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1 Introduction

The recovery problem

In this paper, we treat the following state estimation problem in a general Banach space V . We want to recover an approximation to an unknown function u ∈ V from data given by m observations

z i := i (u) + η i , i = 1, . . . , m, (1.1) 
where i : V → R are known measurement functionals, and η i is additive noise. The functionals i often correspond to the response of a physical measurement device but they can have a different interpretation depending on the application. Their behavior can be linear (in which case the i are linear functionals from V , the dual of V ) or nonlinear. This type of recovery problem is clearly illposed when the dimension of V exceeds m. It arises ubiquitously in sampling and inverse problem applications where V is infinite dimensional (to name a few, see [START_REF] Adcock | Beyond consistent reconstructions: optimality and sharp bounds for generalized sampling, and application to the uniform resampling problem[END_REF][START_REF] Argaud | Sensor placement in nuclear reactors based on the generalized empirical interpolation method[END_REF][START_REF] Galarce | State estimation with model reduction and shape variability. application to biomedical problems[END_REF][START_REF] Hrycak | Pseudospectral fourier reconstruction with the modified inverse polynomial reconstruction method[END_REF]).

One natural strategy to address this difficulty is to search for a recovery of u by an element of a low-dimensional reconstruction space V n ⊂ V . The space V n could be either an n-dimensional linear subspace, or more generally a nonlinear approximation space parametrized by n degrees of freedom, with n m.

• The i are linear functionals,

• V n is a linear (or affine) subspace of V ,

• V is a Hilbert space,

• The model class K is a ball in a smoothness space, e.g., a unit ball in Lipschitz, Sobolev, or Besov spaces. Results involving this type of model classes have been intensively studied in the field of optimal recovery (see [START_REF] Bojanov | Optimal recovery of functions and integrals[END_REF][START_REF] Micchelli | A survey of optimal recovery[END_REF][START_REF] Novak | Tractability of multivariate problems, volume i: Linear information[END_REF]).

The goal of this paper is to develop and analyze inversion procedures that do not require any of the above assumptions. Our analysis and numerical algorithms can thus be applied to virtually any recovery problem. The starting point of our development is based on algorithms introduced for inverse state estimation using reduced order models of parametrized Partial Differential Equations (PDEs). We next recall the specific framework. The presentation will also serve to explain more in depth the motivations leading to propose the present generalization.

State estimation with reduced models for parametrized PDE's

A relevant scenario in inverse state estimation is when the model class K is given by the set of solutions to some parameter-dependent PDE of the general form

P(u, y) = 0, (1.2) 
where P is a differential operator, y a vector of parameters ranging in some domain Y in R d , and u is the solution. If well-posedness holds in some Banach space V for each y ∈ Y , we denote by u(y) ∈ V the corresponding solution for the given parameter value y and by M := {u(y) : y ∈ Y }, the solution manifold.

In inverse state estimation, we take K = M for the model class so the unknown u to recover belongs to M. However, the parameter y that satisfies u = u(y) is unknown, so we cannot solve the forward problem (1.2) to approximate u. Instead, we must approximate u from the partial observational data (1.1), and the knowledge of the model class K = M.

For the manifold M, efficient approximation spaces V n are usually obtained by reduced modelling techniques. In their most simple format, reduced models consist into linear spaces (V n ) n 0

The PBDW method

We take the Parametrized Background Data Weak (PBDW) method as a starting point for our analysis. The PBDW method, first introduced in [START_REF] Maday | A parameterized-background data-weak approach to variational data assimilation: formulation, analysis, and application to acoustics[END_REF], as well as several extensions, has been the object of a series of works [START_REF] Binev | Data assimilation in reduced modeling[END_REF][START_REF] Binev | Greedy algorithms for optimal measurements selection in state estimation using reduced models[END_REF][START_REF] Cohen | Optimal reduced model algorithms for data-based state estimation[END_REF][START_REF] Cohen | Nonlinear reduced models for state and parameter estimation[END_REF] on its optimality properties as a recovery algorithm. It has also been used for different practical applications, see [START_REF] Argaud | Sensor placement in nuclear reactors based on the generalized empirical interpolation method[END_REF][START_REF] Galarce | State estimation with model reduction and shape variability. application to biomedical problems[END_REF][START_REF] Hammond | PBDW: A non-intrusive reduced basis data assimilation method and its application to an urban dispersion modeling framework[END_REF]. We refer to [START_REF] Mula | Inverse problems: A deterministic approach using physics-based reduced models[END_REF] for an overview of the state of the art on this approach, and its connections with different fields. For our current purposes, it will suffice to recall the first version of the algorithm, which is the goal of this section.

The PBDW method uses a linear approximation space V n of dimension n m. Usually this space is a reduced model in applications. It is assumed that the i are continuous linear functionals, that is i ∈ V , and that V is a Hilbert space. Then, introducing the Riesz representers ω i ∈ V such that i (v) = ω i , v V , the data of the noise-free observation (u) := ( 1 (u), . . . , m (u)), is equivalent to that of the orthogonal projection w = P W u on the Riesz measurement space W := span{ω 1 , . . . , ω m }.

Assuming linear independence of the i , this space has dimension m. A critical quantity is the number

µ = µ(V n , W ) := max v∈Vn v V P W v V , (1.3) 
that describes the "stability" of the description of an element of V n by its projection onto W , and may be thought of as the inverse cosine of the angle between W and V n . In particular, this quantity is finite only when n m. It can be explicitly computed as the inverse of the smallest singular value of a cross-grammian matrix between orthonormal bases of V n and W (see [START_REF] Binev | Data assimilation in reduced modeling[END_REF][START_REF] Mula | Inverse problems: A deterministic approach using physics-based reduced models[END_REF]).

The PBDW method consists in solving the minimization problem

min v∈Vw min ṽ∈Vn v -ṽ V ,
where V w := w + W ⊥ is the set of all states v such that P W v = w. We denote by (u * , ũ) ∈ V w × V n the minimizing pair, which is unique when µ < ∞, and can be computed by solving an n × n linear system. The function ũ may be seen as a particular best-fit estimator of u on V n , since it is also defined by ũ := argmin{

P W v -w V : v ∈ V n }.
The function u * can be derived from ũ by the correction procedure

u * := ũ + (w -P W ũ),
which shows that u * ∈ V n + W . It may be thought of as a generalized interpolation estimator, since it agrees with the observed data (P W u * = P W u). In the case of noise-free data, it is proved in [START_REF] Binev | Data assimilation in reduced modeling[END_REF][START_REF] Maday | A parameterized-background data-weak approach to variational data assimilation: formulation, analysis, and application to acoustics[END_REF] that these estimators satisfy the recovery bounds

u -ũ V µ min v∈Vn u -v V and u -u * V µ min v∈Vn⊕(V ⊥ n ∩W ) u -v V .
These bounds reflect a typical trade-off in the choice of the reduced basis space, since making n larger has both effect of decreasing the approximation error min v∈Vn u -v V and increasing the stability constant µ = µ(V n , W ).

When the PBDW method is applied to noisy data, amounting in observing a perturbed version w of w = P W u, the recovery bounds remain valid up to the additional term µ w -w V . In summary, one has for both estimators

max{ u -ũ V , u -u * V } µ(e n (u) + κ), (1.4) 
where

e n (u) := min v∈Vn u -v V
is the reduced model approximation error and κ := w -w V is the noise error measured in the space W . Note that since the additive perturbations η i are applied to the data i (u), a natural model for the measurement noise is to assume a bound of the form

η p ε, (1.5) 
for the vector η = (η 1 , . . . , η m ), typically in the max norm p = ∞ or euclidean norm p = 2. Therefore, one has κ βε, where

β := max v∈W v V (v) p ,
resulting in a bound of the form µe n (u) + µβε for both estimators.

