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A B S T R A C T

Simulating trajectories of virtual crowds is a commonly encountered task in Com-
puter Graphics. Several recent works have applied Reinforcement Learning methods
to animate virtual agents, however they often make different design choices when
it comes to the fundamental simulation setup. Each of these choices comes with
a reasonable justification for its use, so it is not obvious what is their real impact,
and how they affect the results. In this work, we analyze some of these arbitrary
choices in terms of their impact on the learning performance, as well as the quality
of the resulting simulation measured in terms of the energy efficiency. We perform a
theoretical analysis of the properties of the reward function design, and empirically
evaluate the impact of using certain observation and action spaces on a variety of sce-
narios, with the reward function and energy usage as metrics. We show that directly
using the neighboring agents’ information as observation generally outperforms the
more widely used raycasting. Similarly, using nonholonomic controls with egocen-
tric observations tends to produce more efficient behaviors than holonomic controls
with absolute observations. Each of these choices has a significant, and potentially
nontrivial impact on the results, and so researchers should be mindful about choosing
and reporting them in their work.

1. Introduction

Simulating virtual human crowds is a common task when
creating lively, populated scenes for graphics applications.
This includes a large variety of scenarios – ranging from
small, artificially structured scenes used in research, to large
scale simulations with thousands of virtual agents. They can
be used either for real-life applications (e.g. testing evacuation
scenarios in airports or sport stadiums) or targeting automatic
content creation in films and games, featuring a diversity of
background characters, each with their own goals and moti-
vations.

While the approaches to simulating such crowds typically
use hand-crafted or data-driven algorithms, in recent years
there has been an increasing research interest in using Deep
Reinforcement Learning (DRL) methods. These algorithms
have a promise of a flexible, problem-agnostic training pro-
cess that can autonomously produce diverse behaviors. How-
ever, they also bring many new challenges, which must be

∗Corresponding author.
e-mail: ariel.kwiatkowski@polytechnique.edu (A.

Kwiatkowski)

explored independently of the previous knowledge of crowd
simulation algorithms.

It is worth noting that just “crowd simulation” is somewhat
of an underdefined problem. Although we have an intuition
as to what a crowd is and how it behaves, it is not clear how
to formalize it, which is exemplified by the variety of de-
scriptions in prior work. At the same time, as Reinforcement
Learning (RL) is designed to optimize a given scalar reward
function, it excels when the objective is clearly stated. For this
reason, we investigate the various ways to specify the crowd
simulation problem.

There are three main components of an RL system – ob-
servations, actions, and rewards. For each of them, it is not
necessarily obvious what is the appropriate level of abstrac-
tion, or even the implementation, to properly simulate human
crowds. Take actions, for example – it is infeasible to per-
form a fully accurate biomechanical simulation of each mus-
cle movement, so we must use a simplified model. Similarly
for observations, performing a full rendering of the scene to
emulate human vision would not only be expensive to per-
form, it would also difficult to train.

Designing the reward function is arguably even more com-
plex. While navigating in our daily life, we balance several,
often mutually contradictory objectives, such as getting to
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Fig. 1: Two groups of virtual agents crossing a corridor

the destination efficiently, moving at a comfortable speed or
avoiding bumping into others. Even though some of them are
simple to formalize as a single scalar reward, it is not obvious
how they should be balanced. Is it acceptable to reach the des-
tination two seconds earlier, but increase the risk of bumping
into someone by 5%? Can we take a shorter path which leads
through a group of people, or should we go around, reduc-
ing risk of collision, but increasing the distance? The answer
to each of this question will vary from person to person, and
many external factors. If going a bit slower would cause us
to barely miss a train, we are likely to accept a higher risk of
colliding than if we are just taking a walk around the park.

In this work, we intend to bring clarity to the intersection of
crowd simulation and DRL, by exploring in detail the impact
of these design choices on the generated virtual crowds. We
perform a theoretical analysis of controlling the agents’ ve-
locities, and an empirical investigation of various observation
and action spaces. We evaluate them in terms of optimiz-
ing the reward function, but also consider the energy expen-
diture, and various quantitative properties of the movement.
Our contributions are:

1. Empirical evaluation of raycasting versus direct agent
perception in RL crowd simulation

2. Empirical comparison of various implementations of ob-
servations and dynamics in RL crowd simulation

3. Theoretical and empirical analysis of the properties of
reward functions for efficient navigation with RL

2. Background & Related Work

Microscopic simulation of virtual crowds has garnered sig-
nificant research interest in recent years. Various non-learning
techniques have been introduced in the previous decade [1],
which typically involve designing rule-based systems to up-
date each agent’s velocity based on their context. There also
exists a body of work using RL for controlling virtual char-
acters, including crowd scenarios [2]. In this section we de-
scribe the elements of related work which are the most rele-
vant to applying RL in crowd simulation.

Reinforcement Learning. RL is a study of sequential de-
cision making, where one or more agents act in an environ-
ment, affecting its state, and receiving rewards. Modern RL

widely uses neural network-based algorithms [3], using them
e.g. as a policy function, mapping observations to actions
taken by the agent. This network is then optimized with a pro-
cedure based on the Policy Gradient Theorem, as introduced
by the REINFORCE algorithm [4]. A more modern version
that follows the same principle is the Proximal Policy Opti-
mization (PPO) algorithm, introduced by Schulman et al. [5].
PPO is now the de facto standard on-policy algorithm used in
many DRL applications due to its simplicity and efficiency.

