that

the objective function wb(p) (corresponding to a macroscopic property) lives
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in a 10-dimensional space Ωp = Ωp1 × · · · × Ωp10 ⊂ R10. Furthermore,

it is assumed that the value of this mechanical property is known only at

few locations where it is calculated numerically. In order to predict the

mechanical properties of any new woven composite arrangement, without

resorting to numerical computations, s-PGD provides thus an approximate

solution wp to the objective function using the PGD framework. For this

reason, the Galerkin projection is chosen and the approximate solution is

searched as follows:

∫

Ωp

q∗(p)
(
wp(p)− wb(p)

)
dp1 · · · dp10 = 0 (14)

where q∗(p) ∈ C 0(Ωp) is a test function. Since the solution is known only at

few points, the test function q∗ is defined as a set of Dirac delta functions

located at the sampling points pk = (pk1, ..., p
k
10), k = 1, ..., P , and given by

the following relationship:

q∗(p) = w∗(p)
P∑

i=1

δ(pk) (15)

where P is the total number of sampling points. δ(pk) refers to the Dirac

delta function that is null in the whole domain, except at the sampling points

pk.

It is convenient to rewrite the Eq. (15) as:

q∗(p) = (WM∗
1 · · ·WM

10 + ...+WM
1 · · ·WM∗

10 )
P∑

i=1

δ(pk) (16)

According to the PGD principle, wp can be approximated as a sum of

product of one-dimensional functions W i
j which depends on the parameter

pj:
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wp(p) ≈ wM(p) =
M∑

i=1

N=10∏

j=1

W i
j (pj) (17)

where M refers to the number of modes and N represents the number of

parameters.

wM can also be expressed as follows:

wM(p) = wM−1(p) +
N=10∏

j=1

WM
j (pj) (18)

where wM and wM−1 represent the approximate solution using M and M−1

modes, respectively. It should be noted that only the functions WM
j involved

at mode M are assumed unknown, while wM−1 is considered to be known

and expressed as follows :

wM−1(p) =
M−1∑

i=1

N=10∏

j=1

W i
j (pj) (19)

Following the PGD framework, a finite element projection is performed

and a greedy algorithm is employed in order to compute these one-dimensional

functions at the M -th mode. Since, these functions are expressed, in a gen-

eral form, as follows:

WM
j (pj) =

D∑

k=1

ϕk(pj)λk = ΦT
j λj (20)

where λj and ΦT
j refer to the vector of degrees of freedom and the shape

functions that contained D components of the j-th dimension.

2.3. ANOVA-PGD

ANOVA decomposition is an orthogonal decomposition which can be used

to approximate a multidimensional function w as a sum of numerous func-
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tions .

w(p) = w(p1, ..., pN) = w∅ +
N∑

j1=1

wj1(pj1)+

N∑

1≤j1<j2≤N

wj1,j2(pj1 , pj2) + ...+ w1,...,N(p1, ..., pN)

(21)

Satisfying the expectation Ej with respect to j (j1, ..., jn≤N):

Ej(wj1,...,jn(pj1 , ..., pjn)) = 0 (22)

The anchored ANOVA decomposition is an alternative way to orthogo-

nally decompose the solution w as a sum of functions defined with respect

to an anchor point pc = (pc1, ..., p
c
10). It allows to reduce the computational

cost induced by the classical ANOVA decomposition. So, the constant term

w∅ = w(pc) is determined by calculating the solution at anchor point pc

which is chosen here as being at center of the parametric domain.

ANOVA-PGD (Sancarlos et al., 2021a) consists of combining the an-

chored ANOVA decomposition with non-intrusive PGD, providing an accu-

rate approximation of the multidimensional solution in low-data limit. First,

the multidimensional solution is approximated using the anchored ANOVA

decomposition. Then, based on one of the non-intrusive PGD techniques such

as s-PGD, the solution is improved by approaching the residual as follows :

wnon-intrusive PGD(p) ≈ w(p)− wANOVA(p) (23)

while the wANOVA is obtained, here, by using only the first terms of the sum

(one-dimensional functions wj1 which depend on the variable pj1) as :

wANOVA(p) = w∅ +
N=10∑

j1=1

wj1(pj1) (24)
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where wj1 can be expressed as following (For instance if j1 = 1) :

w1(p1) = w∅ + w(p1, p
c
2, ..., p

c
N) (25)