Towards nonlinear approximation spaces

The simplicity of the PBDW method and its variants comes together with a fundamental limitation on its performance: it is by essence a linear reconstruction method with recovery bounds tied to the approximation error e n (u). When the only prior information is that the unknown function u belongs to a class K, with K = M the solution manifold in the case of parametric PDEs, its best performance over K is thus limited by the n-width d n (K) V and in turn by d m (K) V since n m.

In several simple yet relevant settings, it is known that n-widths have poor decay with n. One instance is when the class K contains piecewise smooth states, with a state-dependent location of jump discontinuities. As an elementary example, one can easily check that if

V = L 2 ([0, 1]) and K is the set all indicator functions u = χ [a,b] with a, b ∈ [0, 1], one has d n (K) V ∼ n -1/2
. This decay is of course even slower for more general classes of piecewise smooth function in higher dimension, see in particular [START_REF] Benner | Model Reduction and Approximation: Theory and Algorithms[END_REF]Chapter 3,equation (3.76)]. Such functions are typical in parametrized hyperbolic PDEs, due to the presence of shocks with positions that differ when parameters entering the velocity vary. We refer to [START_REF] Battisti | Wasserstein model reduction approach for parametrized flow problems in porous media[END_REF][START_REF] Binev | Greedy algorithms for optimal measurements selection in state estimation using reduced models[END_REF][START_REF] Ehrlacher | Nonlinear model reduction on metric spaces. application to one-dimensional conservative pdes in wasserstein spaces[END_REF][START_REF] Greif | Decay of the kolmogorov n-width for wave problems[END_REF][START_REF] Ohlberger | Reduced basis methods: Success, limitations and future challenges[END_REF][START_REF] Welper | Transformed snapshot interpolation[END_REF] for other examples of parametric PDEs whose solution manifold has slow Kolmogorov n-width decay.

For such classes of functions, nonlinear approximation methods are well known to perform significantly better than their linear counterparts. Typical representatives of such methods include approximation by rational fractions, free knot splines or adaptive finite elements, best n-term approximation in a basis or dictionary, neural network or various tensor formats. In these instances the space V n still depends on n or O(n) parameters but is not anymore a linear space. We refer to [START_REF] Devore | Nonlinear approximation[END_REF] for a general introduction on the topic of nonlinear approximation.

Objective and outline

The objective of this paper is to study the natural extensions of the PBDW method to such nonlinear approximation spaces and identify the basic structural properties that lead to near optimal recovery estimates similar to (1.4).

We begin in §2 by considering the most general setting where V is a Banach space, V n a nonlinear approximation family, and the i are functionals defined on V that are not necessarily linear, but Lipschitz continuous, that is

(v) -(ṽ) Z α Z v -ṽ V , v, ṽ ∈ V. (1.6) 
Here • Z can be any given norm defined over R m with the constant α Z depending on this choice of norm. In this framework, we discuss the best-fit estimation procedure that consists in minimizing the distance to the observed data in a given norm • Z .

Our main structural assumption on V n is the following inverse stability property: the reduced model is stable with respect to the measurement functionals if there exists a finite constant µ Z such that v -ṽ V µ Z (v) -(ṽ) Z , v, ṽ ∈ V n .

(1.7)

The stability constant µ Z depends on the Z norm and plays a role similar to that of µ in the linear case. In particular, we show that this constant is finite only if n m. The resulting estimator ũ is then proved to satisfy a general recovery bound of the form

u -ũ V C 1 e n (u) + C 2 η p ,
where e n (u) := min v∈Vn u -v V is the nonlinear reduced model approximation error, η p the level of measurement noise in p norm, and the constants C 1 and C 2 depend on α Z and µ Z .

In §3, we consider the more particular setting where the i are linear functionals. Then, we show that constants C 1 and C 2 are each minimized by a different choice of norm • Z , resulting in two different best fit estimators ũ, as already observed in [START_REF] Berger | Sampling and reconstruction in distinct subspaces using oblique projections[END_REF] in the case of linear reduced models. This particular setting also allows us to introduce a generalized interpolation estimator u * and establish similar recovery estimates for u -u * V . We next apply our framework to the inverse problem that consists in recovering a general shape Ω, identified to its characteristic function χ Ω , based on cell average data

a T (Ω) := 1 |T | T χ Ω , T ∈ T ,
where T is a fixed cartesian mesh. One motivation for this problem is the design of finite volume schemes for the computation of solutions to transport PDEs on such meshes. We first discuss in §4 the best estimation rate in terms of the mesh size h that can be achieved by standard linear reconstructions, and which is essentially that of piecewise constant approximations, that is O(h 1/q ) regardless of the smoothness of the boundary ∂Ω. This intrinsic limitation is due to the presence of the jump discontinuity that is not well resolved by the mesh.

We then discuss in §5 a local recovery strategy based on a nonlinear approximation space V n that consists of characteristic functions of half-planes which can fit the boundary of Ω at a subcell resolution level, as already proposed in [START_REF] Arandiga | Interpolation and approximation of piecewise smooth functions[END_REF][START_REF] Edward | An analysis of piecewise linear interface reconstruction algorithms for volume-of-fluid methods[END_REF][START_REF] Edward | Second-order accurate volume-of-fluid algorithms for tracking material interfaces[END_REF][START_REF] Elbridge | A volume-of-fluid interface tracking algorithm with applications to computing shock wave refraction[END_REF]. One main result, whose proof is given in an appendix, is that this approximation space is stable in the sense of (1.7) with respect to cell average measurements on a stencil of 3 × 3 squares. In turn, if Ω has a C 2 boundary, the recovered shape Ω is proved to satisfy an estimate of the form χ Ω -χ Ω L q Ch 2/q , where h is the mesh size, which cannot be achieved by any linear reconstruction. This paves the way to higher order reconstruction methods for smoother boundaries by using local nonlinear approximation spaces with curved boundaries and larger stencils.

Finally, we discuss in §6 the application of our results to the recovery of large vectors of size N from m < N linear measurements, up to the error of best n-term approximation. This problem is well-known in compressed sensing [START_REF] Candès | Stable signal recovery from incomplete and inaccurate measurements[END_REF][START_REF] Foucart | An invitation to compressive sensing[END_REF], and was in particular studied in [START_REF] Cohen | Compressed sensing and best k-term approximation[END_REF] which discusses the importance of the recovery norm • V to understand if near-optimal recovery bounds can be achieved with m not much larger than n. We show that the structural assumptions identified in our general setting are naturally related to the so-called null space property introduced in [START_REF] Cohen | Compressed sensing and best k-term approximation[END_REF].

Nonlinear reduction of inverse problems 2.1 A general framework

In full generality we are interested in recovering functions u in a general Banach space V with norm • V , from the measurement vector z = (z 1 , . . . , z m ) ∈ R m given by (1.1). A recovery (or inversion) map z → R(z), takes this vector to an approximation R(z) of u. We are interested in controlling the recovery error u -R(z) V .

To build the recovery map R, we use a nonlinear approximation space of dimension n is a family of functions that can be described by n parameters. Loosely speaking, this means that there exists a set S ⊂ R n and a continuous map ϕ : S → V such that

V n := {ϕ(x) : x ∈ S}.
Note that this definition covers the case of an n dimensional linear subspace since we can choose S = R n and ϕ a linear map.