Design Choices in RL. The importance of various, seem-
ingly minor design choices in RL is a common phenomenon
across many domains of the field. In physics-based anima-
tion, Reda et al. [6] explore how the performance of RL agents
is affected by parameters like the initial state distribution,
components of the state representation, or the control fre-
quency. Engstrom et al. [7] perform a large-scale study of im-
plementation details and code-level optimizations that affect
the performance of TRPO and PPO in robotic control tasks.
Similarly, Andrychowicz et al. [8] investigate how different
design choices in on-policy algorithms affect the agent’s per-
formance.

Crowd Simulation. Microscopic simulation of crowds
is typically done by either using force-based methods [9]
where the positions of nearby agents, obstacles, as well as the
agent’s destination, all contribute to Social Forces that drive
the acceleration of the agent at the next time step, or alter-
natively velocity-based methods such as Optimal Reciprocal
Collision Avoidance (ORCA) [10]. The latter construct obsta-
cles in the agent’s velocity space, which correspond to veloc-
ities that would result in a collision if the agent were to take
them. This leads to effective solutions to collision avoidance,
able to capture anticipation behaviours in crossing scenarios.
Recently, vision-based and data-driven algorithms were ex-
plored as well, promising even more human-like results [1].

Crowd Simulation via DRL. There is a number of prior
papers which train DRL agents on the task of crowd simu-
lation. Long et al. [11] use a multiagent robotic navigation
setup, which shares certain properties with crowd simulation.
Lee et al. [12] train an RL agent on a variety of crowd sce-
narios, showing that a single trained model can be used to
control multiple agents acting in a shared environment, on a
diverse range of scenarios. Sun et al. [13] train groups of
agents by making them follow specially-trained leader agents.
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Xu et al. [14] combine DRL with an ORCA layer that ensures
collision-free movement.

DRL is also used to generate more interesting, higher-
quality trajectories. Xu and Karamouzas [15] use real-world
human trajectory data to train a supervised model judging the
human-likeness of a generated trajectory. Then, the output of
that model is used as an additional component of the reward
function, encouraging agents to act in a human-like manner.
Hu et al. [16] use a parametric RL approach to generate het-
erogeneous behaviors with a single shared policy network.
Each agent has its own preferred velocity value, and is trained
to move according to it. Similarly, Panayiotou et al. [17] vary
the weights in the reward functions of different agents in order
to give them unique and configurable personalities.

While each of these prior works tackles the same prob-
lem of crowd simulation, many elements of their fundamental
setup differ in potentially significant ways, which makes di-
rect comparison infeasible. Therefore, in this work, we com-
pare the basic design choices used in all these papers, in order
to analyse their impact.

3. Environment Design Choices

We identify three design choices which can impact the
properties of virtual crowds trained with a standard DRL al-
gorithm – observations, actions, and the reward function. In
this section, we set the problem in standard multiagent RL
formalism, and describe the variants of observations and ac-
tion spaces explored in this work.

3.1. Problem Formulation

We model the problem of crowd simulation as a Partially
Observable Stochastic Game (POSG) [18]. A POSG is de-
fined as a tuple (I,S, {Ai}, {Ωi}, {Oi},T, {Ri}, µ), where I is
the set of agents, S is a set of states of the environment, Ai

is a set of actions for agent i (A = ×i∈IA
i is the joint ac-

tion set), Ωi is the set of observations, Oi : S → Ωi is the
observation function, Oi : S → Ωi is the observation func-
tion, T : S ×A → ∆S is the environment transition function,
Ri : S×A×S → R is the reward function, and µ ∈ ∆S is the
initial state distribution.

In a POSG, all agents simultaneously make decisions based
on their own private observations. Then, the environment is
updated according to the joint action of all agents, and each
agent receives its own reward that it tries to maximize. The
reward is computed the same way for each agent, but based
on its individual situation (i.e. no reward sharing). We addi-
tionally specify a time limit Tmax ∈ N which is the maximum
number of steps the environment is allowed to take before re-
setting.

3.2. Observation Space

In order to navigate through the environment, each agent
must perceive its environment in some way. However, it is not
obvious in what form agents should receive this information,
or in fact, what the information should be.

The simplest human-inspired design is to give the agent
information in its own frame of reference, and to have it per-
ceive the environment through raycasting – a simple approx-
imation of human vision. The intention is that if humans
can effectively navigate using this type of information, then
it should also suffice for virtual agents, which should then
act more human-like. However, it is not necessarily the case
that an anthropomorphic structure is indeed optimal for vir-
tual agents, especially with it being only a rough approxima-
tion. More realistic rendering of the agent’s vision is an op-
tion, but it would result in very large observation sizes, sub-
ject to the curse of dimensionality. Thus, it is worthwhile to
explore other possibilities.

An agent must receive information about its surroundings
(other nearby agents and obstacles, i.e. Environment Percep-
tion), but also about its own internal state and knowledge (e.g.
its current velocity, or its current destination, i.e. Propriocep-
tion). In both of these cases, it is also relevant what is the ref-
erence frame in which they are observed. For the Environ-
ment Perception, we consider two types of perception: Ray-
casting and Direct Agent Perception (AP) (Section 3.2.1). For
the reference frame, we have three representations: Absolute,
Relative, and Egocentric (Section 3.2.2).

3.2.1. Environment Perception
Raycasting refers to a method where several rays are cast

from the center of the agent, in a plane parallel to the ground.
Each of those rays then provides information on whether or
not it collides with any object within a predefined distance,
and what is the distance to the collision location.

