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Abstract

Physical simulations are at the core of many critical industrial systems. However,1

today’s physical simulators have some limitations such as computation time, deal-2

ing with missing or uncertain data, or even non-convergence for some feasible cases.3

Recently, the use of data-driven approaches to learn complex physical simulations4

has been considered as a promising approach to address those issues. However, this5

comes often at the cost of some accuracy which may hinder the industrial use. To6

drive this new research topic towards a better real-world applicability, we propose a7

new benchmark suite "Learning Industrial Physical Simulations"(LIPS) to meet the8

need of developing efficient, industrial application-oriented, augmented simulators.9

To define how to assess such benchmark performance, we propose a set of four10

generic categories of criteria. The proposed benchmark suite is a modular and11

configurable framework that can deal with different physical problems. To demon-12

strate this ability, we propose in this paper to investigate two distinct use-cases13

with different physical simulations, namely: the power grid and the pneumatic.14

For each use case, several benchmarks are described and assessed with existing15

models. None of the models perform well under all expected criteria, inviting the16

community to develop new industry-applicable solutions and possibly showcase17

their performance publicly upon online LIPS instance on Codabench.18

1 Introduction19

Physical simulations constitute today a key enabler for real-world complex industrial systems (power20

grid management, rail infrastructure, aeronautics, pneumatic, gas production plants, thermal comfort,21

etc.), and are used at several critical stages of the system life-cycle (system design, solutions22

exploration, system V&V,etc) to enhance decision making. The main drawback of using numerical23

simulations in general, is their high computational cost to reach satisfactory solutions. It can become24

prohibitive for complex systems requiring large number of simulations. To tackle this issue, several25

techniques have been explored in the literature to design simplified physical models [1, 2, 3, 4],26

dimension reduction, or considering simplified assumptions to linearize the problem. In recent years,27

there has been a growing interest in using machine learning techniques to solve physical problems28

[5] for which conventional modeling approaches are very expensive to compute. The main goal is to29

accelerate the computation time while maintaining an acceptable accuracy of simulation predictions30

under some specified tasks. Going even further to reach the best trade-off, Deep Neural Networks31

(DNN) have recently led to promising results in various domains (see e.g.,[6, 7, 8, 9, 10]), allowing32

an important speed-up of simulations by substituting some computational bricks with data-driven33

numerical models.34
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These approaches emulate often existing simulators by learning from them in a supervised fashion35

and are generally used to complement them. Other approaches also aim at developing new kinds36

of differential solvers [11, 12, 13] in an unsupervised manner, and could possibly directly fit into37

existing simulator core. They often fall in the class of Physics-informed machine learning [14], where38

the learning is performed through a residual loss function and then physical constraints are verified39

on the learned model to validate the obtained solution. They could lead to stronger convergence40

and generalization than emulators. As automated learning of complex physical simulations is still41

considered as a new field of research, there exists a lack of common benchmarking pipeline, starting42

from available datasets, across various applications and finally common evaluation criteria as reviewed43

in section 3. This may allow to rigorously compare these methods and drive further advances into44

real-world applications, in particular when considering industrial use-cases.45

In this paper, we propose a new benchmark suite "Learning Industrial Physical Simulations (LIPS)"46

to facilitate the use and the assessment of augmented physical systems, when applied on real-world47

applications. Depending on the application scope, the set of required physical variables to be48

considered may be different. The trade-off between computation acceleration and accuracy, as well as49

the expected generalization capability, may be specific to each industrial domain and the considered50

application. The compliance to physical laws of the learnt simulations may also be very important to51

validate them and consequently increase the user trust toward theses augmented simulators.52

To develop the LIPS benchmark suite over several physical domains, we use a bottom-up approach53

by investigating two use-case described in section 2 with distinct physics: power grid and pneumatic.54

Those 2 industrial domains both contribute in tackling ongoing real-world challenges, such as55

Climate Change, by transforming our energy system through electricity decarbonization and gains in56

transportation energy efficiency, or improving the decision-making efficiency regarding industrial57

products. These 2 use cases also allow, thanks to their heterogeneity in terms of physics lying behind58

the modeling, a better assessment of our proposed benchmark. Preliminary ML-models to benchmark59

also exist in the respective literatures. Our contributions described in section 4 hence lie in:60