Our main assumptions are the Lipschitz stability of the functionals i over the whole space V and their inverse Lipschitz stability over the nonlinear approximation space V n , expressed by (1.6) and (1.7), respectively. Note that since R m is finite dimensional, the norm • Z that is chosen in R m to express these properties could be arbitrary up to a modification of the stability constants α Z , µ Z . These constants can be optimally defined as

α Z = sup v 1 ,v 2 ∈V (v 1 ) -(v 2 ) Z v 1 -v 2 V ,
and

µ Z = sup v 1 ,v 2 ∈Vn v 1 -v 2 V (v 1 ) -(v 2 ) Z .
Note that one always has α Z µ Z 1.

Remark 2.1. Note that when V n is an n-dimensional space and the i are linear functionals, the quantity µ Z may be rewritten as

µ Z = max v∈Vn v V (v) Z .
As discussed further, the quantity µ defined in (1.3) for the analysis of the PBDW method is an instance of µ Z corresponding to a particular choice of norm • Z . Assuming the i are independent functionals, one easily checks that finiteness of this quantity imposes that n m. Indeed, if n > m, there exists a non-trivial v ∈ V n ∩ N , where

N := {v : (v) = 0}
is the null space of the measurement map that has codimension m, and therefore µ Z is infinite.

Remark 2.2. The restriction n m is also needed for nonlinear spaces V n and measurement , under assumptions expressing that m and n are local dimensions. More precisely, assume that the map ϕ defining V n is differentiable at some x 0 in the interior of S, that is differentiable at v 0 = ϕ(x 0 ), and that both tangent maps have full rank at these points, that is,

dim(dϕ x 0 (R n )) = n and dim(d v 0 (V )) = m.
Then, by taking v 1 = v 0 and v 2 = ϕ(x 0 + tx) in the quotient that defines µ Z , and letting t → 0 for arbitrary x ∈ R n , one finds that

µ Z max v∈dϕx 0 (R n ) v V d v 0 (v) Z ,
and therefore it is infinite if n m, by the same argument as in the previous remark.

The best fit estimator

We define a first recovery map z → ũ = R(z) as the best fit estimator in the Z norm

ũ := argmin{ z -(v) Z : v ∈ V n }. (2.8)
The existence of such a minimizer is trivial if the space V n and the measurement map are linear. It can also be ensured in the nonlinear case under additional assumptions, for example compactness of the set S defining the nonlinear space V n , which will be the case in the application to shape recovery discussed in §5. If the minimizer does not exist, we may consider a near minimizer, that is ũ

∈ V n satisfying z -(ũ) Z C z -(v) Z , v ∈ V n ,
for some fixed C > 1. Inspection of the proofs of our main results below reveals that similar recovery bounds can be obtained for such a near minimizer, up to the multiplicative constant C. Recall that our assumption (1.5) on the noise model is a control on η p for some 1 p ∞. For this value of p, we introduce the quantity

β Z := max z∈R m z Z z p
We are now in position to state a recovery bound in this general framework.

Theorem 2.3. The best fit estimator ũ from (2.8) satisfies the estimate

u -ũ V C 1 e n (u) + C 2 η p , (2.9) 
where

C 1 := 1 + 2α Z µ Z and C 2 := 2β Z µ Z .
Proof: Consider any v ∈ V n and write

u -ũ V u -v V + v -ũ V u -v V + µ Z (v) -(ũ) Z ,
where we have used (1.7). On the other hand, the minimizing property of ũ ensures that

(v) -(ũ) Z z -(v) Z + z -(ũ) Z 2 z -(v) Z .
Furthermore, using the stability (1.6) of and the definition of β Z , we have

z -(v) Z (v) -(u) Z + η Z α Z u -v + β Z η p .
Combining the three estimates, we reach

u -ũ V (1 + 2α Z µ Z ) u -v V + 2β Z µ Z η p ,
which gives (2.9) by optimizing over v ∈ V n . 2

The constants C 1 and C 2 in the above recovery estimate depend on the choice of norm • Z . Note that they are invariant when this norm is scaled by a factor t > 0, since this has the effect of multiplying α Z and β Z by t and dividing µ Z by t, which is consistant with the fact that the resulting estimator ũ is left unchanged by such a scaling. In the next section we show, in the particular setting of linear measurements, that specific choices of • Z can be used to minimize C 1 or C 2 . This setting also allows us to introduce and study a generalized interpolation estimator, which is not relevant to the present section since the nonlinear measurement map is not assumed to be surjective: in the presence of noise, there might exist no v ∈ V that agrees with the data, in the sense that z = (u) + η does not belong to the range of .

Linear observations

In this section, we assume that the i ∈ V are independent linear functionals, still allowing V n to be a general nonlinear space. In this framework, which contains the example of shape recovery discussed in §5, one has

α Z = max v∈V (v) Z v V and µ Z = max v∈V diff n v V (v) Z ,
where

V diff n = V n -V n := {v 1 -v 2 : v 1 , v 2 ∈ V n }.
In this particular setting, we can identify the norms • Z that minimize the constants

C 1 := 1 + 2α Z µ Z and C 2 := 2β Z µ Z , respectively.

Optimal norms

As : V → R m is continuous and surjective, we can define a norm on R m through

z W = min{ v V : (v) = z}. (3.10) 
Remark 3.1. If V is a Hilbert space, the minimizer is unique by strict convexity of • V , and the m-dimensional space

W := {argmin (v)=z v V , z ∈ R m }
is exactly the span of the Riesz representers of the observation functionals i ∈ V . Moreover, denoting P W the orthogonal projection on W , we have

(v) W = P W v V , v ∈ V.
For this reason, we sometimes refer to • W as the Riesz norm even in the case of a more general Banach space.

The following result shows that the choice • Z := • W is the one that minimizes the constant C 1 , while C 2 is minimized by simply taking the p norm

• Z = • p . Theorem 3.2. For any norm • Z , one has α W µ W = µ W α Z µ Z , and 
β p µ p = µ p β Z µ Z , where (α W , β W , µ W ) and (α p , β p , µ p ) are the triplets (α Z , β Z , µ Z ) when • Z := • W and • Z = • p , respectively.
Proof: One has

α W = max v∈V (v) W v V = max z∈R m max (v)=z z W v V = 1,
and so

α W µ W = µ W = max v∈V diff n v V (v) W max v∈V diff n (v) Z (v) W max v∈V diff n v V (v) Z = max v∈V diff n (v) Z (v) W µ Z .
We now observe that from the definition of W , one has max

v∈V diff n (v) Z (v) W max z∈R m z Z z W = max z∈R m max (v)=z z Z v V = α Z .
We have thus obtained the first claim

α W µ W = µ W α Z µ Z .
For the second claim, note that we trivially have β p = 1, and so

β p µ p = µ p = max v∈V diff n v V (v) p max v∈V diff n (v) Z (v) p max v∈V diff n v V (v) Z β Z µ Z . 2 
Remark 3.3. In the particular case where V is a Hilbert space, V n a linear subspace and p = 2, it was already observed in [START_REF] Berger | Sampling and reconstruction in distinct subspaces using oblique projections[END_REF] that the reconstruction operators based on the choice

• Z = • W or • Z = • 2
are the most stable with respect to the approximation error and the noise error, respectively. The above result may thus be seen as a generalization of this state of affairs to the case of nonlinear subspaces of Banach spaces, and p noise.

The generalized interpolation estimator

Thanks to the surjectivity of , we may introduce the space

V z := {v ∈ V : (v) = z},
and consider the minimization problem

min v∈Vz min ṽ∈Vn v -ṽ V . If (u * , ũ) ∈ V z × V n is a minimizing pair, the function u * is given by u * = u * (z) ∈ argmin{dist(v, V n ) V : (v) = z},
and is called the generalized interpolation estimator, since it exactly matches the data.