Direct Agent Perception, similar to the method used by Xu
and Karamouzas [15] is an alternative approach, where the
agent directly receives the positions of other agents within a
certain range, along with other relevant parameters. The ref-
erence frame in which the information is passed follows the
chosen proprioception model (i.e. Absolute, Relative or Ego-
centric). This has the possible benefit of directly giving ac-
cess to relevant information, but it introduces two important
complications. Firstly, this method cannot canonically rep-
resent obstacles. While small, human-sized obstacles can be
treated as stationary agents, large obstacles like walls need
a different approach. Secondly, the number of neighboring
agents is variable, and can grow very large in high density
scenarios. The standard Multi-Layer Perceptron architecture
cannot handle variable-sized inputs, so this variability has
to be accounted for in some way. Furthermore, the order
in which neighboring agents are observed is irrelevant, so
a permutation-invariant architecture is necessary to decrease
the effective size of the observation space.

In this work, we also test a multimodal approach which
combines both Raycasting and Agent Perception, described in
more detail in Section 5.2. With this hybrid method, the ray-
casting is only used to perceive static obstacles such as walls,
ignoring other agents, whose positions are instead observed
directly. We hypothesize that this might enable gaining the
benefits of both methods – the agent has accurate knowledge
of others, as well as a general idea of the surrounding layout,
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(a) Cartesian Veloc-
ity.

(b) Cartesian Ac-
celeration. (c) Polar Velocity.

(d) Polar Accelera-
tion.

Fig. 2: A schematic representation of the available action spaces. In each
case, we take a bird’s-eye view of an agent moving in the positive Y direc-
tion at an intermediate speed, represented by the blue arrow. The blue circle
represents the space of all physically possible velocities (i.e. below the max-
imum speed). The green area represents the velocities that the agent is able
to have in the following timestep under the specific action space.

sufficient for navigation.

3.2.2. Reference Frames

Absolute observations [13] use a bird’s-eye view on the
global scene. The agent observes a vector consisting of its
position p and the position of its goal pg in the global coor-
dinate frame, its current orientation ϕ (which is relevant for
some choices in Action Spaces), and its current velocity v.
Using the Agent Perception approach, the agent observes the
positions pi and velocities vi of nearby agents in the global
frame.

Relative observations [15, 11, 14], like Absolute, use the
global frame, however it is translated so that it is centered
on the agent. It again receives its absolute position p and
velocity v in order to retain the information about the large
context, but the goal position is given relatively to the agent’s
own position, as pg − p. Similarly, using Agent Perception,
other agents’ positions are given as pi − p, and velocities are
given in the absolute form vi.

Egocentric observations [16, 12] use the agent’s local frame
according to its orientation. The agent observes its position
p and orientation angle ϕ in the global frame. We write Rϕ

to be the rotation matrix associated with the agent’s current
orientation. The agent observes its goal position as Rϕ(pg−p).
Using Agent Perception, the positions of other agents are also
represented as Rϕ(pi − p), and their observed velocities are
Rϕv.

While each of these has a theoretical justification (moving
from absolute information about the scene, towards a more
human-like first-person view), it is not immediately obvious
which one is the best. On the one hand, absolute observations
can give a high-level overall view of the scene, potentially aid-
ing coordination. On the other hand, a relative or egocentric
view allows agents to better reuse experiences between differ-
ent positions and situations. If the agent is heading towards
its goal, it is not that important whether it is to the left or to
the right, looking from a bird’s eye view. Since the Egocen-
tric observations lose this information, navigation might be
expected to be learned more efficiently. Note that the choice
of the reference frame also affects the structure of Agent Per-
ception.

3.3. Action Space and Dynamics

Human motion is highly complex, and a biomechanically
accurate simulation of human motion is a challenging re-
search problem in of itself, so for the purposes of creating
virtual crowds, we use a simplified model. The simplest
choice is holonomic locomotion [19], where at each step, the
agent can choose its velocity constrained only by its magni-
tude. However, this approach does not correspond well to the
motion constraints of real humans. Arechavaleta et al. [20]
propose a nonholonomic model, in which an agent can move
in the direction of its current orientation, and incrementally
change its orientation for the next timestep.

Allowing the agent to freely choose its velocity at every
timestep gives it much more flexibility in choosing its behav-
ior. However, from the perspective of Newtonian mechanics,
it is more physically justified for the agent to directly choose
its acceleration. This would mean that the velocity change at
each timestep is incremental.

Similarly, there is a choice in how the actions should be
represented. We can take the bird’s eye view, where the agents
choose their actions according to an absolute reference frame,
moving up or down, left or right. Alternatively, we can take
a more individual perspective, where the agents operate in a
polar frame, choosing their linear movement and the direction
of that movement.

For this reason, we consider four different dynamics mod-
els of the environment: Cartesian Velocity, Cartesian Accel-
eration, Polar Velocity, and Polar Acceleration.

Cartesian control (used by [15, 16]) implies that the agent
separately chooses the x and y components of its motion -
either of its velocity or acceleration.

Polar control (used by [12, 11, 13, 14]), implies that the
agent separately updates its orientation angle, and its linear
speed. The linear speed is again updated either by choosing an
arbitrary value below a certain magnitude (velocity controls),
or by incrementally updating it according to the acceleration
chosen by the agent.

Acceleration controls (used by [16, 15]), are modeled in
our implementation using a linear damping model. This
means that given an acceleration at chosen by the agent as
its action, the updated velocity will be

vt = vt−1 + (at − λvt−1)∆t

where λ is chosen so that we obtain the same maximum speed
as in velocity controls, which is equal to 2 m

s .
With velocity controls (used by [12, 11, 13, 14]), the agent

can choose an arbitrary speed of a magnitude lower than 2 m
s .