1. defining application-oriented benchmark tasks for industry use cases as opposed to general-purpose61

simulation tasks;62

2. proposing four categories of evaluation criteria that generalize to several physical, industrial and63

application domains and challenges beyond usual ML-only evaluation metrics;64

3. sharing as open-source LIPS benchmarking suite framework with associated datasets;65

4. opening a publicly available Codabench [15] thread providing a shared result table for user’s66

submission and a fully automated and comparable evaluation.67

Baseline experiments to demonstrate the usefulness of these benchmarks are run with existing state-68

of-the-art methods in section 5 and further discussed, highlighting the relevance of our benchmark.69

2 Use-cases70

2.1 The power grid case71

Industrial context Power System Operators are in charge of managing the security of large critical72

power grids (thousands electrical lines and substations that can be reconfigured) in real time and73

co-ordinate the supply of and demand for electricity in a manner that avoids fluctuations in frequency74

or interruptions of supply. Above all, the grid needs to be robust to blackouts at any time, which75

means in particular avoiding powerline overflows that can lead to a cascading failure (Figure 1, left).76

Operators have to face unexpected events (loosing a line for example due to weather constraints) or to77

anticipate events such as variation of production during the day or as equipment’s maintenance. They78

do so by assessing the risks and leveraging grid flexibility through simulations, carefully choosing79

sets of remedial actions which act on the grid topology or on the production levels.80

Applications Near real-time operations of a power grid can be classified into three steps with81

different expected speed and accuracy simulation trade-offs (Table 1):82
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1. Risk assessment, i.e. identifying problematic contingencies over a large possible number while83

assessing their severity (anticipating for instance lines overloads, maintenance operations...);84

2. Remedial action search, i.e. exploring for solutions to find a set of remedial actions on the grid85

such as topology change, to solve a local problem and assess its overall impact;86

3. Decision making, i.e. selection and validation of one of the best solutions before implementation.87

Physical Simulations The computation of the grid state involves a set of physical laws (see88

appendix C.1) such as Kirchhoff’s law or Joule effect. More specifically, the physical resolution of89

the problem is derived from a set of powerflow equations [16] described at any node k of the grid.90

The power injected at a node of the network sk is the sum of active (pk) and reactive powers (qk):91

sk = pk + qk. From Kirchhoff energy conservation law, the relation between voltage angle and92

magnitude can be formulated for node k and neighboring nodes m as follows:93 {
0 = − pk +

∑K
m=1 |vk||vm|(gk,m · cos(θk − θm) + bk,m sin(θk − θm)) Active power

0 = qk +
∑K

m=1 |vk||vm|(gk,s · sin(θk − θm)− bk,m cos(θk − θm)) Reactive power
(1)

where: phasors θk are unknown for all node k; either voltage |vk| or reactive power qk are known input at any94

given node k ; active power pk is a known input and gk,m, bk,m known line characteristics for all nodes. For95

each line l, active pℓ and reactive qℓ powerflows or the current aℓ can further be derived with Ohm’s law.96

Significance The problem 1 is non linear and non convex. To estimate these variables, a Newton-97

Raphson power flow solver such as LightSim2grid[17] can be used. Over the past years, the amount98

of simulation required has drastically increased due to emerging trends [18] – mainly driven by99

Energy Transition initiatives, with increasing renewable energy share as well as stronger exchanges100

with neighboring countries over the whole European grid, both leading to a greater stochasticity. In101

this context, the computation time of physical solvers becomes an obstacle for upgraded decision102

support [19]. An acceleration by several order of magnitudes is now expected.103

Figure 1: Left, small IEEE14 grid with 2 line overflows and highlighted topology changes (node
splitting). Right, cross section of a simplified tire.

