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LIPS -Learning Industrial Physical Simulation benchmark suite

Physical simulations are at the core of many critical industrial systems. However, today's physical simulators have some limitations such as computation time, dealing with missing or uncertain data, or even non-convergence for some feasible cases.

Recently, the use of data-driven approaches to learn complex physical simulations has been considered as a promising approach to address those issues. However, this comes often at the cost of some accuracy which may hinder the industrial use. To drive this new research topic towards a better real-world applicability, we propose a new benchmark suite "Learning Industrial Physical Simulations"(LIPS) to meet the need of developing efficient, industrial application-oriented, augmented simulators.

To define how to assess such benchmark performance, we propose a set of four generic categories of criteria. The proposed benchmark suite is a modular and configurable framework that can deal with different physical problems. To demonstrate this ability, we propose in this paper to investigate two distinct use-cases with different physical simulations, namely: the power grid and the pneumatic.

For each use case, several benchmarks are described and assessed with existing models. None of the models perform well under all expected criteria, inviting the community to develop new industry-applicable solutions and possibly showcase their performance publicly upon online LIPS instance on Codabench.

Introduction

Physical simulations constitute today a key enabler for real-world complex industrial systems (power grid management, rail infrastructure, aeronautics, pneumatic, gas production plants, thermal comfort, etc.), and are used at several critical stages of the system life-cycle (system design, solutions exploration, system V&V,etc) to enhance decision making. The main drawback of using numerical simulations in general, is their high computational cost to reach satisfactory solutions. It can become prohibitive for complex systems requiring large number of simulations. To tackle this issue, several techniques have been explored in the literature to design simplified physical models [START_REF] Bergmann | A zonal galerkin-free pod model for incompressible flows[END_REF][START_REF] Casenave | A nonintrusive distributed reduced order modeling framework for nonlinear structural mechanics -application to elastoviscoplastic computations[END_REF][START_REF] Kutz | Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems[END_REF][START_REF] Chinesta | Virtual, digital and hybrid twins: A new paradigm in data-based engineering and engineered data[END_REF], dimension reduction, or considering simplified assumptions to linearize the problem. In recent years, there has been a growing interest in using machine learning techniques to solve physical problems [START_REF] Carleo | Machine learning and the physical sciences[END_REF] for which conventional modeling approaches are very expensive to compute. The main goal is to accelerate the computation time while maintaining an acceptable accuracy of simulation predictions under some specified tasks. Going even further to reach the best trade-off, Deep Neural Networks (DNN) have recently led to promising results in various domains (see e.g., [START_REF] Tompson | Accelerating eulerian fluid simulation with convolutional networks[END_REF][START_REF] Mf Kasim | Building high accuracy emulators for scientific simulations with deep neural architecture search[END_REF][START_REF] Donnot | Leap nets for power grid perturbations[END_REF][START_REF] Rasp | Deep learning to represent sub-grid processes in climate models[END_REF][START_REF] Sanchez-Gonzalez | Learning to simulate complex physics with graph networks[END_REF]), allowing an important speed-up of simulations by substituting some computational bricks with data-driven numerical models. These approaches emulate often existing simulators by learning from them in a supervised fashion and are generally used to complement them. Other approaches also aim at developing new kinds of differential solvers [START_REF] Ricky Tq Chen | Neural ordinary differential equations[END_REF][START_REF] Samuel J Greydanus | Hamiltonian neural networks[END_REF][START_REF] Balthazar Donon | Deep statistical solvers[END_REF] in an unsupervised manner, and could possibly directly fit into existing simulator core. They often fall in the class of Physics-informed machine learning [START_REF] Raissi | Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[END_REF], where the learning is performed through a residual loss function and then physical constraints are verified on the learned model to validate the obtained solution. They could lead to stronger convergence and generalization than emulators. As automated learning of complex physical simulations is still considered as a new field of research, there exists a lack of common benchmarking pipeline, starting from available datasets, across various applications and finally common evaluation criteria as reviewed in section 3. This may allow to rigorously compare these methods and drive further advances into real-world applications, in particular when considering industrial use-cases.

In this paper, we propose a new benchmark suite "Learning Industrial Physical Simulations (LIPS)" to facilitate the use and the assessment of augmented physical systems, when applied on real-world applications. Depending on the application scope, the set of required physical variables to be considered may be different. The trade-off between computation acceleration and accuracy, as well as the expected generalization capability, may be specific to each industrial domain and the considered application. The compliance to physical laws of the learnt simulations may also be very important to validate them and consequently increase the user trust toward theses augmented simulators.