In Cartesian controls, the agent’s orientation is defined to
be parallel to its current velocity. In Polar controls, the orien-
tation is directly controlled, and the velocity is parallel to the
orientation.

4. Reward Function Design

Designing the reward function is arguably the most impact-
ful, and the most difficult part of creating an RL-driven crowd
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simulation. The two components which are present in all ex-
isting work are a positive term correlated with reaching the
goal, and a negative term correlated with collisions. Beyond
that, various elements may be included to promote certain
behavior characteristics, or to improve training performance
through reward shaping. In this work, we consider the follow-
ing reward components based on prior work:

1. Reward for reaching the goal Rg = cg (once) [11, 13, 14]

2. Reward for approaching the goal Rp = cp(dt − dt−1) (ev-
ery timestep) [15, 16, 12, 11, 13, 14]

3. Reward for maintaining a comfortable speed Rv =

−cv|v − v0|
ce (every timestep) [15]

4. Penalty for collisions Rc = −cc (every collision, every
timestep) [15, 16, 12, 11, 13, 14]

5. Reward for urgency Rt = −ct (every timestep) [13]

where cg, cp, cv, ce, cc, ct are arbitrary (typically positive) co-
efficients. Their roles are as follows: Rg is the main (sparse)
reward representing the agent’s destination. Rp provides a
dense reward for the navigation objective to enable faster
training. Rv incentivizes moving at a comfortable speed v0.
We propose raising the absolute difference of speeds to an ar-
bitrary power ce in order to further shape the behavior. Rc

makes agents avoid colliding with obstacles and with one an-
other. Rt is a commonly used reward component in goal-based
RL environments, as it incentivizes the agents to reach their
goal sooner rather than later.

4.1. Energy and Metrics

When considering different reward functions, it is impor-
tant to have metrics that are independent of the specific re-
ward formulation in order to have a meaningful comparison.
For this reason, we consider two types of metrics.

Firstly, for each component of the reward function, we
compute an unnormalized value measuring its performance,
which can then be compared between different training runs.
For example, we consider the total number of collision, re-
gardless of the size of the collision penalty in the reward func-
tion.

Secondly, we compute the mean energy expenditure of all
agents in the scene. We use the following formula [21, 22]:

Et = es + ewv2

where Et is energy spent per second, per kilogram body mass
(J/kg·s), es and ew are constants, and v is the current velocity
(m/s). We use the values of es = 2.23 and ew = 1.26 of a
typical human. This induces an optimal walking speed of v∗ =√

es
ew
= 1.33 m/s which we use as the preferred walking speed.

Work by Bruneau et al. [23] suggests that when navigating to
avoid collisions, people tend to choose a path that minimizes
the energy usage, so we consider it to be a valuable metric
describing the efficiency of the generated trajectory.
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Fig. 3: (a) Rewards and energy for an agent moving at a constant speed,
in the simplified model described in Section 4.2. All curves are normalized
to be in the [0, 1] range in order to enable direct comparison. We consider
energy values with the opposite sign, because energy is supposed to be mini-
mized, while the reward is maximized. (b) MSE between the reward and the
energy, as a function of the velocity reward exponent. (c) Optimal velocity
as a function of the velocity reward coefficient cv, varied by the exponent ce.
(d) Discounted negative energy expenditure as a function of velocity.

4.2. Reward and Preferred Velocity

As we see from the energy optimization mechanism, hu-
mans tend to move at a certain speed which is below their
maximum possible speed. This must be reflected in the re-
ward function that the RL agent optimizes. However, it goes
against the typical RL incentives to obtain rewards sooner due
to the discounted utility model [3].

The interaction between the values of cg, cp, cv, ce, ct, γ,
and Tmax, make the effective preferred velocity nontrivial to
predict, and as a consequence – to design. Consider a sim-
plified environment model in which the agent must travel a
distance d towards its goal, with no other agents or obstacles.
In this case, the only decision it makes is the velocity through-
out its motion, under the assumption that it will travel to its
goal in a straight line at a constant velocity. In this model, we
can express the total obtained reward as:

R(v) = γT cg +

T∑
i=0

γi
(
cpv∆t − cv|v − v0|

ce − ct

)
(1)

where T = min(Tmax, ⌈
d

v∆t ⌉) Due to the discounted sum whose
bounds are dependent on the velocity itself, it is difficult to
investigate this expression analytically. Nevertheless, we can
gain some insight through numerically analyzing this model.
Note, however, that this model does not capture the full com-
plexity of RL optimization, and only serves to build general
intuition.

Consider the following set of parameters values – based on
prior work and then manually adjusted to produce reasonable
behaviors – as a starting point of our analysis: cg = 10, cp =

1, cv = 0.75, ce = 1, ct = 0.005 v0 = 1.33, γ = 0.99, Tmax =

200, d = 8, ∆t = 1
12 .

Let us investigate the full reward as a function of velocity,
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alongside the negative energy expenditure as defined in Sec-
tion 4.1. This relation is shown in Figure 3a. We can see that
while there is a correlation between reward and energy, there
are two main discrepancies. Firstly, the energy has a local op-
timum at v = 0, which is caused by the velocities that cause
agents to not reach their destination within the allotted time.
Secondly, due to the absolute difference term in Equation 1,
there is a sharp decrease in the reward (blue curve) which does
not occur in the energy.

