

Better than RECIST and faster than iRECIST: defining the Immunotherapy Progression Decision score to better manage progressive tumors on immunotherapy

Younes Belkouchi, Hugues Talbot, Nathalie Lassau, Littisha Lawrance, Siham Farhane, Rahma Feki-Mkaouar, Julien Vibert, Paul-Henry P.-H. Cournède,

Clara Cousteix, Camille Mazza, et al.

▶ To cite this version:

Younes Belkouchi, Hugues Talbot, Nathalie Lassau, Littisha Lawrance, Siham Farhane, et al.. Better than RECIST and faster than iRECIST: defining the Immunotherapy Progression Decision score to better manage progressive tumors on immunotherapy. ESMO 2022, Sep 2022, Paris, France. . hal-03780911

HAL Id: hal-03780911 https://hal.science/hal-03780911v1

Submitted on 19 Sep 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

127P - Better than RECIST and faster than iRECIST: defining the Immunotherapy Progression **Decision score to better manage progressive tumors on immunotherapy**

CentraleSupélec

Introduction

- Immuno-Oncology (IO) therapy has revolutionized therapeutic strategies in the treatment of multiple tumor types.
- Most patients do not respond to immunotherapy, and some show atypical responses (like Pseudo Progresssion).
- iRECIST protocol takes this atypical response into consideration, but imposes a delay of 1 month.
- We retrospectively analyzed clinical (Table 1), biological (NLR, LDH, Albumin, ...) and radiological (tumor burden, target and non-target lesion progression, tumor locations, ...) parameters measured at the timing of progression and determined which parameters could help at predicting outcome.

We defined the immunotherapy Progression Decision score (iPD score) based on Biological values and CT-scan characteristics based on parameters collected at the time of progression, the iPD score predicts patients with poor or critical prognosis for whom immunotherapy should be discontinued.

Materials & Methods

- This retrospective study includes 107 metastatic patients of all cancer types in phase I clinical trails treated by anti-PD(L)1 as monotherapy or combotherapy at Gustave Roussy.
- All the patients were classified progressive disease according to the RECIST 1.1 criteria.
- We analyzed clinical, radiological and biological information relative to the patients, at both Baseline and the first evaluation, and chose nonredundant and relevant criteria for the building of our score.

The authors declare no potential conflicts of interest.

Results

The characteristics related to the 107 included patients are presented in Table 1. The most prevalent cancer type was colorectal cancer (19.2%), followed by urinary tract (15.4%) and lung cancer (14.4%).

The median OS was 5.54 months (95% Cl, 3.90-7 months).

Our proposed iPD score is presented in Table 2. The parameters were all gathered at the time of first CT-scan after immunotherapy onset. The criteria were mostly uncorrelated, and are clinically relevant. For example, the liver involvement's effect on survival is presented presented in Figure 1. Three subgroups of patients were determined using quantiles of the score:

- Good prognosis (GP) : lower quartile (1 to 5)
- Poor prognosis (PP) : IQR (6 to 9)
- Critical prognosis (PP) : high quartile (10 to 13)

Younes BELKOUCHI^{1,2}, Hugues TALBOT¹, Nathalie LASSAU^{2,4}, Littisha LAWRANCE², Siham FARHANE³, Rahma FEKI-MKAOUAR⁴, Julien VIBERT³, Paul-Henry COURNEDE⁵, Clara COUSTEIX², Camille MAZZA³, Aurelien MARABELLE³, Samy AMMARI⁴ & Stephane CHAMPIAT³

¹Centre de vision numérique (CVN), CentraleSupélec, Université Paris-Saclay, Inria, France ²Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay (BIOMAPS), UMR 1281. Université Paris-Saclay, Inserm, CNRS, CEA, France ³Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, France. ⁴Département d'Imagerie, Gustave Roussy, Université Paris Saclay, Villejuif, France. ⁵Mathématiques et Informatique pour la Complexité et les Systèmes (MICS), CentraleSupélec, Université Paris-Saclay, France **Contact:** younes.belkouchi@gustaveroussy.fr

Figure 1: The effect of liver involvement on the OS.

		0	5	timeline (mo	nths)		20	
Variable	Patients (n=107)	Figure 2: Querall curvival curves of groups iDD coors CD DD and (
Age-years		Figure 2. Overall	Surviva	i curves of grou	ips if D s	score GF,	FF, and C	
Median (IQR)	58 (48-65)							
Range	25-88	Table 2: Immunotherapy Progression Decision score (iPD score)						
Sex							Score	
Male	65 (60%)						weight	
Female	42 (40%)		NLR	> 6			1	
Previous Immunotherapy		Biology	LDH > ULN				1	
Yes	2 (2%)		Albu	$\min < ULN$	n < ULN		1	
No	105 (98%)		Tumor burden > 15 cm				1	
Number of previous treatments			Liver involvement			1		
0	1 (1%)	General CT	NL		1		1	
1	27 (25%)		Num	ber of organs	or 2		2	
2	24 (22%)		INVOV	lea	or ≥ 3	3	3	
\geq 3	55 (51%)		Target lesions ir		rease > 20%		1	
Number of metastasis at baseline			Non-target lesions increase $> 50\%$			> 50%	1	
1	13 (12%)	Specific CT			Emerg	gence	1	
2	39 (36%)		New lesions		\sum Size>10cm		1	
\geq 3	55 (51%)				New o	organ	1	
Liver metastasis					ΤΟΤΑ	AL	Σ	
Yes	68 (64%)	iPD score Prognasia		Prognosis stat	tatus Median		05	
No	39 (36%)	scores 1	scores 1 to 5		is (GP)	11 4 m		
IO therapy		scores 10 to 13 good prognosis		noor prognosi	(OP) 11.4 m		•	
Anti-PD1	52 (49%)			S(II)	23 m			
Anti-PDL1	55 (51%)	scores 10 to 13 critical prognosis (CP) 2.3 m						
Combo Therapy		We analyzed the d	istribut	ion of PSPD p	atients w	vithin the	different	
No combo	16 (15%)	subgroups and observed that no PSPD was observed in the critical p						
Another ICI	76 (71%)	nosis group (CP) (Table 3).						
Radiotherapy	15 (14%)	We compared the different known scores are baseline for the prediction the everall curvined using a fitted cay model (Figure 4)						

iPD rog-

n of the overall survival, using a fitted cox model (Figure 4).

Table 3: Distribution of PSPD according to the iPD subgroups, GRIm and RMH scores. All scores are ranked from best (0) to worst (2 or 3). The proportion of pseudo-progressor is indicated in each class.

NLR at Baseline > 6

Figure 3: Cox model fitted on all criteria to predict overall survival. The biggest HR was affected to the iPD score by the model (HR = 2, p < 10.005)

- patients.

- use of this score.

This work was supported by the DATAIA institute, Université Paris-Saclay, which provided the funding for the employment of Y. Belkouchi and L. Lawrance.

ank	GRIm	RMH	iPD Score	Group
0	3/36 (8%)	3/25 (12%)	5/27 (19%)	GP
1	1/41 (2%)	0/41 (0%)	1/62 (2%)	PP
2	2/23 (7%)	3/36 (8%)	0/18 (0%)	CP
3	0/7 (0%)	0/5 (0%)		

Summary

• Progressive disease affects the majority of immunotherapy-treated

• There exists scores that predict the outcome at baseline, but none to our knowledge that aim to identify the outcome after progression. • The iPD score is based on a more precise characterization of

CT-observations combined with biological factors.

• The iPD outperforms other scores in predicting survival and pseudo-progression patients.

• Further validation is warranted to confirm the validity and clinical

Acknowledgements