3. Results and discussion

In this section, a comparative analysis of these three non-intrusive PGD

methods is discussed on three levels. Fist, a test dataset of 160 samples

have been generated through multiscale modeling, as introduced earlier, to

evaluate the performance of each model. The proposed 160 samples are

divided into two equal parts for better interpretation of the results. The first

set is represented by 80 pre-selected samples located inside the parametric

domain and plotted in blue color, while the rest of the samples are taken

on its boundary and depicted in red color, as shown in Figures 7, 5, 6 and

8. Second, one of the nine components of the mechanical properties (The

Young’s Modulus of the composite along the weft direction) is plotted by

varying two of the most influential parameters on the elastic behavior of

plain woven composite (fibre Young’s modulus Ef and intra-weft fibre volume

fraction cf1), holding the remaining parameters at two positions (a1 = 2 mm,

a2 = 2 mm, h = 0.3 mm, c = 0.2 mm, cf2 = 50%, vf = 0.3, Em = 2074

MPa and vm = 0.3) as depicted in Figure 9 and (a1 = 0.8 mm, a2 = 0.8 mm,

h = 0.2 mm, c = 0.1 mm, cf2 = 30%, vf = 0.2, Em = 500 MPa and vm = 0.2

) as shown in Figure 10. Finally, a quantitative comparison is presented in

the Table 2, indicating the error obtained and the volume of data requested

by each technique.

The error produced by each method in the test dataset is expressed as
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follows:

Err =

√
∑T

k=1

(
w(pk)− wapp(pk)

)2

√
∑T

k=1

(
w(pk)

)2
(26)

where T = 160 refers to the total number of test dataset. w and wapp repre-

sent the reference and the approximate solution of each mechanical property,

respectively, at the test point pk.

3.1. Macroscopic properties predicted by SSL :

As has already been pointed out, the samples needed to construct the

parametric solution with SSL model are typically acquired following the

Sparse Grid Sampling strategy and based on Gauss-Lobatto-Chebyshev col-

location points. It allows us to circumvent the overfitting problems induced

by increasing the degree of the polynomials. Moreover, it involves a reduced

volume of data at each level compared to the full sampling strategy. As a

result, 1024 samples are used to approximate the solution at the first hierar-

chical level, which represent all possible combinations between the minimum

and maximum values of the 10-dimensional space. Herein, due to this sam-

pling strategy, only 16 unit-cells are sufficient to calculate the mechanical

properties at all 1024 sampling points, as the samples may have the same

unit-cell geometry (similar geometrical parameters: a1, a2, c, and h ) but

different constituent material properties (Ef , νf , Em, etc). In addition, more

sampling points could be added in the subsequent levels to improve the accu-

racy of the approximation. For instance, 5120 samples are required for level

1, including 32 unit-cells.

The macroscopic properties predicted using SSL level 0 and level 1 against
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Figure 5: Scatterplots of the predicted values against the reference ones of the mechanical

properties of plain weave fabric composite using SSL level 0. The red and blue points refer

to the test datasets on boundary and inside the parametric domain, respectively. While

the diagonal line indicate the perfect prediction.

the reference values for the test dataset are illustrated in Figures 5 and

6, respectively. In general, an excellent correlation between predicted and

reference values can be observed from these figures, when the test sampling

points are located on the boundary. Whereas, a large deviation of predicted

mechanical properties from the diagonal line can be noticed for the dataset

points inside the domain, especially for the Young modulus along the 1st and
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Figure 6: Scatterplots of the predicted values against the reference ones of the mechanical

properties of plain weave fabric composite using SSL level 1. The red and blue points refer

to the test datasets on boundary and inside the parametric domain, respectively. While

the diagonal line indicate the perfect prediction.

2nd directions and the Poisson ratios.