2.2 The pneumatic domain use case104

Industrial Context In order to assess pneumatic performances, several physical considerations have105

to be taken into account such as durability, ground adhesion or robustness for instance, depending on106

the numerous applications. To do so, it is required to model the tire behaviour during either rolling107

cycles or configurations where it is subject to crushing forces. Besides, as the forces arising from108

the the tire/ground interface are located on the contact area, it is also critical to accurately estimate109

these quantities to predict the global behaviour. Only then, by being as close as possible to the actual110

configuration (including considerations about the vehicle velocity with respect to the ground, the111

pressure, the friction, the material behaviour...) we can optimize and improve our understanding of112

the processes involved and find the best compromise in terms of performances.113

Applications Real-world tests performed on tires involve in particular two classical configurations114

depending on the accuracy/computational time simulation trade-offs (Table 1):115
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1. Wheel sustaining: assess whether the wheel is able to properly sustain the weight of a vehicule;116

2. Rolling cycle: assess the behaviour of the tire during the rolling phase.117

Physical Simulations The computation of the tire state, that is to say the displacement and the118

contact stress arising from the contact conditions on the discretized domain (i.e. the mesh), is119

performed based on the resolution of a set of Partial Differential Equations (PDE) (see appendix C.2120

for more details) through Finite Element (FE) formalism. As such, the solution is evaluated at any121

node of the domain’s mesh, for the displacement, at the nodes on the contact boundary for the contact122

stress. In these PDEs, several physical considerations are involved such as: the behaviour law, the123

relation between the stress acting on a body and the displacement, the law of motion, the unilateral124

contact conditions (equivalent to assuming the ground is perfectly rigid), the Coulomb’s law of dry125

friction. For more details about Contact Mechanics, we refer to [20, 21, 22]. Note that, while the126

displacements and contact stress at the contact boundary are the actual unknowns of the problem, it127

may not be enough depending on the usecase. For instance, some physical quantities relevant to a128

given application can be computed as a post-processing of the unknowns.129

Figure 1, right, depicts the cross section of a simplified tire. We consider an idealized straight rolling130

on an undeformable ground at constant speed.131

Significance Such a problem is strongly nonlinear due to the non linear behavior law, the large132

deformation framework and the frictional contact conditions. In order to estimate the displacement133

and the stress, the FE solver "Getfem" [23] is used. In practical applications, rolling simulations in134

particular provides a lot of useful information, such as for instance the contact area, forces, contact135

pressure and moments. Classical methods exists [24, 25], however, because of the problem inherent136

complexity, the computation time is prohibitively expensive. Running over a day sometimes, it137

limits its use in industrial applications compared to simpler surrogate model. An order of magnitude138

acceleration with acceptable accuracy would democratize its usage.139

Table 1: Grid and pneumatic apps: speed vs accuracy and physical law compliance trade-offs
Application Variables to predict Accuracy & PL compliance Speed

U
se

ca
se

s

G
ri

d (1) Risk assessment aℓ + +++
(2) Action Search aℓ , pℓ , vk ++ ++
(3) Decision Making aℓ, pℓ, vk, qℓ, θk +++ +

Ti
re (1) Wheel sustaining uΩ +++ ++

(2) Rolling cycle uΩ, λc ++ +++

2.3 Added value of ML140

Generally speaking, ML-model can provide more direct and faster predictions than a Newton-Raphson141

resolution over the non-linearities of both use cases. It can leverage a learning memory of any given142

grid, mesh or last rolling cycle iteration of interest without restarting the resolution from scratch as if143

it was a new system or problem. Also, as only some variables such as the flows or contact forces144

are sometimes of interest, in some of our benchmark tasks we will only require machine learning145

models to predict them instead of predicting all variables as the physical solvers. ML-models could146

finally provide more factorized computation such as for varying grid topologies (varying number of147

electrical nodes) as existing physical solvers does not offer factorization over such dimension.148

3 Related works and novelty149

Simulations and benchmarks in power grids. Although simulation time and convergence have150

improved over decades thanks to benchmarks based on shared power grid cases and some contests151