To develop the LIPS benchmark suite over several physical domains, we use a bottom-up approach by investigating two use-case described in section 2 with distinct physics: power grid and pneumatic.

Those 2 industrial domains both contribute in tackling ongoing real-world challenges, such as Climate Change, by transforming our energy system through electricity decarbonization and gains in transportation energy efficiency, or improving the decision-making efficiency regarding industrial products. These 2 use cases also allow, thanks to their heterogeneity in terms of physics lying behind the modeling, a better assessment of our proposed benchmark. Preliminary ML-models to benchmark also exist in the respective literatures. Our contributions described in section 4 hence lie in:

1. defining application-oriented benchmark tasks for industry use cases as opposed to general-purpose simulation tasks; 2. proposing four categories of evaluation criteria that generalize to several physical, industrial and application domains and challenges beyond usual ML-only evaluation metrics; 3. sharing as open-source LIPS benchmarking suite framework with associated datasets; 4. opening a publicly available Codabench [START_REF] Xu | Codabench: Flexible, easy-to-use and reproducible benchmarking for everyone[END_REF] thread providing a shared result table for user's submission and a fully automated and comparable evaluation.

Baseline experiments to demonstrate the usefulness of these benchmarks are run with existing stateof-the-art methods in section 5 and further discussed, highlighting the relevance of our benchmark.

2 Use-cases 2.1 The power grid case Industrial context Power System Operators are in charge of managing the security of large critical power grids (thousands electrical lines and substations that can be reconfigured) in real time and co-ordinate the supply of and demand for electricity in a manner that avoids fluctuations in frequency or interruptions of supply. Above all, the grid needs to be robust to blackouts at any time, which means in particular avoiding powerline overflows that can lead to a cascading failure (Figure 1, left).

Operators have to face unexpected events (loosing a line for example due to weather constraints) or to anticipate events such as variation of production during the day or as equipment's maintenance. They do so by assessing the risks and leveraging grid flexibility through simulations, carefully choosing sets of remedial actions which act on the grid topology or on the production levels.

Applications Near real-time operations of a power grid can be classified into three steps with different expected speed and accuracy simulation trade-offs (Table 1): 1. Risk assessment, i.e. identifying problematic contingencies over a large possible number while assessing their severity (anticipating for instance lines overloads, maintenance operations...); 2. Remedial action search, i.e. exploring for solutions to find a set of remedial actions on the grid such as topology change, to solve a local problem and assess its overall impact; 3. Decision making, i.e. selection and validation of one of the best solutions before implementation.

Physical Simulations

The computation of the grid state involves a set of physical laws (see appendix C.1) such as Kirchhoff's law or Joule effect. More specifically, the physical resolution of the problem is derived from a set of powerflow equations [START_REF] Daniel K Molzahn | A survey of relaxations and approximations of the power flow equations[END_REF] described at any node k of the grid.

The power injected at a node of the network s k is the sum of active (p k ) and reactive powers (q k ):

s k = p k + q k .
From Kirchhoff energy conservation law, the relation between voltage angle and magnitude can be formulated for node k and neighboring nodes m as follows:

0 = -p k + K m=1 |v k ||v m |(g k,m • cos(θ k -θ m ) + b k,m sin(θ k -θ m )) Active power 0 = q k + K m=1 |v k ||v m |(g k,s • sin(θ k -θ m ) -b k,m cos(θ k -θ m )) Reactive power (1) 
where: phasors θ k are unknown for all node k; either voltage |v k | or reactive power q k are known input at any given node k ; active power p k is a known input and g k,m , b k,m known line characteristics for all nodes. For each line l, active p ℓ and reactive q ℓ powerflows or the current a ℓ can further be derived with Ohm's law.

Significance The problem 1 is non linear and non convex. To estimate these variables, a Newton-Raphson power flow solver such as LightSim2grid [START_REF]Lightsim2grid[END_REF] can be used. Over the past years, the amount of simulation required has drastically increased due to emerging trends [START_REF] Marot | Perspectives on future power system control centers for energy transition[END_REF] -mainly driven by Energy Transition initiatives, with increasing renewable energy share as well as stronger exchanges with neighboring countries over the whole European grid, both leading to a greater stochasticity. In this context, the computation time of physical solvers becomes an obstacle for upgraded decision support [START_REF] Marot | Towards an ai assistant for human grid operators[END_REF]. An acceleration by several order of magnitudes is now expected.

Figure 1: Left, small IEEE14 grid with 2 line overflows and highlighted topology changes (node splitting). Right, cross section of a simplified tire.