Despite the increase in the number of sampling points from level 0 to level

1, we notice that there is not much difference between the scatterplots in Fig-

ure 5 and Figure 6, except for a few red points that have been now placed on

the diagonal line. This means that the accuracy of the approximate solution

does not improve significantly, even with the considerable increase in the
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number of samples. Similar results can be clearly noticeable in Subfigures

9b, 9c, 10b and 10c where the predicted and reference values of the Young’s

Modulus along the direction 1 (E1) are plotted as a function of two param-

eters (Ef and cf1), while the others are maintained constant and collected

at two different locations (the center and the boundary of the parametric

domain). The results obtained are first explained by the high concentration

of sampling points along the domain boundary for both hierarchical levels.

Second, the solution is quite smooth along the boundary and only a small

variation is noticed inside the parametric domain. It should be noted that

more accurate results could be found by having more knowledge about the

solution in the middle of the parametric domain. This can be achieved by

enriching more the approximation through the increase of the hierarchical

levels (Ibáñez et al., 2018). However, this can be very time consuming due to

the exponential expansion in sampling points. Furthermore, as summarized

in Table 2, the SSL level 0 and 1 necessitate a few dozen of unit cell gener-

ations. Such a number still allows punctual corrections that are sometimes

needed on some unit cells since the automatic generation does not always

provide perfect meshes. This is in contrast with higher levels of approxima-

tion, which require too many unit cells (for instance, more than 100 for the

level 2) to perform these corrections.

3.2. Macroscopic properties predicted by s-PGD

This model has been trained with 200 samples given by the Latin Hyper-

cube Sampling (LHS) strategy. This strategy consists of generating points in

a quasi-random way under the condition that only one sample is placed on

the same row and column. That is why, generating a training dataset of 200
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Figure 7: Scatterplots of predicted versus reference values of the mechanical properties

of plain weave fabric composite using s-PGD model. The red and blue points represent

the test datasets on boundary and inside the parametric domain, respectively. While the

diagonal line indicate the perfect prediction.

samples, in this case, necessitates similar number of unit-cells. In addition,

it should be noted that a hyperparametric study is conducted to identify the

input values of the model’s hyperparameters, such as the number of sam-

pling points, the degree of the one-dimensional polynomial and the number

of modes. Consequently, linear and quadratic polynomials are adopted and a

mode number ranging between 10 and 16 are found for the nine components.
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Therefore, for the same reasons as mentioned in the previous subsection, the

database could not be improved with a higher number of sampling points,

and the latter is set to 200 samples. This is particularly motivated by the

large number of unit cells required for this sampling strategy.

The scatterplots obtained by comparing the reference values (E
R

1 , E
R

2 ,

E
R

3 , G
R

12, G
R

13, G
R

23, ν
R
12, ν

R
13, ν

R
23) and the values predicted by the s-PGD

model (E
P

1 , E
P

2 , E
P

3 , G
P

12, G
P

13, G
P

23, ν
P
12, ν

P
13, ν

P
23) for the nine elastic constants

are illustrated in Figure 7. It can be clearly observed from this figure that

s-PGD provided a correct estimation of the mechanical properties whenever

the sample is located inside the parametric domain and a poor prediction in

the opposite case. This can be seen from the distribution of blue and red

points with respect to the diagonal line that represents the perfect prediction,

i.e., the blue points are situated closer to the diagonal line than the red

ones. Furthermore, the same conclusions can be extracted from figures 9a

and 10a where the predicted values by s-PGD and the ones obtained by

FEM for E1 are plotted as a function of two parameters. Again, s-PGD

shows a good agreement between the predicted and the reference solution

when the parameters values are taken in the center. On the contrary, a

significant divergence is noticed when the minimum value of each parameter

is considered.

Since we are dealing with linear elastic behavior, the generation of the

database in the offline phase can be an expensive task, not because of the

FEM calculations but rather due to the creation of the geometry and mesh

of the unit-cells. However, as entailed in Table 2, this model requires around

200 unit-cells, which are considered costly for database generation, regarding
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the error produced for each component at the test dataset (more than 10%).

In conclusion, the s-PGD model seems to be not totally able to well ap-

proximate the parametric solution of the overall mechanical properties of

woven composite, in particular, when the parameters vary along the bound-

ary. This can be attributed to the fact that this model fails in extrapolating

the pre-calculated solutions. In addition, ensuring accurate results by the

proposed model may be obtained by using more sampling points located

closer to the domain boundary.

3.3. Macroscopic properties predicted by ANOVA-PGD

In this subsection, the results obtained by ANOVA-PGD are presented.