[26, 27], it remains too slow to compute large volume of simulations. In addition, existing simulators152

are general purpose and not application-oriented which we would like to address with this work. Some153
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evaluation criteria categories impact readability environnement setup 

paper reference ML-related
industrial 
readiness

ood 
generalization PL compliance

meaningful 
thresholding

standard 
comparative viz dataset

ref Physical 
simulator

ML model 
repository baselines

M
L-

m
od

el
 p

ap
er

s

LeapNet [51] yes no yes no no no
large, simple prod 
distributions

fast - Hades2 
(proprietary) maintened yes & diverse

GNS/DSS 
[13,31,34] yes no no partial no no

data generation 
shared, simple 
distributions

slow - 
PandaPower 
(open source) unmaintained no

Fast contingency 
analysis [32] yes partial no no no no

not shared, 
realistic prod but 
simple topo

slow - 
PandaPower 
(open source) no access yes & diverse

Physics-informed 
GNN [35] yes no no no no no

not shared, 
realistic prod but 
simple topo none no access yes but uniform

Gridwarm [36] yes partial no partial no no

data generation 
shared, simple 
distributions none unmaintained yes & diverse

B
en

ch
m

ar
k 

su
ite

s

LIPS yes yes yes comprehensive yes yes

large & doc & 
realistic prod + 
topo distributions 

fast - 
LightSimgrid 
(open source) maintained yes & diverse

SimBench [28]

no
(otimization & 
heuristics) yes yes no no yes

medium & doc & 
realistic prod but 
simple topo

slow - 
PandaPower 
(open source) no ML yes & diverse

PowerGridLib [29]
no 
(optimization) partial yes partial no no

small & doc & 
realistic prod but 
static topo

med-speed - 
PowerModel 
(open source) no ML yes but uniform

Figure 2: Comparative table between LIPS and related work for the power grid case. This highlights
that our framework offers a comprehensive evaluation setup that was often barely covered by others.

application-oriented simulation-related benchmarks emerged lately in the power system community154

(SimBench [28], Power Grid Lib [29]). However they are mostly designed to drive advances155

in operational research algorithms. In comparison, our benchmark: a) stresses the importance156

of considering the complexity of varying grid topologies for industrial applications; b) unlocks157

the creation of data-driven models by providing comprehensive data distributions to train them,158

similarly to [30] for other power grid related applications. c) define specific metrics to evaluate them159

such as physics compliance, out-of-distribution generalization over unseen topologies or industrial160

readiness considering available data volume and scalability. It eventually allows a fair comparison161

of pre-existing ML-models [8, 31, 32, 33, 34, 35] over all necessary dimensions as summarized in162

Figure 2. [36] also concurrently advocates for such evaluation over defined categories as a first step163

towards proper benchmarks.164

PDEs simulations and benchmarks for pneumatic. In the last few years, the success of deep165

learning techniques has encouraged researchers to investigate their capability to solve PDE problems.166

Several works were proposed to hybridize PDE-based physical problems with Neural Networks (NN),167

from black-box resolution on unstructured meshes with graphs NN [37], to more interpretable ap-168

proaches like the physics informed NN [14]. Some other works have focused on using un-supervised169

learning techniques to avoid the mesh construction (mesh-free methods)[38, 39]. Regarding pneu-170

matic domain in particular, several attempts to use these techniques have already been made so far:171

the first tire/pavement contact-stress model based on artificial NN in [40] using a Neuro-Patch Model,172

tire modeling was investigated in [41] relying on a feedforward back propagation algorithm and [42]173

proposed a Structure-Preserving NN to predict the stress field within the tire. While providing promis-174

ing results, none of these works attempt to compare fairly the performances of several ML-models175

with respect to a set of significant application-based criteria and we propose to fill that gap. To our176

knowledge, this is the first ML-friendly benchmark for pneumatic.177

Benchmark for Learning to simulate physics. Learning to simulate benchmarks started to emerge178

recently. [7] studied extensively a neural network architecture performance over several simulators179

based on different physics. Unfortunately no resulting benchmark has been made available yet. It180

mainly relies on qualitative visual analysis, while more quantitative metrics as well as physical law181

verification could help for better comparison as we later formalize. The authors eventually indicate182

that scalability to large systems remains an issue for now, as well as proper generalization in regions183

with high variability, highlighting the need for further advances. [43] also proposed lately a new184

benchmark over four PDEs canonical physic systems to drive forward the development of data-driven185

time integration solutions. Both focus primarily on scientific needs, with limited evaluation criteria186

categories, as opposed to industrial needs and applications.187
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Identified research question (RQ). Thus, compared to these various works, the research questions188

we address in this work can be described as follows: 1) There has been ongoing ML research for189

physical simulations for several years now. Are current evaluation setup comprehensive enough190