The pneumatic domain use case

Industrial Context In order to assess pneumatic performances, several physical considerations have to be taken into account such as durability, ground adhesion or robustness for instance, depending on the numerous applications. To do so, it is required to model the tire behaviour during either rolling cycles or configurations where it is subject to crushing forces. Besides, as the forces arising from the the tire/ground interface are located on the contact area, it is also critical to accurately estimate these quantities to predict the global behaviour. Only then, by being as close as possible to the actual configuration (including considerations about the vehicle velocity with respect to the ground, the pressure, the friction, the material behaviour...) we can optimize and improve our understanding of the processes involved and find the best compromise in terms of performances.

Applications Real-world tests performed on tires involve in particular two classical configurations depending on the accuracy/computational time simulation trade-offs (Table 1):

1. Wheel sustaining: assess whether the wheel is able to properly sustain the weight of a vehicule;

2. Rolling cycle: assess the behaviour of the tire during the rolling phase.

Physical Simulations

The computation of the tire state, that is to say the displacement and the contact stress arising from the contact conditions on the discretized domain (i.e. the mesh), is performed based on the resolution of a set of Partial Differential Equations (PDE) (see appendix C.2 for more details) through Finite Element (FE) formalism. As such, the solution is evaluated at any node of the domain's mesh, for the displacement, at the nodes on the contact boundary for the contact stress. In these PDEs, several physical considerations are involved such as: the behaviour law, the relation between the stress acting on a body and the displacement, the law of motion, the unilateral contact conditions (equivalent to assuming the ground is perfectly rigid), the Coulomb's law of dry friction. For more details about Contact Mechanics, we refer to [START_REF] Wriggers | [END_REF][START_REF] Tallec | Numerical methods for nonlinear three dimensional elasticity[END_REF][START_REF] Laursen | Computational Contact and Impact Mechanics: Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis[END_REF]. Note that, while the displacements and contact stress at the contact boundary are the actual unknowns of the problem, it may not be enough depending on the usecase. For instance, some physical quantities relevant to a given application can be computed as a post-processing of the unknowns.

Figure 1, right, depicts the cross section of a simplified tire. We consider an idealized straight rolling on an undeformable ground at constant speed.

Significance Such a problem is strongly nonlinear due to the non linear behavior law, the large deformation framework and the frictional contact conditions. In order to estimate the displacement and the stress, the FE solver "Getfem" [START_REF] Renard | Getfem: Automated fe modeling of multiphysics problems based on a generic weak form language[END_REF] is used. In practical applications, rolling simulations in particular provides a lot of useful information, such as for instance the contact area, forces, contact pressure and moments. Classical methods exists [START_REF] Renard | Generalized newton's methods for the approximation and resolution of frictional contact problems in elasticity[END_REF]25], however, because of the problem inherent complexity, the computation time is prohibitively expensive. Running over a day sometimes, it limits its use in industrial applications compared to simpler surrogate model. An order of magnitude acceleration with acceptable accuracy would democratize its usage. 

a ℓ + +++ (2) Action Search a ℓ , p ℓ , v k ++ ++ (3) Decision Making a ℓ , p ℓ , v k , q ℓ , θ k +++ + Tire (1) Wheel sustaining u Ω +++ ++ (2) Rolling cycle u Ω , λ c ++ +++

Added value of ML

Generally speaking, ML-model can provide more direct and faster predictions than a Newton-Raphson resolution over the non-linearities of both use cases. It can leverage a learning memory of any given grid, mesh or last rolling cycle iteration of interest without restarting the resolution from scratch as if it was a new system or problem. Also, as only some variables such as the flows or contact forces are sometimes of interest, in some of our benchmark tasks we will only require machine learning models to predict them instead of predicting all variables as the physical solvers. ML-models could finally provide more factorized computation such as for varying grid topologies (varying number of electrical nodes) as existing physical solvers does not offer factorization over such dimension.