Figure 8 shows an excellent agreement between the predicted and reference

values of the orthotropic mechanical properties. Moreover, as shown in Ta-

ble 2, using only 1045 pre-computed solutions and 25 unit-cells, the proposed

method produces less error compared with the previous methods. Further-

more, from figures 9d and 10d, we notice that the current method provides a

better approximation of the component E1 in the whole parametric domain.

Overall, it can be deduced from the findings that ANOVA-PGD permits

to achieve more accurate predictions of the mechanical properties of woven

composite using a limited dataset. It represents the right trade-off between

precision and database volume. This can be explained by the ability of this

method to consider sampling points in the volume as well as on the surface

of the parametric domain.

As presented earlier, this parametric solution is approximated in two

steps. First, an anchored-ANOVA decomposition is implemented using 21

sampling points. The latter have been generated by setting all parameters at
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Figure 8: Scatterplots of predicted versus reference values of the mechanical properties

of plain weave fabric composite using ANOVA-PGD. The red and blue points represent

the test datasets on boundary and inside the parametric domain, respectively. While the

diagonal line indicate the perfect prediction.

the center of the domain and varying, each time, one parameter between the

maximum and minimum value. In each dimension, three sample points are

used, in which the anchor point is included, to determine the one-dimensional

functions using a polynomial interpolation technique such as spline interpo-

lation or Lagrange interpolation, etc. Afterwards, the approximate solution

is improved now by approximating the residual. In (Sancarlos et al., 2021a),
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Table 2: Number of samples (number of finite element calculations) and unit-cells used

to approximate the macroscopic properties of woven composite by non-intrusive PGD

techniques and the error obtained in the test data set for each of these techniques..

non-intrusive Number of Number of Errors (Err)

PGD Samples unit cell E1 E2 E3 G12 G13 G23 ν12 ν13 ν23

SSL (level 0) 1024 16 0.11 0.12 0.04 0.04 0.03 0.03 0.18 0.06 0.06

SSL (level 1) 6144 48 0.11 0.12 0.04 0.03 0.03 0.03 0.14 0.05 0.05

s-PGD 200 200 0.1 0.21 0.1 0.31 0.22 0.09 0.39 0.05 0.06

ANOVA-PGD 1045 25 0.05 0.06 0.03 0.03 0.02 0.02 0.13 0.03 0.03

it is proposed to approximate this residual through non-intrusive PGD such

as s-PGD. Here, the SSL level 0 has been chosen to construct this approxima-

tion trying to obtain excellent predictions for the points involved along the

boundary of the parametric domain as presented in the previous subsection.

Summarizing, the following outcomes and key points can be derived:

• ANOVA-PGD model is appropriate for the presented problem since it

requires a few dozen of unit cells and a few hundred of FE computations,

to achieve a good approximation.

• s-PGD fails to well approximate the solution along the domain’s bound-

ary. Also, it uses a huge number of unit cells to build the database in

contrast to other presented methods.

• SSL brings about significant errors inside the parametric domain for

the first two hierarchical levels. It requires a huge number of precom-

puted solutions in order to reach an accuracy comparable to that of

ANOVA-PGD. However, improving the approximation level leads to
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(a) E1 (s-PGD)
(b) E1 (SSL level 0)

(c) E1 (SSL level 1) (d) E1 (ANOVA-PGD)

Figure 9: Comparison between reference and predicted values of longitudinal modulus E1,

as a function of fibre Young’s modulus Ef and intra-weft fibre volume fraction cf1. With

a1 = 2 mm, a2 = 2 mm, h = 0.3 mm, c = 0.2 mm, cf2 = 50% vf = 0.3, Em = 2074

MPa, vm = 0.3 are chosen inside the parametric domain. (a) the values predicted by

s-PGD. (b) Values predicted by SSL level 0. (c) Values predicted by SSL level 1. (d)

Values predicted by ANOVA-PGD.

an exponential increase in the number of samples as well as the unit

cell generations.

.
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(a) E1 (s-PGD)
(b) E1 (SSL level 0)

(c) E1 (SSL level 1) (d) E1 (ANOVA-PGD)

Figure 10: Comparison between reference and predicted values of longitudinal modulus

E1, as a function of fibre Young’s modulus Ef and intra-weft fibre volume fraction cf1.