Remark 3.4. The best fit and generalized interpolation estimation may be thought of as the two extreme cases, t → ∞ and t → 0, of the penalized estimator

u t := argmin{ z -(v) Z + t dist(v, V n ) V }.
As explained earlier, the generalized interpolation operator may not be well defined in the general case where the i are nonlinear. As opposed to the best fit, or the above penalized estimator u t when t > 0, the generalized interpolation estimator does not involve the choice of a particular norm Z.

On the other hand, we see that ũ is the solution to the problem min ṽ∈Vn dist(ṽ, V z ) V .

Observing that dist(ṽ, V z ) V = min

(v)=z ṽ -v V = min (v )= (ṽ)-z v V = (ṽ) -z W ,
we thus find that ũ is precisely the best fit estimator for the Riesz norm

• Z := • W .
In the Hilbert space setting, the generalized interpolation estimator u * is therefore the orthogonal projection of this particular best fit estimator ũ onto the affine space V z . It may thus also be derived from ũ by the correction procedure

u * = ũ + w -P W ũ,
where w = argmin (v)=z v V ∈ W is the preimage by of the measurements z. In the noiseless case when w = P W u, this correction can only improve the approximation since it reduces the component of u -ũ in the W direction while leaving unchanged the orthogonal component, and so, in view of Theorems 2.3 and 3.2, we are ensured that

u -u * V C 1 e n (u),
where

C 1 := 1 + 2µ W .
More generally, in the noisy case, and without the assumption that V is a Hilbert space, there is no guarantee that u * performs better than ũ, but we still obtain an error estimate on u * that is similar in nature to that satisfied by ũ.

Theorem 3.5. The generalized interpolation estimator u * satisfies the estimate

u -u * V C 1 e n (u) + C 2 η p , (3.11) 
where

C 1 := 2 + 2µ W and C 2 := (1 + 2µ W )β W . Proof: Take δ ∈ argmin (v)=η v V , so that (δ) = η and η W = δ V . For v and v * in V n , decompose u -u * V u -v V + v -v * V + v * -u * V . (3.12)
For the middle term, using (1.7), we write

v -v * V µ W (v -v * ) W µ W ( (v -u) W + (u -u * ) W + (u * -v * ) W ) µ W ( v -u V + η W + u * -v * V )
since α W = 1, so the decomposition (3.12) becomes

u -u * V (1 + µ W ) u -v V + µ W η W + (1 + µ W ) v * -u * V .
To bound the last term, we optimize over the choice of v * ∈ V n and use the definition of u * to obtain inf

v * ∈Vn v * -u * V = dist(u * , V n ) dist(u + δ, V n ) dist(u, V n ) + δ V = e n (u) + η W since (u + δ) = (u) + η = z.
Combining the last two estimates and optimizing over v ∈ V n gives

u -u * V (2 + 2µ W )e n (u) + (1 + 2µ W ) η W ,
and the result follows from the definition of β W . 2

4 Shape recovery from cell averages

The shape recovery problem

The problem of reconstructing a function u from its cell averages

a T (u) := 1 |T | T u, T ∈ T ,
where T is a partition of the domain D ⊂ R d in which u is defined, appears naturally in two areas:

• In 2d or 3d image processing, it corresponds to the so-called super-resolution problem, that is, reconstructing a high resolution image from its low resolution version defined on the coarse grid T of pixels or voxels.

• In numerical simulation of hyperbolic conservation laws, it plays a central role when developing finite volume schemes on the computation mesh T .

Standard reconstruction methods are challenged when the function u exhibits jump discontinuities which are not well resolved by the partition T . Such discontinuities correspond to edges in image processing or shocks in conservation laws. Here we may focus on the very simple case of characteristic functions of sets u = χ Ω , that already carry the main difficulty. Therefore we are facing a problem of reconstructing a shape Ω from local averages of χ Ω .

As a simple example we work in the domain D = [0, 1] 2 with a uniform grid based on square cells of sidelength h = 1 L for some L > 1, therefore of the form

T = T h := {T i,j = [(i -1)h, ih] × [(j -1)h, jh] : i, j = 1, . . . , L}.
The cardinality of the grid is therefore

n := #(T ) = L 2 = h -2 .
We consider classes of characteristic functions χ Ω of sets Ω ⊂ D with boundary of a prescribed Hölder smoothness. The definition of these classes requires some precision. Here, we have used the usual definition

ψ C s = sup 0 k s ψ (k) L ∞ ([-R,R]) + sup s,t∈[-R,R] |s -t| s -s ψ ( s ) (s) -ψ ( s ) (t) ,
for the Hölder norm. In the case of integer smoothness, we use the convention that C s denotes functions with Lipschitz derivatives up to order s-1, so that in particular the case s = 1 corresponds to domains with Lipschitz boundaries.

Remark 4.2. The condition Ω ⊂ [R, 1 -R] 2 imposing that Ω remains away from the boundary ∂D might be quite restrictive in some applications; instead, one can assume that the domains Ω and D are periodic, or symmetrize Ω with respect to ∂D.

The failure of linear reconstruction methods

The most trivial linear reconstruction method consists in the piecewise constant approximation

ũ = T ∈T a T (u) χ T . (4.13) 
The approximation rate of this reconstruction over the class F s,R,M is as follows.

Proposition 4.3. Let u = χ Ω ∈ F s,R,M , its piecewise constant approximation ũ by average values on each cell, defined in (4.13), satisfies

χ Ω -ũ L q Ch 1 q = Cn -1 2q ,
where the constant C depends on R and M .

Proof: Let N = ( √ 2R) -1 , and partition the domain

D = [0, 1] 2 into N 2 squares of side 1/N . Then each subsquare Q is contained in the set {x + z 1 e 1 + z 2 e 2 , |z 1 |, |z 2 | R} from Definition 4.1,
where x is the center of Q. Thus ∂Ω is the restriction of the graph of an M -Lipschitz function on Q, so its arc length is bounded by

|∂Ω ∩ Q| diam(Q) 1 + M 2 2R 1 + M 2 .
As any curve of arclength h intersects at most four cells from T , ∂Ω ∩ Q intersects at most 4 2R √ 1 + M 2 /h cells, and summing over all subsquares, ∂Ω intersects at most 4N 2 2R √ 1 + M 2 /h cells. Denoting T ∂Ω the set of these cells, and observing that u| T ≡ a T (u) ∈ {0, 1} for T / ∈ T ∂Ω , we get

χ Ω -ũ q L q = T ∈T T |u -a T (u)| q T ∈T ∂Ω |T | = h 2 |T ∂Ω | 24 √ 1 + M 2 R h
for h R, and this bound also holds for h > R since χ Ω -ũ q L q 1. 2

The next result shows, for the particular case q = 2, that no better rate can actually be achieved by any linear method, regardless of the smoothness s of the boundary. We conjecture that a similar result holds for 1 q ∞. This motivates the use of nonlinear recovery methods, which are the object of the next section.

We recall that the Kolmogorov n-width of a compact set S from some Banach space V is defined by

d n (S) V := inf dim(E) n dist(S, E) V ,
where dist(S, E) V := max u∈S min v∈E u -v V and the infimum is taken over all finite dimensional spaces E of dimension at most n.