Related works and novelty

Simulations and benchmarks in power grids. Although simulation time and convergence have improved over decades thanks to benchmarks based on shared power grid cases and some contests [START_REF] Zimmerman | Matpower-a matlab power system simulation package: User[END_REF][START_REF] Li | tau power grid simulation contest: Benchmark suite and results[END_REF], it remains too slow to compute large volume of simulations. In addition, existing simulators are general purpose and not application-oriented which we would like to address with this work. Some application-oriented simulation-related benchmarks emerged lately in the power system community (SimBench [START_REF] Meinecke | Simbench-a benchmark dataset of electric power systems to compare innovative solutions based on power flow analysis[END_REF], Power Grid Lib [START_REF] Babaeinejadsarookolaee | The power grid library for benchmarking ac optimal power flow algorithms[END_REF]). However they are mostly designed to drive advances in operational research algorithms. In comparison, our benchmark: a) stresses the importance of considering the complexity of varying grid topologies for industrial applications; b) unlocks the creation of data-driven models by providing comprehensive data distributions to train them, similarly to [START_REF] Zheng | Psml: A multi-scale time-series dataset for machine learning in decarbonized energy grids[END_REF] for other power grid related applications. c) define specific metrics to evaluate them such as physics compliance, out-of-distribution generalization over unseen topologies or industrial readiness considering available data volume and scalability. It eventually allows a fair comparison of pre-existing ML-models [START_REF] Donnot | Leap nets for power grid perturbations[END_REF][START_REF] Balthazar Donon | Graph neural solver for power systems[END_REF][START_REF] Schäfer | Evaluating machine learning models for the fast identification of contingency cases[END_REF][START_REF] Bolz | Power flow approximation based on graph convolutional networks[END_REF][START_REF] Balthazar Donon | Neural networks for power flow: Graph neural solver[END_REF][START_REF] Pagnier | Physics-informed graphical neural network for parameter & state estimations in power systems[END_REF]] over all necessary dimensions as summarized in Figure 2. [START_REF] Li | Gridwarm: Towards practical physicsinformed ml design and evaluation for power grid[END_REF] also concurrently advocates for such evaluation over defined categories as a first step towards proper benchmarks.

PDEs simulations and benchmarks for pneumatic. In the last few years, the success of deep learning techniques has encouraged researchers to investigate their capability to solve PDE problems.

Several works were proposed to hybridize PDE-based physical problems with Neural Networks (NN), from black-box resolution on unstructured meshes with graphs NN [START_REF] Pfaff | Learning mesh-based simulation with graph networks[END_REF], to more interpretable approaches like the physics informed NN [START_REF] Raissi | Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[END_REF]. Some other works have focused on using un-supervised learning techniques to avoid the mesh construction (mesh-free methods) [START_REF] Berg | A unified deep artificial neural network approach to partial differential equations in complex geometries[END_REF][START_REF] Sirignano | Dgm: A deep learning algorithm for solving partial differential equations[END_REF]. Regarding pneumatic domain in particular, several attempts to use these techniques have already been made so far:

the first tire/pavement contact-stress model based on artificial NN in [START_REF]Development of a Tire/Pavement Contact-Stress Model Based on an Artificial Neural Network[END_REF] using a Neuro-Patch Model, tire modeling was investigated in [START_REF] Kim | A tire side force model by artificial neural network[END_REF] relying on a feedforward back propagation algorithm and [START_REF] Hernández | Deep learning of thermodynamics-aware reduced-order models from data[END_REF] proposed a Structure-Preserving NN to predict the stress field within the tire. While providing promising results, none of these works attempt to compare fairly the performances of several ML-models with respect to a set of significant application-based criteria and we propose to fill that gap. To our knowledge, this is the first ML-friendly benchmark for pneumatic.

Benchmark for Learning to simulate physics. Learning to simulate benchmarks started to emerge recently. [START_REF] Mf Kasim | Building high accuracy emulators for scientific simulations with deep neural architecture search[END_REF] studied extensively a neural network architecture performance over several simulators based on different physics. Unfortunately no resulting benchmark has been made available yet. It mainly relies on qualitative visual analysis, while more quantitative metrics as well as physical law verification could help for better comparison as we later formalize. The authors eventually indicate that scalability to large systems remains an issue for now, as well as proper generalization in regions with high variability, highlighting the need for further advances. [START_REF] Otness | An extensible benchmark suite for learning to simulate physical systems[END_REF] also proposed lately a new benchmark over four PDEs canonical physic systems to drive forward the development of data-driven time integration solutions. Both focus primarily on scientific needs, with limited evaluation criteria categories, as opposed to industrial needs and applications.

Identified research question (RQ). Thus, compared to these various works, the research questions we address in this work can be described as follows: 1) There has been ongoing ML research for physical simulations for several years now. Are current evaluation setup comprehensive enough to actually provide applicable models in the industry ? If not, what is missing ? 2) Can we define an homogeneous evaluation framework, with generic and comprehensive categories of criteria, for different industrial domains that could systematize the creation of such benchmarks and possibly drive cross-domain advances? 3) How can we represent an exhaustive set of benchmark results in an interpretable way ?

We also set open research questions (ORQ) yet to be addressed that should be of interest for ML research: 1) What kind of inductive biases could help enforce ood generalization and physical consistency without sacrificing speed? 2) Is there a one-size fits all simulation model that performs best for all applications in a given domain or should it be more tailored to achieve better applicationspecific trade-off? 3) Could we foster the emergence of foundational models accross domains?