With a1 = 0.8 mm, a2 = 0.8 mm, h = 0.2 mm, c = 0.1 mm, cf2 = 30%, vf = 0.2,

Em = 500 MPa, vm = 0.2 are chosen on the boundary of the domain. (a) The values

predicted by s-PGD. (b) Values predicted by SSL level 0. (c) Values predicted by SSL

level 1. (d) Values predicted by ANOVA-PGD.

4. Conclusions and perspectives

In this study, non-intrusive PGD-based methods have been applied to

construct a multiparametric approximation of the macroscopic properties of
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plain weave composite including various microstructural parameters. These

methods allow for advanced parametric analyses, considering the parame-

ters as extra-coordinates of the problem, while circumventing the resulting

curse of dimensionality by using the separated representation form of the

solution. To achieve a good prediction of the mechanical properties for plain

weave, based on limited number of offline computations, a thorough com-

parative analysis of three non-intrusive PGD formulations, SSL, s-PGD and

ANOVA-PGD, is presented. Therefore, the following concluding remarks can

be outlined:

• ANOVA-PGD provides efficient and accurate predictions of the ho-

mogenized properties of plain weave composites both inside the 10-

dimensional parameter space, and at its boundary.

• This technique well approximates the multi-parametric solution using a

reduced number of high-fidelity solutions and related microstructures in

the offline stage, compared to the other presented non-intrusive PGD

techniques.

• The same formulation has been successfully applied to approximate

the multiparametric solution for other balanced weave reinforcement

architectures including 2/2 Twill weave and 5H Satin weave pattern,

as well as for unbalanced weave architecture such as 2/3 Twill weave

pattern.

• A Graphical User Interface application (GUI) has been created using

Matlab App Designer as shown in Figure 11. This application can
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be easily employed by designers and engineers to deduce, instanta-

neously, the macroscopic properties of woven composite for any given

set of microstructural parameters by setting cursors and without any

microstructure generation and FE computation using periodic homoge-

nization. Such a tool allows hence assessing in real-time the influence of

the input parameters on the overall composite behavior. It can be also

employed as a decision-making tool towards optimal material selection.

The results presented in this work make non-intrusive PGD-based formu-

lations a promising technique for solving high-dimensional parametric solu-

tions of many engineering problems of composites using a limited dataset,

especially, where a huge database is impossible or difficult to build. This

research has focused on studying the linear elastic properties of woven fabric

composites taking into account geometrical and material parameters. There

are many opportunities for future works, for instance, by incorporating more

parameters, including yarn angle and total fibre volume fraction, or by inves-

tigating other types of composites such as the 3D woven composites (interlock

woven fabric composite). This work could also be extended to build subse-

quent virtual abacuses and vademecums dealing with nonlinear behaviors

including viscoelasticity, viscoplasticity, and damage (Praud et al., 2017a,

2021b; Kriaa et al., 2020).
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Figure 11: Graphical User Interface application (GUI) for real-time evaluation of the

homogenized properties of 2D woven composites (Plain weave, 2/2 Twill weave, 3/2 Twill

weave and 5H Satin weave) involving microstructure geometry and material properties of

its constituents.
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 Effective  stifffess  preeictctinf  fnre  cnppnsctne  havctfsi  ictffereefn  wnvefffabrrectc  arechctnecnrrees  afi

pctcrensnrercnrree  pareapeneres  wctnhnrn  afy  pctcrensnrercnrree  siefereatinf  afi  peshctfsi  fnre  FE

cnpprnatinfs rsctfsi perectnictc hnpnsiefctzatinf.

 Cnppareative afalyscts nf nhreee fnffctfnrersctve PGD fnreprlatinfs (SSL, sPGD afi ANOVAfPGD) ctf

nereps nf accrreacy afi renbrrsnfess.
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siefereatifsi nhe ianabrase afi nhe accrreacy nf nhe apprenxctpatinf nf nhe stifffess nvere nhe eftiree

pareapenere space.

 Creeatinf nf  a Greaphctcal  Usere Ifnereface applctcatinf (GUI)  actpei an  preeictctifsi ctf reealftipe nhe
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arechctnecnrrees.
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