to actually provide applicable models in the industry ? If not, what is missing ? 2) Can we define191

an homogeneous evaluation framework, with generic and comprehensive categories of criteria, for192

different industrial domains that could systematize the creation of such benchmarks and possibly193

drive cross-domain advances? 3) How can we represent an exhaustive set of benchmark results in an194

interpretable way ?195

We also set open research questions (ORQ) yet to be addressed that should be of interest for ML196

research: 1) What kind of inductive biases could help enforce ood generalization and physical197

consistency without sacrificing speed? 2) Is there a one-size fits all simulation model that performs198

best for all applications in a given domain or should it be more tailored to achieve better application-199

specific trade-off? 3) Could we foster the emergence of foundational models accross domains?200

Regarding RQ1 and considering the power grid use case as a reference one since ML research has201

been ongoing for more than a decade now, we can answer that current evaluation setup are very202

heterogeneous from Figure 2, each with distinct attributes. Hence none looks comprehensive enough203

and a standardization is needed with meaningful categories and targets to drive research towards204

industrial impact which has yet to be seen.205

4 Benchmark suite design206

4.1 Comprehensive evaluation criteria for benchmarking industrial physical simulations207

The first step towards LIPS benchmark is a generic and yet comprehensive categories of evaluation208

criteria that standardizes it, allowing for comparison within and across physical domains, while being209

expressive enough to represent industrial needs and expectations. ML-related only metrics are not210

sufficient in that regard. Thus, we introduce four categories of criteria of importance for industrial211

applications and illustrate their applicability and usability on our 2 use cases in section 5.212

ML-related performance Among classical ML metrics, we focus on the trade-offs of typical model213

accuracy metrics such as Mean Absolute Error (MAE) vs computation time (optimal ML inference214

time without batch size consideration as opposed to application time later).215

Industrial Readiness When deploying a model in real-world applications, it should consider the real216

data availability and scale-up to large systems. We hence consider:1) Scalability: the computational217

complexity of a surrogate method should scale well depending on the problem size, e.g. number of218

nodes on power grid, mesh refinement level in pneumatics; 2) Application Time: as we are looking219

for a tailored model to an application, we aim at measuring the computation time in this context. We220

consider a proper finite batch size for that application which can affect the speed-up.221

Application-based out-of-distribution Generalization For industrial physical simulation, there is222

always some expectation to extrapolate over minimal variations of the problem geometry depending223

on the application. We hence consider ood geometry evaluation such as unseen power grid topology224

or unseen pneumatic mesh variations.225

Physics compliance Physical laws compliance is decisive when simulation results are used to make226

consistent real-world decisions. Depending on the expected level of criticality of the benchmark, this227

criterion aims at determining the type and number of physical laws that should be satisfied.228

4.2 Power grid application-oriented benchmarking task descriptions and datasets229

From applications in table 1, we define two application-oriented benchmarks. Note that the third230

application will be considered in a future benchmark. The Benchmark datasets all depart from the231

same published datasets of realistic production and consumption distributions [44], [45] over two232

widely studied grids (IEEE 14 and IEEE 118 bus-systems) in the power system literature [46]. The233

benchmark datasets however each differs from the application specific grid topology variations which234
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are applied using Grid2Op [47] framework. Ground truth of physical variables are further computed235

using LightSim2Grid [17] physical solver with industrial-like performance on the selected grids.236

1. Benchmark 1 - Risk assessment through contingency screening. The problem is to anticipate237

near real-time potential threats on the power grid and warn the operators accordingly [48]. It238

simulates incidents (aka contingencies) involving various elements of the grid (such as the239

disconnection of a line), one by one. For each contingency, a risk is identified when overloads on240

lines are detected. On a real grid, this scenario means running hundred of thousands of simulations,241

thereby, computation time is critical, especially since this risk assessment is refreshed every few242

minutes. We consider large simulation batches and the main physical variable is the line electric243

current aℓ, because an overload occurs when it exceeds the line capacity.244

Dataset specificity: It presents grid snapshots including all possible line disconnections (N-245

1) for few different reference grid topologies. An ood topology test set containing N-2 line246

disconnections (2 line disconnections combined) is also attached to test for such generalization.247