Regarding RQ1 and considering the power grid use case as a reference one since ML research has been ongoing for more than a decade now, we can answer that current evaluation setup are very heterogeneous from Figure 2, each with distinct attributes. Hence none looks comprehensive enough and a standardization is needed with meaningful categories and targets to drive research towards industrial impact which has yet to be seen.

Benchmark suite design 4.1 Comprehensive evaluation criteria for benchmarking industrial physical simulations

The first step towards LIPS benchmark is a generic and yet comprehensive categories of evaluation criteria that standardizes it, allowing for comparison within and across physical domains, while being expressive enough to represent industrial needs and expectations. ML-related only metrics are not sufficient in that regard. Thus, we introduce four categories of criteria of importance for industrial applications and illustrate their applicability and usability on our 2 use cases in section 5.

ML-related performance Among classical ML metrics, we focus on the trade-offs of typical model accuracy metrics such as Mean Absolute Error (MAE) vs computation time (optimal ML inference time without batch size consideration as opposed to application time later).

Industrial Readiness When deploying a model in real-world applications, it should consider the real data availability and scale-up to large systems. We hence consider:1) Scalability: the computational complexity of a surrogate method should scale well depending on the problem size, e.g. number of nodes on power grid, mesh refinement level in pneumatics; 2) Application Time: as we are looking for a tailored model to an application, we aim at measuring the computation time in this context. We consider a proper finite batch size for that application which can affect the speed-up.

Application-based out-of-distribution Generalization For industrial physical simulation, there is always some expectation to extrapolate over minimal variations of the problem geometry depending on the application. We hence consider ood geometry evaluation such as unseen power grid topology or unseen pneumatic mesh variations.

Physics compliance Physical laws compliance is decisive when simulation results are used to make consistent real-world decisions. Depending on the expected level of criticality of the benchmark, this criterion aims at determining the type and number of physical laws that should be satisfied.

Power grid application-oriented benchmarking task descriptions and datasets

From applications in table 1, we define two application-oriented benchmarks. Note that the third application will be considered in a future benchmark. The Benchmark datasets all depart from the same published datasets of realistic production and consumption distributions [START_REF] Marot | Learning to run a power network challenge for training topology controllers[END_REF], [START_REF] Marot | Learning to run a power network challenge: a retrospective analysis[END_REF] over two widely studied grids (IEEE 14 and IEEE 118 bus-systems) in the power system literature [START_REF] Daniel Zimmerman | Matpower: Steady-state operations, planning, and analysis tools for power systems research and education[END_REF]. The benchmark datasets however each differs from the application specific grid topology variations which are applied using Grid2Op [47] framework. Ground truth of physical variables are further computed using LightSim2Grid [START_REF]Lightsim2grid[END_REF] physical solver with industrial-like performance on the selected grids.

1. Benchmark 1 -Risk assessment through contingency screening. The problem is to anticipate near real-time potential threats on the power grid and warn the operators accordingly [START_REF] Donnot | Fast power system security analysis with guided dropout[END_REF]. It simulates incidents (aka contingencies) involving various elements of the grid (such as the disconnection of a line), one by one. For each contingency, a risk is identified when overloads on lines are detected. On a real grid, this scenario means running hundred of thousands of simulations, thereby, computation time is critical, especially since this risk assessment is refreshed every few minutes. We consider large simulation batches and the main physical variable is the line electric current a ℓ , because an overload occurs when it exceeds the line capacity.

Dataset specificity: It presents grid snapshots including all possible line disconnections (N-1) for few different reference grid topologies. An ood topology test set containing N-2 line disconnections (2 line disconnections combined) is also attached to test for such generalization.

2. Benchmark 2 -Remedial action search. We need to explore possible solutions (aka "remedial actions") to identified risks for recommendation to the grid operator as in [START_REF] Marot | Expert system for topological remedial action discovery in smart grids[END_REF]. A solution consists in predefined topological change on the grid that alleviates the previous overflow without generating any new problem. Those changes such as node splitting (see Figure 1) bring more non-linearity than line disconnections in benchmark1, making the distributions more complex.

We here target medium-sized batches. Additional physical variables are predicted: active power flows p ℓ and voltages v k . Level of compliance with more related physical laws is expected. This allows the operator to better assess the system state in a difficult situation with some consistency.

Dataset specificity: It presents grid snapshots over single substation topological reconfiguration among a set of specified ones. It also considers some possible line contingencies that could cause overloads. An ood topology test set containing combination of 2 topological unitary actions is also attached to test for such generalization.