To improve this, we evaluate the impact of the exponent ce

from the reward function. In Figure 3a, we also show ce = 2
(orange). There, the curve is smoother and closer to the corre-
sponding energy values when the energy is near the optimum.
To quantify this, we vary the parameter ce and compute the
mean square error between the two normalized curves in the
range 1 m

s < v < 2 m
s , as we consider lower velocities to be less

relevant due to their low efficiency. As we show in Figure 3b,
the optimal value under this simple model is ce = 1.92. We
further validate this in Section 6, where we use different val-
ues of ce for training actual RL agents.

It is worth mentioning that with γ = 0.99, using ce = 2 in-
creases the effective optimal velocity to v∗ = 1.39 m

s . This can
be further adjusted using other parameters. While modifying
γ does not affect the optimal velocity when ce = 1, any higher
values of ce make it so that decreasing γ, increases v∗.

The other reward coefficients also have an impact on the
optimal velocity. When adjusting cv with ce = 1, there is a
threshold around cv = 0.09 below which the optimal velocity
is the maximum value of 2 m

s . Above that threshold, the opti-
mal velocity is the preferred value of v0 = 1.33 m

s . However,
with ce > 1, the transition between these two realms becomes
more gradual, as we show in Figure 3c.

4.3. Energy as reward
Finally, it is worth considering using energy directly as a

reward function for training RL agents. At a glance, it seems
like it would incentivize efficient motion at the optimal veloc-
ity. However, there are two apparent problems which arise in
this paradigm. Firstly, as we already see in Figure 3a, even
in our simplified model there is an attractive local optimum at
v = 0. This is likely to be even more impactful in practical
scenarios, because moving at the right speed would lead to
a very low reward if the direction of the movement is wrong.
The reason for this is the time limit present in the environment
– moving at a non-zero speed only pays off in terms of energy
if the agent eventually reaches the goal. Otherwise, it will ex-
pend energy until the end of the episode, and by reducing its
velocity, it can reduce the energy expenditure. Secondly, the
commonly used method of reward discounting has a signifi-
cant impact on the optimal policy. Using a discount factor of
γ = 0.99 leads to a situation where the global optimum of the
discounted energy-based reward function is standing still with
v = 0. Potential solutions to these problems include using a
discount factor γ = 1 or a nonexponential discounting mecha-
nism, increasing the time limit, and using a curriculum-based
approach.

Conclusion. Even in the absence of collision avoidance
and other, more complex tasks, one must pay attention to the

(a) Circle scenario.
(b) Corridor sce-
nario.

(c) Crossing sce-
nario.

(d) Random
scenario.

Fig. 4: Agent’s initial positions and goals in four scenarios: (a) Circle with
30 agents. (b) Corridor with 72 agents. (c) Crossing with 32 agents. (d)
Random with 15 agents.

parameters defining the reward function. Notably, using an
exponent in the velocity reward term causes other parameters
to nontrivially affect the effective optimal velocity. For this
reason, when designing the reward function, it is worthwhile
to validate its parameters using a simpler model to ensure it
has desired properties, whether that is closeness to the energy
expenditure, or a specific value of the preferred velocity.

5. Experimental setup

In order to evaluate the impact and quality of the various
design choices, we apply them on four commonly used crowd
scenarios, in order to provide a wide range of interactions be-
tween agents: Circle, Corridor, Crossing, Random (see Fig-
ure 4). In the Circle scenario, agents start on the perimeter of
a circle, with a random noise applied independently in both
Cartesian directions. Their goals are placed on the antipodal
points of the circle, with an independent noise of the same
magnitude applied. In Corridor, agents start at two ends of
a straight corridor whose width is 4 meters and length is 20
meters. They start either in a regular grid or in a random for-
mation, and their goal is to reach the opposite side of the corri-
dor. In Crossing, the agents start at the ends of two corridors
intersecting at a right angle, with the same size as in Corri-
dor. Similarly, they spawn either in a regular grid or a random
formation, and must reach the other end of their respective
corridors. In Random, the agents’ starting positions and goals
are generated according to a uniform distribution with a given
maximum size. In each of these scenarios, the area available
to the agents is a square of 20x20 meters. In both Circle and
Random, there are optional small obstacles placed randomly
in the scene, represented as immovable agents.

Implementation. The code1 used in this work is available on-
line. We use identical agents represented as circles of radius
0.2 m. Their collisions are treated as rigid body collisions,
processed by the PhysX engine default in Unity 2021.3, used
via the Unity Ml-Agents framework [24]. We use a decision
timestep ∆t = 1

12 s, similar to the values used in prior work.
To obtain a more accurate simulation, the physics of the scene
are updated 10 times after each decision, for an effective sim-
ulation timestep of 1

120 s. The agent’s action is repeated during

1The code for the environment is available at https://github.com/
RedTachyon/CrowdAI, and the training code is available at https://

github.com/RedTachyon/coltra-rl.

https://github.com/RedTachyon/CrowdAI
https://github.com/RedTachyon/CrowdAI
https://github.com/RedTachyon/coltra-rl
https://github.com/RedTachyon/coltra-rl
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Proprioception Agent 1 ... Agent N

MLP1 MLP2 MLP2

Sum

Concatenation

MLP3

Raycast

Fig. 5: The neural architecture used as the policy. Green blocks represent
inputs, blue blocks represent feed-forward neural networks, yellow blocks
represent vector operations, red blocks represent outputs. Depending on the
observation model used, certain elements of the architecture are disabled.

each of these updates. With agent perception observations,
each agent can see the 10 nearest agents. While these imple-
mentation details (i.e. agent size, collision handling, physics
engine, timestep) can also affect the resulting simulations and
the training performance, we do not explore their impact in
this work, because we expect it to be lower compared to the
other choices listed in this paper. It is nevertheless important
to be aware of these choices for reproducibility purposes. A
single training takes between 1 and 5 hours on GPU, depend-
ing on the number of agents and the difficulty of the scene,
while running 8 independent training runs in parallel.