2. Benchmark 2 - Remedial action search. We need to explore possible solutions (aka "remedial248

actions") to identified risks for recommendation to the grid operator as in [49]. A solution249

consists in predefined topological change on the grid that alleviates the previous overflow without250

generating any new problem. Those changes such as node splitting (see Figure 1) bring more251

non-linearity than line disconnections in benchmark1, making the distributions more complex.252

We here target medium-sized batches. Additional physical variables are predicted: active power253

flows pℓ and voltages vk. Level of compliance with more related physical laws is expected. This254

allows the operator to better assess the system state in a difficult situation with some consistency.255

Dataset specificity: It presents grid snapshots over single substation topological reconfiguration256

among a set of specified ones. It also considers some possible line contingencies that could cause257

overloads. An ood topology test set containing combination of 2 topological unitary actions is258

also attached to test for such generalization.259

For more details about dataset input and output variables and dimensions for both industrial use cases,260

please refer to appendix C with notation description in appendix B. Our "Datasheet for dataset" in261

appendix A will also give you additional information about our datasets creation and content.262

For the power grid use case, you might also want to look at the Grid2op documentation 1 and take a263

look at the baseline architecture with variable names and dimensions in E.2 for a visual illustration.264

4.3 Pneumatic application-oriented benchmarking task descriptions and datasets265

We focus on the mechanics of tires on hard surfaces, one of the basic types of problem in the266

mechanics of tires the vehicle engineers are concerned with. As in table 1, we define two application-267

oriented benchmarks addressed in the literature, for instance in [42] for the rolling. To generate268

the datasets, we rely on the tire and experiment configuration described in [50]. Both the reference269

physical solution and the physical criteria of interest are computed by using the FE physical solver270

Getfem [23] and used as ground truth. Thus, the fields predicted by an augmented simulator are given271

to the physical solver in order to compare the physical criteria prediction to the ground truth of these272

very quantities. Note that, the pure mechanical criteria computation part is performed by the solver273

for convenience, as their calculation rely on the underlying physical model at hand.274

1. Benchmark 1 - Static vertical stiffness. One of the basic function of a pneumatic tire is to support275

the vehicle weight. When a normal load is applied to a tire, it deflects as the load increases. Then,276

using the vertical load–deflection curves, we can estimate the so-called static vertical stiffness277

of tires. Such a criteria is known to have significant impacts on riding comfort, steering stability,278

and driving performance. Experimentally, this scenario implies running several simulations279

where different loads are applied on the wheel (inputs) to observe the resulting displacement280

of the structure (output). To be more specific, the physical variable we are interested in is the281

displacement uΩ.282

1https://grid2op.readthedocs.io/en/latest/observation.html#
main-observation-attributes
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Dataset specificity: It presents displacement snapshots for different forces applied on the tire.283

Each displacement field arise from the simulation of a different static problem on a fixed axisym-284

metric mesh for the same physic.285

2. Benchmark 2 - Design testing during a rolling cycle. Next, the aim is to assess the behaviour286

of the tire under the action of displacement-enforced rolling. Rather than the actual value of the287

criteria, we are interested about the relevancy of the design, i.e. whether the criteria value are288

within an acceptable range. Unlike the first scenario, this is a quasi-static configuration. Instead of289

running several static simulations, a single quasi-static problem is run for several time instants290

within a time interval over several rolling cycles. The physical variables we are interested in are291

the displacement uΩ and the contact stress on the contact boundary λc.292

Dataset specificity: It presents displacement and contact stresses snapshots evaluated at different293

instant during the rolling process. The idea is to train the model during [0, t1] and then evaluate the294

model for t > t1; as such it is a pure out of distribution example. Unlike the first case, it involves295

a single quasi-static problem on a fixed non-axisymmetric mesh with time as input variable.296

4.4 Configurable benchmark suite architecture & ressources297

These benchmarks are implemented within a extensible platform that consists of three modules298

combining data management, surrogate models integration and evaluation metrics. The developed299

platform is flexible and allow to integrate more benchmarks from other similar domains.300