Proposition 4.4. Let s 1 be arbitrary. Then for R sufficiently small, and M sufficiently large, there exists c > 0 such that the Kolmogorov n-widths of the class F s,R,M satisfy

d n (F s,R,M ) L 2 cn -1 4 , n 1.
Proof: The proof of this result relies on similar lower bounds for dictionaries of d-dimensional ridge functions

P d k := {x → σ k (ω • x + b) : ω 2 = 1, c 1 b c 2 }
where σ k (t) := max{0, t} k is the so-called RELU-k function. Here, we work in the space L 2 (B) where B is an arbitrary ball of R d , and the constants (c 1 , c 2 ) are taken as the inf and sup of ω • x as x ∈ B and ω 2 = 1, respectively, that is we take all b such that the line discontinuity of the k-th derivative of σ k (ω • x + b) crosses the ball B. Theorem 9 from [START_REF] Siegel | Sharp bounds on the approximation rates, metric entropy, and n-widths of shallow neural networks[END_REF], which improves on earlier results from [START_REF] Makovoz | Random approximants and neural networks[END_REF], shows that if

B 1 (P d k ) := n j=1 a j g j : n ∈ N, g j ∈ P d k , n j=1 |a j | 1
denotes the symmetrized convex hull of this dictionary (the closure being taken in L 2 (B)), then

d n (B 1 (P d k )) L 2 (B) cn -2k+1 2d , n 1,
where c depends on k, d, and the diameter of B.

In our case of interest we work with the value d = 2 and k = 0, so that the ridge functions are simply the characteristic functions of half-planes. By convexity, we have

d n (P 2 0 )) L 2 (B) = d n (B 1 (P 2 0 )) L 2 (B) cn -1 4 .
We take for B the ball of center (1/2, 1/2) and radius 1/4, which is inside our domain D = [0, 1] 2 . It is then readily seen that for R small enough and M large enough, we can extend any ridge function g ∈ P 2 0 into a characteristic function χ Ω from F s,R,M , as illustrated in Figure 1.

Observing that if E D is a linear subspace of L 2 (D) of dimension at most n, its restriction E B to B is a linear subspace of L 2 (B) of dimension at most n, and one has 

dist( χ Ω , E B ) L 2 (B) dist( χ Ω , E D ) L 2 (D) .
d n (F s,R,M ) L 2 (D) d n (P 2 0 ) L 2 (B) cn -1 4 ,
which concludes the proof. 2

Remark 4.5. The fact that we impose conditions on R and M in the above statement is natural since the class F s,R,M becomes empty if R is not small enough and M not large enough, due to the fact that the sets Ω are assumed to be contained in the interior of D.

Remark 4.6. The above results are easily extended to higher dimension d 2, with a similar definition for the class F s,R,M . The rate of approximation in L q norm by piecewise constant functions on uniform partitions is then n

-1
dq , which in the case q = 2 is proved by a similar argument to be the best achievable by any linear reconstruction method. We conjecture that the same holds for more general 1 q ∞. 5 Shape recovery by nonlinear least-squares

Nonlinear reconstruction on a stencil

We now discuss a nonlinear reconstruction method for u ∈ F s,R,M , whose output ũ is the indicator of a domain Ω with polygonal boundary : on each cell T , the domain Ω coincides with a certain half plane. In order to define the delimiting line we only use the average values of u on a 3 × 3 stencil of cells centered at T .

We assume that h < R, so that Ω does not intersect the boundary cells T i,j with i or j in {1, L}, and fix indices 1 < i, j < L. For the cell T = T i,j , denote x = ((i -1

2 )h, (j -1 2 )h) its center, and

S = [(i -2)h, (i + 1)h] × [(j -2)h, (j + 1)h] = i-1 i i+1, j-1 j j+1 T i j
the stencil composed of T and its 8 neighboring cells. We define the nonlinear approximation space

V 2 := χ n•(x-x) c : n ∈ S 1 , c ∈ R , (5.14) 

Global nonlinear reconstruction

We now consider the process of recovering u ∈ F s,R,M globally from its data

z = (u) + η,
where now (u) := (a T (u)) T ∈T ∈ R n and η ∈ R n is the noise vector. Applying to each inner cell T ∈ T the previous reconstruction procedure based on the 3 × 3 stencil S centered at T , we obtain a global recovery ũ = ũ(z) such that

ũ| T = ũT | T , T = T i,j ∈ T , 1 < i, j < L,
where ũT is the local estimator from (5.18). On the boundary cells T = T i,j with i or j in {1, L}, u| T is zero by Definition 4.1 so we simply set ũ| T = 0. Note that ũ is of the form

ũ = χ Ω,
where Ω has piecewise linear boundary with respect to the mesh T . The following result gives a global approximation bound, which confirms the improvement over linear methods when s > 1.

Theorem 5.4. For all u ∈ F s,R,M , one has

u -ũ L q (D) C 1 n - min(1,s/2) q + C 2 n -1 pq η 1 q p .
Proof. First notice that if the result is proved for p = q = 1, as u -v has values in {-1, 0, 1},

u -v q L q (D) = u -v L 1 (D) C 1 n -1 + C 2 n -1 η 1 C 1 q 1 n -1 q + C 1 q 2 n -1 pq η 1 q p q
, so it suffices treat the case p = q = 1. By an argument similar to the proof of Proposition 4.3, ∂Ω intersects at most 16N 2 2R √ 1 + M 2 /h stencils of 9 cells. Using the fact that u = u S is a constant on any other stencil, we get

u -ũ L 1 (D) = T inner cell u -ũ L 1 (T ) T inner cell (1 + 2αµ) u -u L 1 (S) + 2βµ η 1 (S) 16N 2 2R √ 1 + M 2 h M (3 √ 2h) min(s,2)+1 + 18βµ η 1 C 1 h min(s,2) + C 2 h 2 η 1 .
We conclude by recalling that n = h -2 .

Remark 5.5. Here the convergence rate for the noiseless term n

- min(1,s/2) q
is limited due to the use of polygonal domains in the reconstruction. So the best approximation rate h

2 q = n -1
q is already attained for C 2 boundaries. When the smoothness parameter s is larger than 2, better rates n -s 2q should be reachable if we use non-linear approximation spaces that are richer than the space V 2 , for example indicator functions of domains with boundary that have a higher order polynomial description rather than straight lines. Of course, the stable identification of these approximants in the sense of (1.7) might require stencils that are of larger size than 3 × 3. pq for the noise term.

Numerical illustration

We study the behavior of the above discussed linear and non-linear recovery methods from cell averages for the particular target function u = χ Ω , with Ωa slightly decentered disk of radius r = 0.325. The linear method consists of the piecewise constant approximation (4.13), referred to as Piece-wiseConstant. As to the nonlinear method, for the local best fit problem, we use the 2 norm on R 9 instead of the 1 norm. By norm equivalence on R 9 , the same convergence results can be proved to hold with different constants. This method, which we refer to as LinearInterface, does not ensure consistency of the reconstruction in the sense that a T (ũ) = a T (u). One way to approach this consistency property is to modify the 2 norm by putting a large weight on the central cell. We refer to this variant as LinearInterfaceCC, here taking the weight 100. 2 shows the convergence rates of the three methods in the L 1 norm. The expected h -2 decay is observed in both non-linear methods while the linear method lays behind with a decay rate of h -1 . It is relevant to note that although both non-linear methods benefit from the same rate, the associated constants differ by an order of magnitude, showing the practical improvement gained by imposing consistency. This improvement is also visible on Figure 3 which shows that in the LinearInterface method, the interfaces that minimize the l 2 error on the 9 surrounding cells lay always inside the circle as the curvature of the boundary pushes them towards the center. On the contrary, LinearInterfaceCC seems to find the right compromise between sticking to the cell average 6 Relation to compressed sensing 6.1 Compressed sensing and best n-term approximation

In this section we discuss the application of our setting to the sparse recovery of large vectors from a few linear observations. We thus take

V = R N , equipped with some given norm • V of interest. The linear measurements of u = (u 1 , . . . , u N ) ∈ R N are given by ( 1 (u), . . . , m (u)) = Φu,
where Φ is an m × N measurement matrix, with typically m N . The topic of compressed sensing deals with sparse recovery of u from such measurements, that is, searching to recover an accurate approximation to u by a vector with only a few non-zero components. We refer to [START_REF] Candès | Stable signal recovery from incomplete and inaccurate measurements[END_REF] for some first highly celebrated breakthrough results and to [START_REF] Foucart | An invitation to compressive sensing[END_REF] for a general treatment.