5.1. Policy Optimization

In this work, we train RL agents using PPO with General-
ized Advantage Estimation (GAE) [25] to estimate the advan-
tages. The agents are trained in an independent paradigm with
parameter sharing, that is they share the same policy network,
but each agent takes its own action based on its private obser-
vations. The neural network outputs the mean of a Gaussian
distribution, and the standard deviation is kept as a trainable
parameter of the network.

5.2. Network Architecture

In order to appropriately process the Agent Perception ob-
servations, we use a neural architecture depicted in Figure 5.
It is inspired by prior work such as Deep Sets [26] and Mean
Embedding [27], and extends the architecture used by Xu and
Karamouzas [15].

The main desirable property of our architecture is permu-
tation invariance – given multiple identical nearby agents, it
should not matter in what order their representations are input
into the network, as this order is completely arbitrary. With-
out this property, the agent would need to learn this invariance
itself, which quickly becomes expensive as the number of ob-
served agents grows. Furthermore, the architecture should be
able to accept a variable number of observed agents, as this
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Fig. 6: Comparison of training results after a hyperparameter search in the
Circle 12 scenario. (a) Mean episodic reward (b) Mean energy expenditure.
Black bars represent the standard error of the mean.

quantity will vary throughout the episode. For this reason, we
use the following model as an embedding of nearby agents:

ϕ

∑
i

ψ(xi)


where ϕ and ψ are regular MLP neural networks, and xi is
the observed information about an agent i. The summation is
performed over all agents visible to the agent observing the
scene. Because of the summation operator, this architecture
fulfills both previously stated desiderata, as the ordering in-
formation is lost, and any number of agents can be processed
into a fixed-size embedding. This embedding is then concate-
nated with the main stream of the neural network, which pro-
cesses the proprioceptive observations, as well as optionally
the raycasting.

6. Experiments

In this section we describe the specific experiments we per-
formed, along with their results and interpretation. Experi-
ments are primarily evaluated in terms of their obtained re-
wards and energy usage, but also other behavior characteris-
tics when necessary.

6.1. Dynamics and Observations performance
In order to robustly evaluate the performance of various

dynamics and observation models, we run a hyperparameter
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(d) Scenario random20

Fig. 7: Comparison of various design choices in a given environment. The
last bar corresponds to the best-performing agent across all design choices.
All values are averaged across 8 independent training runs with different ran-
dom seeds and otherwise identical parameters. Lower is better. AP stands for
Agent Perception as defined in Section 3.2.1.

search with each action space, with each observation refer-
ence frame, on a Circle scenario with 12 agents and a radius
of 4 meters. Then, we use the best-performing hyperparame-
ters of each model for further experiments used in this section.
We sample 150 sets of hyperparameters for each (dynamics,
observations) pair for a total of 1800 training runs. We use
the default sampler available in Optuna [28]. These runs use
a fixed reward function, with parameters cg = 10, cp = 1,
cv = 0.75, ce = 1, cc = 0.05, ct = 0.005.

We show the results of the hyperparameter search in Fig-
ure 6. We consider the 5 best-performing hyperparameter
sets for each model, and report their aggregate performance.
There is a clear trend where agents with Egocentric obser-
vations perform better than Absolute and Relative versions.
Similarly, Polar controls perform better than Cartesian con-
trols, with Polar Velocity controls with Egocentric observa-
tions performing the best out of all investigated variants. In-
terestingly, in the case of Cartesian Velocity controls, while
the reward follows the same trend, the energy usage is in fact
the lowest with Absolute observations. This highlights the
discrepancy between the reward function and the energy met-
ric, showcasing the need for careful evaluation of emergent
behaviors.

6.2. All Scenarios
Using the hyperparameters obtained in the experiment de-

scribed in Section 6.1, we evaluate the various design choices
on several environments. Specifically, we train agents in a
Circle with 12 agents and a radius of 6 meters (circle12),
a Corridor with 50 agents (corridor50), a Crossing with 50
agents (crossway50), and a Random scenario with 20 agents
and random obstacles (random20).

Due to the large number of possible combinations (3 archi-
tectures × 4 dynamics × 3 observations × 4 scenarios), we
consider the performance of each individual choice, averag-
ing the remaining ones, in each environment separately. The
results are in Figure 7.

We run each training for 1000 PPO iterations to ensure suf-
ficient time for convergence. Because the neural networks are
relatively small (2-6 layers of 32-128 units, depending on the
architecture and the model, found via hyperparameter opti-
mization), the main bottleneck is the CPU power required to
run many copies of the environment as opposed to the GPU
memory.

While the exact results vary between scenarios, there are
some regularities. Most notably, Agent Perception consis-
tently outperforms raycasting-based approaches with other-
wise well-performing settings. In the case of the crossway50
scenario, it is beneficial to include raycasting information
around the surrounding walls, however overall it does not
seem to provide a large benefit as compared to the pure AP ap-
proach. This is likely due to the static nature of the evaluated
environments. Given the current position in the global frame,
the agent can determine its proximity from obstacles. Unsur-
prisingly, including raycasting to perceive walls, deteriorates
the performance in scenarios without a significant presence of
walls, as this information effectively becomes an additional
source of noise.