Figure 3: Benchmarking framework

A Benchmark is instantiated by a combination of a301

dataset, an augmented simulator and an evaluation302

objects as in Figure 3. Each of them is defined in a303

generic configuration file, making it easy to adapt304

it for different setups. They further comply with305

simple interfaces, making it modular to add new306

evaluation metric or new physical domains.307

Benchmark resources The benchmark implemen-308

tation and data are provided in open-source via a309

github link 2 alongside a starting kit aiming to fa-310

cilitate the use of main functionalities. In addition,311

we make LIPS available on Codabench3 – an open,312

public platform that allows to submit easily surrogate models, and compare fairly submissions, under313

the same settings and in a fully automated way. Results of participants are summarized on a result314

table, which facilitates progress monitoring. We strongly encourage anyone working on ML for real315

physical problems to use this platform to submit and evaluate their algorithms against the benchmarks316

we described above. Public results could be highlighted and discussed at NeurIPS 2022.317

5 Experiments318

This section presents the evaluation results of baseline methods for each scenario of both use cases,319

alongside the experimental configurations used to obtain them.320

5.1 Experimental setup321

Regarding the stochastic nature of the optimisation methods based on gradient descent, 5 trials with322

different seed has been executed and the performances based on mean and standard deviation of323

different runs. All the experiments in the following sections are performed using a server equipped324

with AMD EPYC 7502P 32-Core Processor, NVIDIA RTX A6000 GPU and 128 GB of RAM. All325

computation time evaluation are run on the CPU with time measured per simulation or prediction.326

2https://github.com/Mleyliabadi/LIPS
3http://htmlpreview.github.io/?https://github.com/Mleyliabadi/LIPS/blob/main/

codabench/codabench.html
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Power grid - Our reference simulator LightSim2Grid has comparable speed on those IEEE grid327

cases than the proprietary RTE solver Hades 2, and is faster than PandaPower [51], the physical328

simulator used in SimBench, [28] by at least a factor 30 (see [17]) and also faster than the one used329

in Power Grid Lib [29] by at least a factor 5 on the hardware setup in section 5.1. This reference330

simulator choice hence makes our benchmark quite challenging. We have looked at a first baseline331

with differently tuned reference simulator, with a maximum of 1 solver iteration to see the maximum332

speed we can get with approximate results. We never go beyond a factor 5 speed-up and hence don’t333

consider it further as it is far from expected speedup. But it definitely set a lower bound to outperform.334

We have then considered three different baselines for evaluation: a physics based simplification of335

power flow calculus which is DC approximation [52] and two augmented simulators which are Fully336

Connected (FC) architecture and a state-of-the art LEAP net [53], where contrary to FC, the topology337

intervenes in the latent space and demonstrate better combinatorial generalisation capabilities. Note338

that we have conducted automated grid search to find the best performing network hyperparameters339

for both architectures (see appendix E.4). Through this benchmark suite, we encourage the community340

to contribute and to suggest approaches aiming to improve the performances of the existing baselines.341

Pneumatic - We have considered two types of augmented simulators within the first benchmark: a342

FC architecture and a Unet [54] architecture. For the latter, the numerical solution evaluated by the343

physical solver on an unstructured mesh is projected on a 128× 128 grid then, after the evaluation by344

the augmented solver, it is projected back to the mesh. For the second benchmark, two FC architecture345

are used: one to predict the displacement and one to predict the contact stress on the contact boundary.346

5.2 Benchmark results and experiments347

Table 2 summarizes the benchmark results for both use cases and their specific scenarios. In order348

to enhance the readability, we have sometimes used three qualitative levels from "not acceptable"349

to "great", relying relying on application-relevant threshold values reported in appendix C (tables 3350

and 6). The full quantitative table from which this table is derived is also provided in section J.1 of351

appendix.352

Power grid As it can be seen it this table, the ML based models (FC and LeapNet) shows better353

accuracy for target variables than the baseline DC approximation. However, their performance on354

out-of-distribution dataset is still challenging and not acceptable. While the LeapNet shows a bit355

better generalization performance, the accuracy is still above 6% error, compared to the reported356

performance in [53]. Maybe surprisingly, quantitative OOD results on the small (inner small circles)357

grid are worse than the larger grid. It could be explained by the fact that the small network is358

subject of more variations when introducing some changes such as N-1 actions but easier to track and359

understand the variations. The only possible physical law is also verified for this benchmark. Looking360

at a more challenging benchmark 2, we can observe that more variables should be predicted and more361

laws should be verified. The DC approximation respect most of the laws as it is based on physical362

solver, however it comes with some costs from the accuracy point of view. A high order speed-up363

when using ML models can be observed in comparison to a very optimized solver. We emphasize that364

such speed-up time is dependant on the application context which needs to be considered. For more365

detailed comparison concerning the physics-based criteria, the readers may refer to appendix J.2.366