We define the nonlinear space of n-sparse vectors as

V n := u ∈ R N : u 0 := #{i : u i = 0} n ,
and the best n-term approximation error in the V norm as

e n (u) V := min v∈Vn u -v V .
One natural question is to understand for which type of measurement matrices Φ does the noise-free measurement y = Φu contain enough information, in order to recover any u up to an error e n (u) V .

In other words, one asks if there exists a recovery map R : R m → R N such that one has the instance optimality property at order n

u -R(Φu) V C 0 e n (u) V , u ∈ R N , (6.19) 
with C 0 a fixed constant, which we denote by IOP (n, C 0 ). This question has been answered in [START_REF] Cohen | Compressed sensing and best k-term approximation[END_REF] in terms of the null space N := {v ∈ R N : Φv = 0}. We say that Φ satisfies the null space property at order k with constant C 1 , denoted by N SP (k, C 1 ) if and only if

v V C 1 e k (v) V , v ∈ N . (6.20) 
This property quantifies how much vectors from the null space can be concentrated on a few coordinates. One main result of [START_REF] Cohen | Compressed sensing and best k-term approximation[END_REF] is the equivalence between IOP at order n and N SP at order 2n in the following sense. One natural question is whether matrices Φ with such properties can be constructed with a number of rows/measurements m barely larger than n. As we recall further the answer to this question is strongly tied to the norm V used on R N .

Stability and the null space property

The nonlinear estimation results that we have obtained in §2 and §3 can be applied to the setting of sparse recovery, offering us a different vehicle than the null space property to establish instance optimality.

In the present setting, for a given norm • Z , the stability property (1.6) takes the form

Φu Z α Z u V , u ∈ R N (6.21)
and the inverse stability property (1.7) takes the form

v V µ Z Φv Z , v ∈ V 2n , (6.22) 
since for sparse vectors we have

V diff n = V n -V n = V 2n .
We refer to these properties as S(α Z ) and IS(2n, µ Z ), respectively.

Application of Theorem 2.3 in the noiseless case immediately gives us that the nonlinear best fit recovery R(Φu) = ũ satisfies the instance optimality bound (6.19) with constant C 0 = 1 + 2α Z µ Z . In other words

S(α Z ) and IS(2n, µ Z ) ⇒ IOP (n, C 0 ), C 0 = 1 + 2α Z µ Z . (6.23) 
The following result shows that (S, IS) is actually equivalent to N SP , and thus to IOS, in the sense that a converse result holds when • Z is chosen to be the Riesz norm(3.10). Proof. Assume that S(α Z ) and IS(2n, µ Z ) hold. Let v ∈ N and ṽ its best approximation in V 2n , then

v V v -ṽ V + ṽ V e 2n (v) V + µ Z Φṽ W = e 2n (v) V + µ Z Φ(v -ṽ) W (1 + α Z µ Z )e 2n (x) V .
This shows that N SP (2n, C 1 ) holds with

C 1 = 1 + α Z µ Z .
Conversely, assume that N SP (2n, C 1 ) holds. From the definition of the Riesz norm, it is immediate that S(α W ) holds with α W = 1. For v ∈ V 2n , let ṽ be the minimizer of min Φṽ=Φv ṽ V . Then, one has

v V ṽ V + v -ṽ V ṽ V + C 1 σ 2n (v -ṽ) V (1 + C 1 ) ṽ V ,
by using v as a sparse approximation to v -ṽ. Since ṽ V = Φv W , this shows that S(2n, µ W ) holds with µ W = 1 + C 1 .

The case of p norms

The range of m allowing the properties to be fulfilled is best understood in the case of the p norms, that is • V = • p , as discussed in [START_REF] Cohen | Compressed sensing and best k-term approximation[END_REF] which points out a striking difference between the case p = 2 and p = 1:

1. In the case p = 2, it is proved that N SP (2, C 1 ) cannot hold unless N C 2 1 m. In other words, instance optimality in 2 even at order n = 1 requires a number of measurements that is proportional to the full space dimension.

2. In the more favorable case p = 1, it is proved that for matrices which satisfy the 2 -RIP property of order 3n

(1 -δ) v 2 2 Φv 2 2 (1 + δ) v 2 2 , v ∈ V 3n , with parameter 0 < δ < ( √ 2-1) 2 3
, the N SP (2n, C 1 ) holds with C 1 depending on δ. Such matrices are known to exists with m ∼ n log(N/n) rows.

Our setting based on the stability properties S and IS applies more naturally to a different class of matrices built from graphs, which is also known to be well adapted for sparse recovery in the 1 norm. A bipartite graph with (N, m) left and right vertices, and of left degree d, is an (l, ε)-graph expander if

|X| l ⇒ |N (X)| d(1 -ε)|X|, X ⊂ {1, . . . , N },
where N (X) ⊂ {1, . . . , m} is the set of vertices connected to X. We necessarily have |N (X)| d|X|, and (1 -ε)dl m. From [START_REF] Capalbo | Randomness conductors and constant-degree lossless expanders[END_REF], it is known that there exists a (2n, The proof contains 15 cases, represented on a tree in Figure 4. These cases correspond to different geometric situations, up to certain symmetries that leave the final relevant quantities (w) 1 and w L 1 (S) unchanged.

Node a: Take w = u -v ∈ V diff 2,T , with u, v ∈ V 2,T , and denote n u , n v and c u , c v the corresponding unit vectors and offsets from the definition 5.15 of V 2,T . Recalling that x = (x 1 , x 2 ) is the center of S, we also denote 

∆ u = {x ∈ R 2 , (x -x) • n u = c u }
c u n u x ∆ u c u |c v | n u = n v ∆ u ∆ v
C + = {x ∈ R 2 , w(x) = 1} and C -= {x ∈ R 2 , w(x) = -1}
are non-empty, and we can define the external bisector

∆ = {x ∈ R 2 , ( n u -n v ) • (x -x) = c u -c v },
which is the line of symmetry between C + and C -. We also denote

C = C + ∪ C -= {x ∈ R 2 , |w(x)| = 1}. Observing that w L 1 (S) = |S ∩ C| (7.26) and (w) 1 = h -2 T ⊂S |T ∩ C + | -|T ∩ C -| , (7.27) 
the stability property (5.17) can be rewritten as

|S ∩ C| 3 2 T ⊂S |T ∩ C + | -|T ∩ C -| = 3 2 |S ∩ C| -2 T ⊂S min(|T ∩ C + |, |T ∩ C -|) , or equivalently |S ∩ C| 6 T ⊂S min(|T ∩ C + |, |T ∩ C -|). (7.28) 
Up to a rotation of S by a multiple of π 2 , we may assume without loss of generality that

arg( n u -n v ) ∈ π 4 , 3π 4 , 
that is, ∆ is at an angle of at most π 4 with the horizontal axis, and C + lies above ∆. Take ( e 1 , e 2 ) the canonical basis of R 2 .