For more details about dataset input and output variables and dimensions for both industrial use cases, please refer to appendix C with notation description in appendix B. Our "Datasheet for dataset" in appendix A will also give you additional information about our datasets creation and content.

For the power grid use case, you might also want to look at the Grid2op documentation1 and take a look at the baseline architecture with variable names and dimensions in E.2 for a visual illustration.

Pneumatic application-oriented benchmarking task descriptions and datasets

We focus on the mechanics of tires on hard surfaces, one of the basic types of problem in the mechanics of tires the vehicle engineers are concerned with. As in table 1, we define two applicationoriented benchmarks addressed in the literature, for instance in [START_REF] Hernández | Deep learning of thermodynamics-aware reduced-order models from data[END_REF] for the rolling. To generate the datasets, we rely on the tire and experiment configuration described in [START_REF] Gillard | An Efficient Partitioned Coupling Scheme for Tire Hydroplaning Analysis[END_REF]. Both the reference physical solution and the physical criteria of interest are computed by using the FE physical solver Getfem [START_REF] Renard | Getfem: Automated fe modeling of multiphysics problems based on a generic weak form language[END_REF] and used as ground truth. Thus, the fields predicted by an augmented simulator are given to the physical solver in order to compare the physical criteria prediction to the ground truth of these very quantities. Note that, the pure mechanical criteria computation part is performed by the solver for convenience, as their calculation rely on the underlying physical model at hand.

1. Benchmark 1 -Static vertical stiffness. One of the basic function of a pneumatic tire is to support the vehicle weight. When a normal load is applied to a tire, it deflects as the load increases. Then, using the vertical load-deflection curves, we can estimate the so-called static vertical stiffness of tires. Such a criteria is known to have significant impacts on riding comfort, steering stability, and driving performance. Experimentally, this scenario implies running several simulations where different loads are applied on the wheel (inputs) to observe the resulting displacement of the structure (output). To be more specific, the physical variable we are interested in is the displacement u Ω .

Dataset specificity: It presents displacement snapshots for different forces applied on the tire.

Each displacement field arise from the simulation of a different static problem on a fixed axisymmetric mesh for the same physic.

2. Benchmark 2 -Design testing during a rolling cycle. Next, the aim is to assess the behaviour of the tire under the action of displacement-enforced rolling. Rather than the actual value of the criteria, we are interested about the relevancy of the design, i.e. whether the criteria value are within an acceptable range. Unlike the first scenario, this is a quasi-static configuration. Instead of running several static simulations, a single quasi-static problem is run for several time instants within a time interval over several rolling cycles. The physical variables we are interested in are the displacement u Ω and the contact stress on the contact boundary λ c .

Dataset specificity: It presents displacement and contact stresses snapshots evaluated at different instant during the rolling process. The idea is to train the model during [0, t 1 ] and then evaluate the model for t > t 1 ; as such it is a pure out of distribution example. Unlike the first case, it involves a single quasi-static problem on a fixed non-axisymmetric mesh with time as input variable.

Configurable benchmark suite architecture & ressources

These benchmarks are implemented within a extensible platform that consists of three modules combining data management, surrogate models integration and evaluation metrics. The developed platform is flexible and allow to integrate more benchmarks from other similar domains. table, which facilitates progress monitoring. We strongly encourage anyone working on ML for real physical problems to use this platform to submit and evaluate their algorithms against the benchmarks we described above. Public results could be highlighted and discussed at NeurIPS 2022.

Experiments

This section presents the evaluation results of baseline methods for each scenario of both use cases, alongside the experimental configurations used to obtain them.

Experimental setup

Regarding the stochastic nature of the optimisation methods based on gradient descent, 5 trials with different seed has been executed and the performances based on mean and standard deviation of different runs. All the experiments in the following sections are performed using a server equipped with AMD EPYC 7502P 32-Core Processor, NVIDIA RTX A6000 GPU and 128 GB of RAM. All computation time evaluation are run on the CPU with time measured per simulation or prediction.

Power grid -Our reference simulator LightSim2Grid has comparable speed on those IEEE grid cases than the proprietary RTE solver Hades 2, and is faster than PandaPower [START_REF] Thurner | pandapower-an open-source python tool for convenient modeling, analysis, and optimization of electric power systems[END_REF], the physical simulator used in SimBench, [START_REF] Meinecke | Simbench-a benchmark dataset of electric power systems to compare innovative solutions based on power flow analysis[END_REF] by at least a factor 30 (see [START_REF]Lightsim2grid[END_REF]) and also faster than the one used in Power Grid Lib [START_REF] Babaeinejadsarookolaee | The power grid library for benchmarking ac optimal power flow algorithms[END_REF] by at least a factor 5 on the hardware setup in section 5.1. This reference simulator choice hence makes our benchmark quite challenging. We have looked at a first baseline with differently tuned reference simulator, with a maximum of 1 solver iteration to see the maximum speed we can get with approximate results. We never go beyond a factor 5 speed-up and hence don't consider it further as it is far from expected speedup. But it definitely set a lower bound to outperform.