Pneumatic Likewise, regarding the pneumatic use case, it seems ML models perform relatively367

well in the first benchmark with FC architecture for the prediction of the displacement field, despite368

questionable results regarding the physics. For the Unet, while the results obtained are clearly not369

acceptable at all for this benchmark, they can be explained by the small dataset considered. Such an370

architecture requires further investigations to assess whether it is actually suitable for this benchmark.371

For the second benchmark, despite the fact that it is a pure out-of-distribution case, the ML-model372

behaves surprisingly well: the prediction is quite accurate for the contact stress. However, given the373

results obtained for the displacement, we can reasonably assume the scaler proposed to handle the374

out-of-distribution displacement prediction is not working as expected, which prevent an acceptable375

convergence of the optimizer associated to the augmented simulator and thus acceptable results.376
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Table 2: Benchmark result table for the two use cases under 4 categories of evaluation criteria.
The performances are reported using three colors computed on the basis of two thresholds. Colors
and symbol meaning: Not acceptable Acceptable Great two problem scales
reported (in that case, speed-up for smaller scale is in parenthesis). The number of circles corresponds
to the number of variables or laws that are evaluated. For quantitative values from which this table is
derived, please refer to section J.1 of appendix.

Criteria category
ML-related Readiness OOD Gen. Physics

Methods Quality Speed-up Speed-up Quality Domain laws

Us
e

ca
se

s Po
we

r
Gr

id Be
nc

h1

A A P1
DC NA 19 (7)

FC 19 (22) 17 (20)

LeapNet 17 (19) 14 (17)

Be
nc

h2

A P V A P V P1 P2 P3 P4 P5 P6 P7 P8

DC NA 5 (3)

FC 99 (157) 57 (27)

LeapNet 90 (140) 54 (24)

Pn
eu

ma
ti

c

Be
nc

h1

uΩ P1 P2 P3
FC 18 NA NA

UNet 18 NA NA

Be
nc

h2

uΩ λc uΩ λc P1 P2 P3
FC 11 NA

In all the cases investigated, the speed-up observed is at least one order of magnitude for both377

benchmarks compared to the physical solver, which was precisely our aim for the rolling case in the378

first place. However, given the accuracy for the displacement field, it is far from satisfactory and as379

such only partially met with our requirements.380

We have shown with two very distinct industrial and physical domains that we can systematize the381

creation of comprehensive and yet homogeneous benchmarks for the use of physical simulation in382

industry, hence answering our RQ2. Our result table also displays a lot of benchmark results, yet in383

a compact and readable way through the use of meaningful thresholding, colors and symbols: this384

answers our RQ3 and is an original benchmark result representation in the ML community to the best385

of our knowledge.386

6 Conclusion and perspectives387

This paper has investigated the definition and the implementation of a new benchmark suite, called388

LIPS (Learning Industrial Physical Simulations). The aim is to address simulation-based industrial389

use-cases augmented with machine learning techniques. Two distinct industrial use cases (with390

different physics) have been considered to illustrate the proposed framework, with several application-391

oriented benchmarks. Experiments have shown how several comparative studies based on proposed392

categories of criteria are conducted. The obtained results have also clarified the remaining challenges393

of existing state-of-the-art augmented simulator to emulate the behavior of a physical simulator in394

an industrial context. Although, they are much faster for providing the appropriate results, their395

interesting but yet insufficient out-of-generalization properties and vulnerability vis-à-vis the physics396

compliance highlights the requirement for further improvements. This benchmark opens the door for397

designing more robust and reliable augmented simulators that will find better real-world applicability.398

Future work to extend the suite will focus on integrating new industrial use cases related to other399

physical (e.g. aeronautics, transport,...) which would help to improve the generalization of LIPS.400
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