In most cases, it is best to use Egocentric or Relative obser-
vations, with some Relative runs sometimes performing the
best. A notable exception is the random20 scenario, where a
combination of Absolute observation with Cartesian Velocity
dynamics outperforms any other option. The difference is the
fact that in all other scenarios, the agents need to predomi-
nantly move in a general “forward” direction, whereas in the
random scenario, the goal can be in an arbitrary position rel-
ative to the agent’s orientation.

An interesting observation is the common “failure mode”
of Raycasting models, particularly in Circle scenarios. They
generally perform worse than Agent Perception models, but
their qualitative behavior may be more desirable due to its
asymmetry. Because they do not manage to reach the per-
fectly symmetrical trajectories achieved by Agent Perception,
there is a higher variability in the individual trajectories, mak-
ing them look more realistic. This indicates that simply train-
ing a strong RL algorithm on any objective which does not
explicitly reward human-likeness is likely to lead to overly
perfect, unrealistic trajectories.

Conclusion. We recommend using AP as opposed to the
more commonly used raycasting for providing agents with the
information about their surrounding. In scenarios where walls
are a prominent feature, it may be beneficial to add raycast-
ing which only perceives the distance to walls, and ignores
other agents. In scenarios where agents may need to make
sharp turns to reach their destination, Cartesian Velocity con-
trols with Absolute observations are favorable. Otherwise,
nonholonomic controls combined with egocentric or relative
observations typically perform better.
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Fig. 8: Comparison of energy usage in agents trained with a different expo-
nent in the velocity term of the reward function. Lower is better.
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Fig. 9: Comparison of energy usage and success rate in agents trained in
Circle 12 scenario, with a varied collision penalty in the reward function.

6.3. Velocity Reward Exponent

In Section 4.2, we show that using an exponent in the ve-
locity reward term makes it match more closely to the en-
ergy consumption. To validate this, we train Egocentric Polar
Velocity agents on a Circle 30 scenario, and Egocentric Po-
lar Acceleration agents on a Crossway 50 scenario. In both
cases, an exponent ce > 1 can lead to a higher efficiency in
the trained agents, as compared to the simple ce = 1 (see Fig-
ure 8). The exact optimal value of ce depends on the scenario
and must be determined on a case-by-case basis.

6.4. Importance of collision penalty

In a pursuit of simplicity in the design of the reward func-
tion, one might be tempted to eliminate the collision penalty
altogether. After all, if collisions result in unfavorable phys-
ical results (i.e. unexpected change of velocity), sufficiently
intelligent agents should learn to avoid them by themselves,
at least to the extent that is necessary for effective navigation.

In Figure 9 we show how the collision penalty affects the
energy usage, and how often the agents reach their destina-
tion. There is an optimum around −0.05, where the agents
reliably reach their goals. Using a penalty that is too high or
too low leads to a deterioration of the agents’ performance in
terms of the navigation task.

6.5. Common Failure Modes

Due to the stochasticity inherent to RL training, the trained
agents often exhibit various types of suboptimal behaviors.
This can be identified via tracking the performance (in terms
of the reward and energy), but also by observing emergent
behaviors that the agents learn to execute. Here, we describe
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Fig. 10: Comparison of energy usage, collision count and success rate in
agents trained in Crossway 50 scenario, with a varied collision penalty in the
reward function.

some of the common ways in which the RL-trained crowds
are suboptimal.

Instability. When training an RL agent using PPO, the
trained policy is stochastic. This is required both for training,
to ensure that the agent takes sufficiently diverse actions; but
it is also at the core of the resulting policy. In order to deploy
or evaluate the agent, we must choose a method of sampling
actions from the output of the policy. The two natural options
are taking the mean for the “optimal” action, or simply sam-
pling from the distribution. The former does not fully corre-
spond to the optimization objective, and in a crowd scenario,
it can get stuck on an obstacle or another agent. The latter
necessarily causes the policy to act randomly, which leads to
potential unpredictable mistakes due to small erratic move-
ments.

Value alignment failure. As we describe in Section 4, the re-
ward function used in this and prior work is a weighted sum
of several components with largely arbitrary coefficients. This
implies that there is no guarantee it will correspond well to the
actual objective we intend the agents to achieve. Furthermore,
while the energy usage can be a useful, non-arbitrary metric,
it is also sensitive to some details of the practical RL setup, as
we show next.

Consider the experiment described in Section 6.4, investi-
gating the importance of the collision penalty. We perform
the same analysis on the Crossway 50 scenario with Polar Ve-
locity dynamics and Egocentric observations, extending the
range of evaluated collision penalties to −20. We present
these results in Figure 10.

When considering the energy usage and collisions, the re-
sult seems to follow the intuition with a collision penalty up
to −1. When the collision penalty reaches −20, we expect the
performance to deteriorate, since the penalty is so steep that
the agents will never put themselves at any risk of collision.
We confirm this by investigating the success rate, which de-
creases with large collision penalties. However, at the same
time, the energy usage also decreases – in fact, using a very
large collision penalty leads to the lowest energy usage among
the evaluated options. So while energy has its value as a
metric, it clearly breaks down in extreme cases, where most
agents remain stationary.