We have then considered three different baselines for evaluation: a physics based simplification of power flow calculus which is DC approximation [START_REF] Stott | Dc power flow revisited[END_REF] and two augmented simulators which are Fully Connected (FC) architecture and a state-of-the art LEAP net [START_REF] Balthazar Donon | Leap nets for system identification and application to power systems[END_REF], where contrary to FC, the topology intervenes in the latent space and demonstrate better combinatorial generalisation capabilities. Note that we have conducted automated grid search to find the best performing network hyperparameters for both architectures (see appendix E.4). Through this benchmark suite, we encourage the community to contribute and to suggest approaches aiming to improve the performances of the existing baselines.

Pneumatic -We have considered two types of augmented simulators within the first benchmark: a FC architecture and a Unet [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] architecture. For the latter, the numerical solution evaluated by the physical solver on an unstructured mesh is projected on a 128 × 128 grid then, after the evaluation by the augmented solver, it is projected back to the mesh. For the second benchmark, two FC architecture are used: one to predict the displacement and one to predict the contact stress on the contact boundary.

Benchmark results and experiments

Table 2 summarizes the benchmark results for both use cases and their specific scenarios. In order to enhance the readability, we have sometimes used three qualitative levels from "not acceptable"

to "great", relying relying on application-relevant threshold values reported in appendix C (tables 3 and 6). The full quantitative table from which this table is derived is also provided in section J.1 of appendix.

Power grid As it can be seen it this table, the ML based models (FC and LeapNet) shows better accuracy for target variables than the baseline DC approximation. However, their performance on out-of-distribution dataset is still challenging and not acceptable. While the LeapNet shows a bit better generalization performance, the accuracy is still above 6% error, compared to the reported performance in [START_REF] Balthazar Donon | Leap nets for system identification and application to power systems[END_REF]. Maybe surprisingly, quantitative OOD results on the small (inner small circles) grid are worse than the larger grid. It could be explained by the fact that the small network is subject of more variations when introducing some changes such as N-1 actions but easier to track and understand the variations. The only possible physical law is also verified for this benchmark. Looking at a more challenging benchmark 2, we can observe that more variables should be predicted and more laws should be verified. The DC approximation respect most of the laws as it is based on physical solver, however it comes with some costs from the accuracy point of view. A high order speed-up when using ML models can be observed in comparison to a very optimized solver. We emphasize that such speed-up time is dependant on the application context which needs to be considered. For more detailed comparison concerning the physics-based criteria, the readers may refer to appendix J.2.

Pneumatic Likewise, regarding the pneumatic use case, it seems ML models perform relatively well in the first benchmark with FC architecture for the prediction of the displacement field, despite questionable results regarding the physics. For the Unet, while the results obtained are clearly not acceptable at all for this benchmark, they can be explained by the small dataset considered. Such an architecture requires further investigations to assess whether it is actually suitable for this benchmark.

For the second benchmark, despite the fact that it is a pure out-of-distribution case, the ML-model behaves surprisingly well: the prediction is quite accurate for the contact stress. However, given the results obtained for the displacement, we can reasonably assume the scaler proposed to handle the out-of-distribution displacement prediction is not working as expected, which prevent an acceptable convergence of the optimizer associated to the augmented simulator and thus acceptable results. In all the cases investigated, the speed-up observed is at least one order of magnitude for both benchmarks compared to the physical solver, which was precisely our aim for the rolling case in the first place. However, given the accuracy for the displacement field, it is far from satisfactory and as such only partially met with our requirements.

We have shown with two very distinct industrial and physical domains that we can systematize the creation of comprehensive and yet homogeneous benchmarks for the use of physical simulation in industry, hence answering our RQ2. Our result table also displays a lot of benchmark results, yet in a compact and readable way through the use of meaningful thresholding, colors and symbols: this answers our RQ3 and is an original benchmark result representation in the ML community to the best of our knowledge. interesting but yet insufficient out-of-generalization properties and vulnerability vis-à-vis the physics compliance highlights the requirement for further improvements. This benchmark opens the door for designing more robust and reliable augmented simulators that will find better real-world applicability.