Node c: Consider the situation where ( n u • e 2 )( n v • e 2 ) > 0. As n u = n v and n u = -n v , the lines ∆ u and ∆ v intersect at one point X ∈ R 2 . Moreover, the above condition implies X + e 2 / ∈ C. Using the fact that | arg(∆)| π 4 , we also get X + e 1 / ∈ C. Up to a symmetry with respect to the vertical axis, we can assume that C + is included in the quadrant X + R 2 + . Now consider a cell T ⊂ S such that min(|T ∩ C + |, |T ∩ C -|) = 0, then there exist points x ∈ T ∩ C -and y ∈ T ∩ C + . As x 1 X 1 y 1 and x 2 X 2 y 2 , we get X ∈ T , so there is at most one such cell T , and inequality (7.28) reduces to

|S ∩ C| 6 min(|T ∩ C + |, |T ∩ C -|).
Case 2: If X / ∈ S, then w has constant sign on S, so w L 1 (S) = h 2 (w) 1 .

Case 3: If X is in the central cell T , the dilation of T with respect to X by a factor 2 is a subset of S, and the image of The same argument holds with C -instead of C + when X is in the upper right cell. Moreover, as ∆ u and ∆ v go through the central cell, X may not be in the upper left or lower right cells. 

C ∩ T is in C ∩ S, so |S ∩ C| 4|T ∩ C| 8 min(|T ∩ C + |, |T ∩ C -|). X C + ∆ u ∆ v X C - C + X C - C +
d: If now ( n u • e 2 )( n v • e 2 ) 0, as arg( n u -n v ) ∈ π 4 , 3π 4 , we get n u • e 2 0 n v • e 2 . Observe that C + + e 2 ⊂ C + since for all x ∈ C + , (x + e 2 -x) • n u (x -x) • n u c u and (x + e 2 -x) • n v (x -x) • n v < c v .
In the same way, C --e 2 ⊂ C -. We now divide S into columns separated by the vertical boundaries between cells, and in addition by vertical lines where ∆ intersects the two horizontal lines separating cells of S, as illustrated in Figure 7. Let U be such a column, and T a cell intersecting U . If T ∩ U = T , ∆ intersects either the upper or lower boundary of T , but not both since ∆ is at an angle of at most π 4 with the horizontal axis. If it is the upper boundary, the symmetric of the part of T ∩ U above ∆ with respect to ∆ is in T ∩ U . If it is the lower boundary, the symmetric of the part of T ∩ U below ∆ with respect to ∆ is in T ∩ U . Using the fact that C + and C -are symmetric with respect to ∆, we obtain

∆ C + C - n v n u n u -n v
min(|T ∩ C + |, |T ∩ C -|) = min(|T ∩ U ∩ C + |, |T ∩ U ∩ C -|) + min(|T ∩ U c ∩ C + |, |T ∩ U c ∩ C -|).
Thanks to this observation, instead of (7. where T ⊂ U is the cell containing ∆ ∩ U . Denoting P 1 , P 2 , P 3 and P 4 the upper left, upper right, lower left and lower right corner points of T , we observe that the assumptions on ∆ and U imply P 1 , P 2 / ∈ Cand P 3 , P 4 / ∈ C+ .

Node e: If U ∩ ∆ u ∩ ∆ v = ∅, that is, if U contains no intersection point between ∆ u and ∆ v , we match 5 cases depending on the position of T in U , and of its corners with respect to C. They are illustrated in Figure 8. As C + and C -each contain at least one corner of T , we treated all cases for Node e.

Node f: Finally, we consider the situation where there is an intersection point X ∈ ∆ u ∩ ∆ v in U , and therefore in T . We again match 5 cases, illustrated in Figure 9, depending on the position of T in U , and of its corners with respect to C. Case 11: If T is the bottom cell, as ∆ u and ∆ v pass through the central cell of S, U is included in the central column of S, and no corner of T can be in C+ , since otherwise ∆ would have to pass through that corner, according to the definition of the columns. As a consequence, ∆ u and ∆ v necessarily pass through the central cell of U , so T ∩ C + is a triangle, and we proceed as in Case 7. The same happens if T is the top cell, so in the rest of the proof we only consider situations where T is the central cell. 6 for z ∈ (0, h). In the remaining cases, up to a symmetry with respect to the vertical axis, we can assume that X + R 2 + ⊂ C + and X + R 2 -⊂ C -, and in particular P 2 ∈ C + and P 3 ∈ C -.

Definition 4 . 1 .

 41 For s 1, 0 < R < 1/2 and M > 0, we define the class F s,R,M as consisting of all characteristic functions χ Ω of domains Ω ⊂ [R, 1 -R] 2 ⊂ D with the following property: for all x ∈ D there exists an orthonormal system (e 1 , e 2 ) and a function ψ ∈ C s with ψ C s M , such that y ∈ Ω ⇐⇒ z 2 ψ(z 1 ), for any y = x + z 1 e 1 + z 2 e 2 with |z 1 |, |z 2 | R.

Figure 1 :

 1 Figure 1: Example of extension of the indicator of a half-plane on B to the indicator of a smooth domain Ω on D

Remark 5 . 6 . 1 9

 561 If η ∞ , then ũ is exactly equal to u on any cell whose corresponding stencil does not intersect ∂Ω, so the error is concentrated on O( √ n) cells, leading to an improved rate n -p+1 2pq instead of n -1

Figure 2 :

 2 Figure 2: Convergence curves for the linear and nonlinear recovery methods

Figure

  Figure2shows the convergence rates of the three methods in the L 1 norm. The expected h -2 decay is observed in both non-linear methods while the linear method lays behind with a decay rate of h -1 . It is relevant to note that although both non-linear methods benefit from the same rate, the associated constants differ by an order of magnitude, showing the practical improvement gained by imposing consistency. This improvement is also visible on Figure3which shows that in the LinearInterface method, the interfaces that minimize the l 2 error on the 9 surrounding cells lay always inside the circle as the curvature of the boundary pushes them towards the center. On the contrary, LinearInterfaceCC seems to find the right compromise between sticking to the cell average

Figure 3 :

 3 Figure 3: (a) The target function, (b) its recovery by PiecewiseConstant showing the cell-average data, and the recovered boundaries by (c) LinearInterface and (d) LinearInterfaceCC methods.

Theorem 6 . 1 .

 61 One has IOP (n, C 0 ) ⇒ N SP (2n, C 0 ) and conversely N SP (2n, C 1 ) ⇒ IOP (n, 2C 1 ).

Theorem 6 . 2 .

 62 For any norm • Z , one has S(α Z ) and IS(2n, µ Z ) ⇒ N SP (2n, C 1 ), C 1 = 1 + α Z µ Z . (6.24) Conversely, let • W be the Riesz norm so that Φu W = min Φv=Φu v V , then N SP (2n, C 1 ) ⇒ S(α W ) and IS(2n, µ W ), α W = 1 and µ W = 1 + C 1 . (6.25)

1 2 )

 2 -graph expander with d ∼ log N n and m ∼ nd ∼ n log(N/n). Now denote Φ ∈ {0, 1} m×N the adjacency matrix of this graph, so that each column of Φ has d nonzero entries. Then Φx 1 d x 1 , x ∈ R N , and Φx 1 d(1 -ε) x 1 , x ∈ V 2n . Therefore S(α 1 ) and IS(2n, µ 1 ), hold with α 1 = d and µ 1 = 1 d(1-ε) = 2 d , which by (6.24) and (6.23) gives N SP (2n, C 1 ) with C 1 = 3 and IOP (n, C 0 ) with C 0 = 5.
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  Appendix: Proof of Proposition 5.1

Figure 4 :Case 1 :

 41 Figure 4: Structure of the proof, each leaf corresponds to a different case, and each node contains a general treatment valid for all its sons

Figure 5 :

 5 Figure5: Left: 3 × 3 stencil S, with x its center, and an example of function u ∈ V 2,T with directing vector n u and offset c u > 0. Here the dotted line corresponds to ∆ u , and the shaded region to u = 1, while u = 0 elsewhere. Right: Representation of Case 1 ( n u = n v ), here c v < 0 < c u so w = -1 on the shaded region and w = 0 elsewhere

Figure 6 : 5 Case 4 :

 654 Figure 6: Cases 2, 3, 4, and 5

Case 5 : 2 h -z z 2 , 4 .