This phenomenon is caused by a relatively short time limit.
In general, energy minimization induces a simple optimal ve-
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locity (see Section 4.1), in RL we must set a time limit after
which the episode is terminated. The energy penalty for not
finishing the episode is relatively low when compared to the
energy cost of actually navigating to the destination, and an
undesired emergent behavior may turn out to be optimal ac-
cording to the metrics.

Depending on the design choices made, this same problem
can manifest itself differently. When training on the same
setup, but using different design choices, a commonly occur-
ring emergent behavior is that one group of agents efficiently
navigates to their destination, while the other one remains sta-
tionary. Similarly to the previous situation, the energy us-
age metric is very low in that situation, but the success rate
plateaus at 50%.

7. Discussion

In this work, we present an analysis of various design
choices made by designers of RL-trained crowd simulation
systems. We show that many of these choices, typically ig-
nored by researchers, can in fact significantly impact the re-
sulting simulation, in particular when evaluated in terms of
the energy efficiency. Here we summarize the main findings
of this paper.

We show that the commonly used raycasting underper-
forms when compared to a method we call Agent Perception
where the information about neighboring agents is directly
available. This is likely a consequence of a much simpler and
accessible representation of that information. Even when ray-
casting uses frame stacking which enables movement percep-
tion, the reasoning needed to infer the positions and velocities
of nearby agents is rather complex.

Designing the right reward function is also important for
obtaining desired properties of the motion. Navigation, speed
control, and collision avoidance rewards, all have to bal-
anced in just the right way that each of them contributes to
the agent’s decisions. Crucially, quantitative comparisons of
crowds are non-trivial, because even ignoring the question of
believability, the arbitrary reward function and energy usage
are flawed in certain scenarios.

Qualitative properties of the obtained motion in the Circle
scenario indicate that a naive approach of reward maximiza-
tion for any reward that does not explicitly incentivize human-
like behavior is likely to create trajectories that look artificial,
or even too carefully choreographed to pass for natural human
behavior. While decreasing the model’s capacity and perfor-
mance might lead to more believable behavior in the short
term, we believe a more deliberate approach is necessary to
truly approach human-like behavior.

In summary, our main findings are as follows:

1. Direct agent perception outperforms simple raycasting

2. Egocentric controls tend to outperform absolute ones

3. The reward design is important and nontrivial

4. Many failure modes may still occur in RL trained crowds

5. Simple reward is not sufficient for human-like behavior

7.1. Limitations and Future Work

All experiments in this work are performed on relatively
small, static scenarios with a single destination. The de-
scribed design choices mostly affect local navigation, and
more complex scenarios can be expressed as a sequence of
partial objectives or checkpoints. That being said, naively
implementing this would likely cause issues near the transi-
tion points where agents switch their destination. Therefore,
a more complex training scenario would be beneficial so that
the agent is exposed to these situations.

Furthermore, each agent is only trained on a single sce-
nario. Prior work suggests that using various scenarios in
the training process enables generalization, which was con-
sidered out of scope of this work. We also limit our analysis
to the efficiency of the resulting trajectories, ignoring realism
or believability.

Similarly to prior work, we train agents using an arbitrarily-
designed reward function. While using the energy usage as a
reward has certain problems (see Section 4.2), it might be a
viable option by using a curriculum-based approach where
the reward function changes as the training progresses; and a
different discounting mechanism that improves the global op-
timization properties. Furthermore, by using recent work on
evaluating the realism of generated trajectories [29], a promis-
ing direction is using a realism metric as a reward. This would
allow going beyond efficiency, and creating crowds which be-
have in a believable way.

It is also possible to improve the dynamics available to the
agent. In this work, we use relatively simple, 2-DoF models,
but the RL paradigm makes it viable to implement arbitrary
nonholonomic constraints like sidesteps or walking back-
wards, without having to change the learning logic. Thus, a
promising option is introducing a more complex, human-like
range of motion actions available to the agent, with the goal
of improving the believability of motion.

7.2. Conclusions

Crowd simulation with RL is a complex problem, and de-
spite recent advances, many challenges remain. Observations,
actions, underlying physics, and especially the reward func-
tion, all have a significant impact on the results, and a lack
of attention to these design choices makes it impossible to
compare various approaches. We bring these issues to at-
tention, and introduce a basic methodology for comparison
between various approaches by comparing the energy expen-
diture under a specified time limit. In the absence of a stan-
dard benchmark, we call researchers to be more explicit and
precise about their choices, and encourage them to explore
different options in their work, to ensure robustness of their
approach.
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Appendix

Here we provide the training plots of the experiments de-
scribed in Section 6.2. For each scenario we plot together the
three model types (Direct Agent Perception, Raycasting and
both) together, for each combination of observations and dy-
namics. For each experiment, we show both a plot with the
full range of rewards, as well as a version zoomed in to the
high range of rewards obtained in at least some of the exper-
iments. We also show the energy expenditure, where lower
values correspond to better policies. Each line is averaged
across 8 independent runs which differ only by the random
seed. The shaded area corresponds to the standard error of
the mean. Note that the rewards cannot be directly compared
between different scenarios.
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Fig. 11: Circle, full range of rewards
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Fig. 12: Circle, high rewards
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Fig. 14: Crossway, full range of rewards
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Fig. 15: Crossway, high rewards
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Fig. 16: Crossway, energy
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Fig. 17: Corridor, full range of rewards
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Fig. 18: Corridor, high rewards
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Fig. 19: Corridor, energy
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Fig. 20: Random, full range of rewards
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Fig. 21: Random, high rewards
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Fig. 22: Random, energy
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