Conclusion and perspectives

Future work to extend the suite will focus on integrating new industrial use cases related to other physical (e.g. aeronautics, transport,...) which would help to improve the generalization of LIPS. The license (MPL 2.0) is provided with the code of our benchmark framework. 
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 3 Figure 3: Benchmarking framework

  This paper has investigated the definition and the implementation of a new benchmark suite, called LIPS (Learning Industrial Physical Simulations). The aim is to address simulation-based industrial use-cases augmented with machine learning techniques. Two distinct industrial use cases (with different physics) have been considered to illustrate the proposed framework, with several applicationoriented benchmarks. Experiments have shown how several comparative studies based on proposed categories of criteria are conducted. The obtained results have also clarified the remaining challenges of existing state-of-the-art augmented simulator to emulate the behavior of a physical simulator in an industrial context. Although, they are much faster for providing the appropriate results, their
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 c1 Did you report error bars (e.g., with respect to the random seed after running experiments multiple times)? [Yes] yes, evaluation criteria are reported using the mean and standard deviation over various runs of models (d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs, internal cluster, or cloud provider)? [Yes] This information is provided in section 5If you are using existing assets (e.g., code, data, models) or curating/releasing new assets... (a) If your work uses existing assets, did you cite the creators? [Yes] We have included the references to the core software libraries and the input dataset used in the benchmarks (b) Did you mention the license of the assets? [Yes] We are only using open-source assets. The license of the assets we are using is provided at the URL we provide as a reference to the assets.(c) Did you include any new assets either in the supplemental material or as a URL?[Yes] 

5 .

 5 (d) Did you discuss whether and how consent was obtained from people whose data you're using/curating? [N/A] No human data used or curated. (e) Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content? [N/A] Our data only include the result of numerical simulations. If you used crowdsourcing or conducted research with human subjects... (a) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A] No human participants (b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A] No human participants (c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? [N/A] No human participants

Table 1 :

 1 Grid and pneumatic apps: speed vs accuracy and physical law compliance trade-offs

	Application	Variables to predict	Accuracy & PL compliance Speed
	Use cases		

Grid

(1) Risk assessment

  Figure2: Comparative table between LIPS and related work for the power grid case. This highlights that our framework offers a comprehensive evaluation setup that was often barely covered by others.

				evaluation criteria categories		impact	readability		environnement setup
				industrial	ood		meaningful	standard		ref Physical	ML model
		paper reference	ML-related	readiness	generalization	PL compliance	thresholding	comparative viz dataset	simulator	repository	baselines
									data generation		
									shared, simple		
									distributions	none	unmaintained	yes & diverse
									large & doc &	fast -	
	Benchmark suites	LIPS SimBench [28]	yes no (otimization & heuristics) no	yes yes	yes yes	comprehensive yes no no	yes yes	realistic prod + topo distributions medium & doc & realistic prod but simple topo small & doc & realistic prod but	LightSimgrid (open source) slow -PandaPower (open source) med-speed -PowerModel	maintained no ML	yes & diverse yes & diverse
		PowerGridLib [29]	(optimization)	partial	yes	partial	no	no	static topo	(open source)	no ML	yes but uniform

Table 2 :

 2 Benchmark result table for the two use cases under 4 categories of evaluation criteria. The performances are reported using three colors computed on the basis of two thresholds. Colors and symbol meaning:Not acceptable Acceptable Great two problem scales reported (in that case, speed-up for smaller scale is in parenthesis). The number of circles corresponds to the number of variables or laws that are evaluated. For quantitative values from which this table is derived, please refer to section J.1 of appendix.

							Criteria category	
					ML-related	Readiness	OOD Gen.	Physics
				Methods Quality Speed-up	Speed-up	Quality	Domain laws
					A			A	P1
	Use cases	Power Grid Pneumatic	Bench1 Bench2 Bench1 Bench2	DC FC LeapNet DC FC LeapNet FC UNet FC	A P V u Ω u Ω λ c	NA 19 (22) 17 (19) NA 99 (157) 90 (140) 18 18 11	19 (7) 17 (20) 14 (17) 5 (3) 57 (27) 54 (24) NA NA NA	A P V NA NA u Ω λ c	P1 P2 P3 P4 P5 P6 P7 P8 P1 P2 P3 P1 P2 P3

https://grid2op.readthedocs.io/en/latest/observation.html# main-observation-attributes

https://github.com/Mleyliabadi/LIPS

http://htmlpreview.github.io/?https://github.com/Mleyliabadi/LIPS/blob/main/ codabench/codabench.html
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