 5224 If X is in the lower central cell T , denote l = |∂T ∩ C + | ∈ (0, h) the distance between ∆ u and ∆ v when they pass from T to the central cell T , and z = dist(X, T ) ∈ (0, h) the depth of the point of intersection. Then |T ∩ C + | = zl 2 and |T ∩ C -| zl so min(|T ∩ C + |, |T ∩ C -|) hl On the other hand, the parallelogram of base ∂T ∩ C + , of height h, and with sides orthogonal to ∆ belongs to (S \ T ) ∩ C + (it does not escape to the right of S because ∆ is close to the horizontal axis, so the sides of the parallelogram are at an angle at most π 4 with the vertical axis), and has an area hl, which proves that |C ∩ S| hl + |C + ∩ T | + |C -∩ T | 6 min(|T ∩ C + |, |T ∩ C -|).

Node

  

Figure 7 :

 7 Figure 7: Generic situation for Node d, and partition of S into 5 columns: here, in addition to the 4 vertical lines delimiting the cells of S, we added 2 vertical lines passing through the intersections of ∆ with the 2 horizontal cell delimiters

  [START_REF] Maday | Locally adaptive greedy approximations for anisotropic parameter reduced basis spaces[END_REF] we only have to prove the inequality|U ∩ C| 6 T ⊂U min(|T ∩ U ∩ C + |, |T ∩ U ∩ C -|) (7.29)on each column U separately. We thus consider only one column U in the sequel, and assume up to a horizontal dilation (which preserves the condition | arg(∆)| π 4 ) that U has width h and is composed of three full cells.According to the definition of the columns, there is at most one cell T ⊂ U such that T ∩ ∆ = ∅, and as ∆ separates C + and C -, it is only for this cell that we may have min(|T ∩ C + |, |T ∩ C -|) = 0.If there is no such cell, (7.29) trivially holds. Otherwise, similar to Node c, we only need to prove |U ∩ C| 6 min(|T ∩ C + |, |T ∩ C -|),
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Case 8 :

 8 If T is the central cell, P 1 , P 2 ∈ C + and P 3 , P 4 ∈ C -the two other cells are included in C + and C -, and we conclude as in Case 6.

Case 9 :

 9 If T is the central cell, P 1 , P 2 ∈ C + , P 3 ∈ C -but P 4 / ∈ C -, the top cell is included in C + , and there is a rectangle R ⊂ C -of same width and height as T ∩ C -in the bottom cell, so|U ∩ C| h 2 + |T ∩ C| + |R| 2|T ∩ C| + 2|T ∩ C -| 6 min(|T ∩ C + |, |T ∩ C -|).The same situation occurs when only three points among P 1 , . . . , P 4 are in C.Case 10: If T is the central cell, only one vertex among P 1 , P 2 is in C + , and only one among P 3 , P 4 is in C -, both T ∩ C + and T ∩ C -are triangles, and there exist rectangles R + and R -of same widths and heights, so|U ∩ C| |R + | + |T ∩ C| + |R -| 3|T ∩ C + | + 3|T ∩ C -| 6 min(|T ∩ C + |, |T ∩ C -|).

Figure 9 :

 9 Figure 9: Cases 11, 12, 13, 14 and 15

Case 12 :

 12 If the horizontal line H passing through X does not intersect C at any other point, C + is entirely above H and C -entirely below. Denoting z = X 2 -x 2 + h 2 ∈ (0, h), the vertical dilation with respect to H by a factor 2h-z h-z sends T ∩ C + in U ∩ C + , and the vertical dilation with respect to H by a factor h+z z sendsT ∩ C -in U ∩ C -, so |U ∩ C| 2h -z h -z |T ∩ C + | + h + z z |T ∩ C -| 6 min(|T ∩ C + |, |T ∩ C -|) because 2h-z h-z + h+z z = 2 + h 2 z(h-z)

which is a two-parameter family as each function is determined by (arg n, c) ∈ [0, 2π) × R, where arg n is the angle of n with respect to the horizontal axis.

Here, our measurements are the average values of u on the cells contained in S (u) = (a T (u)) T ⊂S ∈ R 9 .

In order to find a reconstruction of u in V 2 based on these measurements, we need an inverse stability property of the form (1.7). This is not possible here, since cancels on all functions

χ Ω ∈ V 2 with Ω ∩ S = ∅. We therefore restrict the nonlinear family V 2 , and consider only indicators of half-planes whose boundary passes through the central cell T :

(5.15)

In this setting, we prove the existence of the following stability constants for V = L 1 (S) and Z = 1 , which is the best norm on R m in view of Theorem 3.2. For notational simplicity, we omit the reference to Z in these constants.

Proposition 5.1. One has

)

where α = h -2 and µ = 3 2 h 2 are the optimal constants. The proof of the stability property (5.16)is trivial since on each cell

with equality in case u does not change sign. The proof of the inverse stability (5.17) is quite technical and left to the appendix.

Given the noisy observation

we define the estimator of u on the cell T by

Here we minimize over all V 2 , that is on all indicators of half planes, but we note that we may restrict to half-planes whose boundary passes through the stencil S.

The following result, which uses Proposition 5.1, shows that its distance to u in L 1 (T ) is comparable to the error between u and its best approximation in the L 1 (S) norm

with α, µ as in Proposition 5.1, and β = 9 1-1 p the maximal ratio between p and 1 norm in R 9 .

Proof. We distinguish two cases:

• If ũT ∈ V 2,T and u S ∈ V 2,T , that is, both boundaries pass through the central cell T , we apply Theorem 2.9 together with Proposition 5.1

with

• Otherwise, either ũT or u S has constant value 0 or 1 on T , so ũT -u S has constant sign on T , and thus

By triangle inequality, it follows that

which has better constants than in the estimate obtained in the first case, since the constant C 0 is larger than 1.

The order of the best local approximation error u -u S L 1 (S) that appears as a bound for the reconstruction error u -ũT L 1 (T ) depends on the smoothness of the boundary, as expressed in the following lemma.

Proof. We apply the definition of F s,R,M at point x: as R

so u| S is the indicator of a domain delimited by a C s function ψ, with ψ C s M . From the definition of C s , there exists an affine function ξ such that

Then the function v : x + z 1 e 1 + z 2 e 2 → χ z 2 ξ(z 1 ) belongs to V 2 , and we have

Case 13: If P 1 ∈ C + and P 4 ∈ C -, the situation is similar to Case 8.

Case 14: If P 1 ∈ C + and P 4 / ∈ C -, the top cell is included in C + , and one of the lines ∆ u or ∆ v intersects the line segments [P 1 , P 3 ] and [P 3 , P 4 ] at points Y and Z. Then the triangle Y P 3 Z is included in T and contains T ∩C -, so there is a rectangle R of same width and height in (U \T )∩C -. In the end

The same approach treats the symmetric case P 1 / ∈ C + and P 4 ∈ C -, Case 15:

) the angle between the vertical axis and the line among ∆ u and ∆ v that intersects [P 1 , P 2 ], and ψ ∈ (0, π 4 ) the angle between the line among ∆ u and ∆ v that intersects [P 1 , P 3 ] and the horizontal axis. As | arg(∆)| π 4 , φ ψ so tan(ψ) tan(φ) =: t 1. We can now compute